169 Biological Sof 7. Biological Soft Tissues Jay D. Humphrey A better understanding of many issues of human health, disease, injury, and the treatment thereof necessitates a detailed quantification of how biological cells, tissues, and organs respond to applied loads. Thus, experimental mechanics can, and must, play a fundamental role in cell biology, physiology, pathophysiology, and clinical intervention. The goal of this chapter is to discuss some of the foundations of experimental biomechanics, with particular attention to quantifying the finite-strain behavior of biological soft tissues in terms of nonlinear constitutive relations. Towards this end, we review illustrative elastic, viscoelastic, and poroelastic descriptors of softtissue behavior and the experiments on which they are based. In addition, we review a new class of much needed constitutive relations that will help quantify the growth and remodeling processes within tissues that are fundamental to long-term adaptations and responses to disease, injury, and clinical intervention. We will see that much has Constitutive Formulations – Overview .... 171 7.2 Traditional Constitutive Relations .......... 7.2.1 Elasticity ..................................... 7.2.2 Viscoelasticity .............................. 7.2.3 Poroelasticity and Mixture Descriptions .............. 7.2.4 Muscle Activation ......................... 7.2.5 Thermomechanics ........................ 176 177 177 7.3 Growth and Remodeling – A New Frontier 7.3.1 Early Approaches.......................... 7.3.2 Kinematic Growth ........................ 7.3.3 Constrained Mixture Approach ....... 178 178 179 180 7.4 Closure ................................................ 182 7.5 Further Reading ................................... 182 172 172 176 References .................................................. 183 been learned, yet much remains to be discovered about the wonderfully complex biomechanical behavior of soft tissues. there was a need to await the development of a nonlinear theory of material behavior in order to quantify well that of soft tissues. It is not altogether surprising, therefore, that biomechanics did not truly come into its own until the mid-1960s. It is suggested that five independent developments facilitated this: (i) the post World War II renaissance in nonlinear continuum mechanics [7.2] established a general foundation needed for developing constitutive relations suitable for soft tissues; (ii) the development of computers enabled the precisely controlled experimentation [7.3] that was needed to investigate complex anisotropic behaviors and facilitated the nonlinear regressions [7.4] that were needed to determine best-fit material parameters from data; (iii) related to this technological advance, development of sophisticated numerical methods, particularly the Part A 7 At least since the time of Galileo Galilei (1564–1642), there has been a general appreciation that mechanics influences the structure and function of biological tissues and organs. For example, Galileo studied the strength of long bones and suggested that they are hollow as this increases their strength-to-weight ratio (i. e., it increases the second moment of area given a fixed amount of tissue, which is fundamental to increasing the bending stiffness). Many other figures in the storied history of mechanics, including G. Borelli, R. Hooke, L. Euler, T. Young, J. Poiseuille, and H. von Helmholtz, contributed much to our growing understanding of biomechanics. Of particular interest herein, M. Wertheim, a very productive experimental mechanicist of the 19-th century, showed that diverse soft tissues do not exhibit the linear stress–strain response that is common to many engineering materials [7.1]. That is, 7.1 170 Part A Solid Mechanics Topics Mechanical stimuli ECM α β Cell-cell G-proteins Ion channels GF receptor FAC changes Cadherins Cell membrane Mechanobiologic factors Cell-matrix Integrins Signaling pathways CSK changes Transcription factors Gene expression Altered mechanical properties Altered cell function Fig. 7.1 Schema of cellular stimuli or inputs – chemical, mechanical, and of course, genetic – and possible mechanobio- logic responses. The cytoskeleton (CSK) maintains the structural integrity of the cell and interacts with the extracellular matrix (ECM) through integrins (transmembrane structural proteins) or clusters of integrins (i. e., focal adhesion complexes or FACs). Of course, cells also interact with other cells via special interconnections (e.g., cadherins) and are stimulated by various molecules, including growth factors (GFs). Although the pathways are not well understood, mechanical stimuli can induce diverse changes in gene expression, which in turn alter cell function and properties as well as help control the structure and properties of the extracellular matrix. It is clear, therefore, that mechanical stimuli can affect many different aspects of cell function and thus that of tissues and organs Part A 7 finite element method [7.5], enabled the solution of complex boundary value problems associated with soft tissues, including inverse finite element estimations of material parameters [7.6]; and (iv) the space race of the 1960s increased our motivation to study the response of the human body to applied loads, particularly high G-forces associated with lift-off and reentry as well as the microgravity environment in space. Finally, it is not coincidental that the birth of modern biomechanics followed closely (v) the birth of modern biology, often signaled by discoveries of the structure of proteins, by L. Pauling, and the structure of DNA, by J. Watson and F. Crick. These discoveries ushered in the age of molecular and cellular biology [7.7]. Indeed, in contrast to the general appreciation of roles of mechanics in biology in the spirit of Galileo, the last few decades have revealed a fundamentally more important role of mechanics and mechanical fac- tors. Experiments since the mid-1970s have revealed that cells often alter their basic activities (e.g., their expression of particular genes) in response to even subtle changes in their mechanical environment. For example, in response to increased mechanical stretching, cells can increase their production of structural proteins [7.8]; in response to mechanical injury, cells can increase their production of enzymes that degrade the damaged structural proteins [7.9]; and, in response to increased flow-induced shear stresses, cells can increase their production of molecules that change permeability or cause the lumen to dilate and thereby to restore the shear stress towards its baseline value [7.10]. Cells that are responsive to changes in their mechanical loading are sometimes referred to as mechanocytes, and the study of altered cellular activity in response to altered mechanical loading is called mechanobiology (Fig. 7.1). Consistent with the mechanistic philosophy Biological Soft Tissues of R. Descartes, which motivated many of the early studies in biomechanics, it is widely accepted that cells are not only responsive to changes in their mechanical environment, they are also subject to the basic postulates of mechanics (e.g., balance of linear momen- 7.1 Constitutive Formulations – Overview 171 tum). As a result, basic concepts from mechanics (e.g., stress and strain) can be useful in quantifying cellular responses and there is a strong relationship between mechanobiology and biomechanics. Herein, however, we focus primarily on the latter. 7.1 Constitutive Formulations – Overview There are, of course, three general approaches to quantify complex mechanical behaviors via constitutive formulations: (i) theoretically, based on precise information on the microstructure of the material; (ii) experimentally, based directly on data collected from particular classes of experiments; and (iii) via trial and error, by postulating competing relations and selecting preferred ones based on their ability to fit data. Although theoretically derived microstructural relations are preferred in principle, efforts ranging from C. Navier’s attempt to model the behavior of metals to L. Treloar’s attempt to model the behavior of natural rubber reveal that that this is very difficult in practice, particularly for materials with complex microstructures such as soft tissues. Formulating constitutive relations directly from experimental data is thus a practical preference [7.11], but again history reveals that it has been difficult to identify and execute appropriate theoretically based empirical approaches. For this reason, trial-and-error phenomenological formulations, based on lessons learned over years of investigation and often motivated by limited microstructural information, continue to be common in biomechanics just as they are in more traditional areas of applied mechanics. Regardless of approach, there are five basic steps that one must follow in any constitutive formulation: • Specifically, the first step is to classify the behavior of the material under conditions of interest, as, for example, if the material exhibits primarily a fluid-like or a solid-like response, if the response is dissipative or not, if it is isotropic or not, if it is isochoric or not, and so forth. Once sufficient observations enable one to classify the behavior, one can then establish an appro- Fibroblast Endothelial cell Collagen Smooth muscle Adventitia Elastin Media Intima Basal lamina b) Fig. 7.2 (a) Schema of the arterial wall, which consists of three basic layers: the intima, or innermost layer, the media, or middle layer, and the adventitia, or outermost layer. Illustrated too are the three primary cells types (endothelial, smooth muscle, and fibroblasts) and two of the key structural proteins (elastin and collagen). (b) For comparison, see the histological section of an actual artery: the dark inner line shows the internal elastic lamina, which separates the thin intima from the media; the lighter shade in the middle shows the muscle dominated media, and the darker shade in the outer layer shows the collagendominated adventitia Part A 7.1 • • • • delineate general characteristics of the material behavior, establish an appropriate theoretical framework, identify specific functional forms of the relations, calculate values of the material parameters, evaluate the predictive capability of the final relations. a) 172 Part A Solid Mechanics Topics priate theoretical framework (e.g., a theory of elasticity within the context of the definition of a simple material by W. Noll), with suitable restrictions on the possible constitutive relations (e.g., as required by the Clausius– Duhem inequality, material frame indifference, and so forth). Once a theory is available, one can then design appropriate experiments to quantify the material behavior in terms of specific functional relationships and best-fit values of the material parameters. Because of the complex behaviors, multiaxial tests are often preferred, including in-plane biaxial stretching of a planar specimen, extension and inflation of a cylindrical specimen, extension and torsion of a cylindrical specimen, or inflation of an axisymmetric membrane, each of which has a tractable solution to the associated finite-strain boundary value problem. The final step, of course, is to ensure that the relation has predictive capability beyond that used in formulating the relation. With regard to classifying the mechanical behavior of biological soft tissues, it is useful to note that they often consist of multiple cell types embedded within an extracellular matrix that consists of diverse proteins as well as proteoglycans (i. e., protein cores with polysaccharide branches) that sequester significant amounts of water. Figure 7.2 shows constituents in the arterial wall, an illustrative soft tissue. The primary structural proteins in arteries, as in most soft tissues, are elastin and different families of collagen. Elastin is perhaps the most elastic protein, capable of extensions of over 100% with little dissipation. Moreover, elastin is one of the most stable proteins in the body, with a normal halflife of decades. Collagen, on the other hand, tends to be very stiff and not very extensible, with the exception that it is often undulated in the physiologic state and thus can undergo large displacements until straightened. The half-life of collagen varies tremendously depending on the type of tissue, ranging from a few days in the periodontal ligament to years in bone. Note, too, that the half-life as well as overall tissue stiffness is modulated in part by extensive covalent cross-links, which can be enzymatic or nonenzymatic (which occur in diabetes, for example, and contribute to the loss of normal function of various types of tissues, including arteries). In general, however, soft tissues can exhibit a nearly elastic response (e.g., because of elastin) under many conditions, one that is often nonlinear (due to the gradual recruitment of undulated collagen), anisotropic (due to different orientations of the different constituents), and isochoric (due to the high water content) unless water is exuded or imbibed during the deformation. Many soft tissues will also creep or stress-relax under a constant load or a constant extension, respectively. Hence, as with most materials, one must be careful to identify the conditions of interest. In the cardiovascular and pulmonary systems, for example, normal loading is cyclic, and these tissues exhibit a nearly elastic response under cyclic loading. Conversely, implanted prosthetic devices in the cardiovascular system (e.g., a coronary stent) may impose a constant distension, and thus induce significant stress relaxation early on but remodeling over longer periods due to the degradation and synthesis of matrix proteins. Finally, two distinguishing features of soft tissues are that they typically contain contractile cells (e.g., muscle cells, as in the heart, or myofibroblasts, as in wounds to the skin) and that they can repair themselves in response to local damage. That is, whether we remove them from the body for testing or not, we must remember that our ultimate interest is in the mechanical properties of tissues that are living [7.12]. Part A 7.2 7.2 Traditional Constitutive Relations At the beginning of this section, we reemphasize that constitutive relations do not describe materials; rather they describe the behavior of materials under welldefined conditions of interest. A simple case in point is that we do not have a constitutive relation for water; we have different constitutive relations for water in its solid (ice), liquid (water), or gaseous (steam) states, which is to say for different conditions of temperature and pressure. Hence, it is unreasonable to expect that any single constitutive relation can, or even should, describe a particular tissue. In other words, we should expect that diverse constitutive relations will be equally useful for describing the behavior of individual tissues depending on the conditions of interest. Many arguments in the literature over whether a particular tissue is elastic, viscoelastic, poroelastic, etc. could have been avoided if this simple truth had been embraced. 7.2.1 Elasticity No biological soft tissue exhibits a truly elastic response, but there are many conditions under which the Biological Soft Tissues assumption of elasticity is both reasonable and useful. Toward this end, one of the most interesting, and experimentally useful, observations with regard to the behavior of many soft tissues is that they can be preconditioned under cyclic loading. That is, as an excised tissue is cyclically loaded and unloaded, the stress versus stretch curves tend to shift rightward, with decreasing hysteresis, until a near-steady-state response is obtained. Fung [7.12] suggested that this steadystate response could be modeled by separately treating the loading and unloading curves as nearly elastic; he coined the term pseudoelastic to remind us that the response is not truly elastic. In practice, however, except in the case of muscular tissues, the hysteresis is often small and one can often approximate reasonably well the mean response between the loading and the unloading responses using a single elastic descriptor, similar to what is done to describe rubber elasticity. Indeed, although mechanisms underlying the preconditioning of soft tissues are likely very different from those underlying the Mullin effect in rubber elasticity [7.13], in both cases initial cyclic loading produces stress softening and enables one to use the many advances in nonlinear elasticity. This and many other parallels between tissue and rubber elasticity likely result from the long-chain polymeric microstructure of both classes of materials, thus these fields can and should borrow ideas from one another (see discussion in [7.14] Chap. 1). For example, Cauchy membrane stress (g/cm) 120 RV epicardium equibiaxial stretch Circumferential Apex–to–base 60 1 1.16 1.32 Stretch Fig. 7.3 Representative tension–stretch data taken, fol- lowing preconditioning, from a primarily collagenous membrane, the epicardium or covering of the heart, tested under in-plane equibiaxial extension. Note the strong nonlinear response, anisotropy, and negligible hysteresis over finite deformations (note: membrane stress is the same as a stress resultant or tension, thus having units of force per length though here shown as a mass per length) advances in rubber elasticity have taught us much about the importance of universal solutions, common types of material and structural instabilities, useful experimental approaches, and so forth [7.14–16]. Nonetheless, common forms of stress–strain relations in rubber elasticity – for example, neo-Hookean, Mooney–Rivlin, and Ogden – have little utility in soft-tissue biomechanics and at times can be misleading [7.17]. A final comment with regard to preconditioning is that, although we desire to know properties in vivo (literally in the body), it is difficult in practice to perform the requisite measurements without removing the cells, tissues, or organs from the body so that boundary conditions can be known. This process of removing specimens from their native environment necessarily induces a nonphysiological, often poorly controlled strain history. Because the mechanical behavior is history dependent, the experimental procedure of preconditioning provides a common, recent strain history that facilitates comparisons of subsequent responses from specimen to specimen. For this reason, the preconditioning protocol should be designed well and always reported. Whereas a measured linear stress–strain response implies a unique functional relationship, the nonlinear, anisotropic stress–strain responses exhibited by most soft tissues (Fig. 7.3) typically do not suggest a specific functional relationship. In other words, one must decide whether the observed characteristic stiffening over finite strains (often from 5% to as much as 100% strain) is best represented by polynomial, exponential, or more complex stress–strain relations. Based on one-dimensional (1-D) extension tests on a primarily collagenous membrane called the mesentery, which is found in the abdomen, Fung showed in 1967 that it can be useful to plot stiffness, specifically the change of the first Piola–Kirchhoff stress with respect to changes in the deformation gradient, versus stress rather than to plot stress versus stretch as is common [7.12]. Specifically, if P is the 1-D first Piola– Kirchhoff stress and λ is the associated component of the deformation gradient (i. e., a stretch ratio), then seeking a functional form P = P(λ) directly from data is simplified by interpreting dP/ dλ versus P. For the mesentery, Fung found a near-linear relation between stiffness and stress, which in turn suggested directly (i. e., via the solution of the linear first-order ordinary differential equation) an exponential stress–stretch relationship (with P(λ = 1) = 0): α β(λ−1) dP e −1 , = α+βP → P = dλ β (7.1) 173 Part A 7.2 0 7.2 Traditional Constitutive Relations 174 Part A Solid Mechanics Topics where α and β are material parameters, which can be determined via nonlinear regressions of stress versus stretch data or more simply via linear regressions of stiffness versus stress data. Note, too, that one could expand and then linearize the exponential function to relate these parameters to the Young’s modulus of linearized elasticity if so desired. Albeit a very important finding, a 1-D constitutive relation cannot be extended to describe the multiaxial behavior that is common to many soft tissues, ranging from the mesentery to the heart, arteries, skin, cornea, bladder, and so forth. At this point, therefore, Fung made a bold hypothesis. Given that this 1-D first Piola–Kirchhoff versus stretch relationship was exponential, he hypothesized that the behavior of many soft tissues could be described by an exponential relationship between the second Piola–Kirchhoff stress tensor S and the Green strain tensor E, which are conjugate measures appropriate for large-strain elasticity. In particular, he suggested a hyperelastic constitutive relation of the form: ∂W ∂Q whereby S = = c eQ , W = c eQ − 1 ∂E ∂E (7.2) Part A 7.2 where W is a stored energy function and Q is a function of E. Over many years, Fung and others suggested, based on attempts to fit data, that a convenient form of Q is one that is quadratic in the Green strain, similar to the form of a stored energy function in terms of the infinitesimal strain in linearized elasticity. Fung argued that, because Q is related directly to ln W, material symmetry arguments were the same for this exponential stored energy function as they are for linearized elasticity. Q thus contains two, five, or nine nondimensional material parameters for isotropic, transversely isotropic, or orthotropic material symmetries, respectively, and this form of W recovers that for linearized elasticity as a special case. The addition of a single extra material parameter, c, having units of stress, is a small price to pay in going from linearized to finite elasticity, and this form of W has been used with some success to describe data on the biaxial behavior of skin, lung tissue, arteries, heart tissue, urinary bladder, and various membranes including the pericardium (which covers the heart) and the pleura (which covers the lungs). In some of these cases, this form of W was modified easily for incompressibility (e.g., by introducing a Lagrange multiplier) or for a twodimensional (2-D) problem. For example, a commonly used 2-D form in terms of principal Green strains is 2 2 + c2 E 22 + 2c3 E 11 E 22 − 1 , W = c exp c1 E 11 (7.3) where ci are material parameters. It is easy to show that physically reasonable behavior is ensured by c > 0 and ci > 0 and that convexity is ensured by the additional condition c1 c2 > c23 [7.18, 19]. Nonetheless, (7.2) and (7.3) are not without limitations. This 2-D form limits the degree of strain-dependent changes in anisotropy that are allowed, and experience has shown that it is typically difficult to find a unique set of material parameters via nonlinear regressions of data, particularly in three dimensions. Perhaps more problematic, experience has also revealed that convergent solutions can be difficult to achieve in finite element models based on the three-dimensional (3-D) relation except in cases of axisymmetric geometries. The later may be related to the recent finding by Walton and Wilber [7.20] that the 3-D Fung stored energy function is not strongly elliptic. Hence, despite its past success and usage, there is clearly a need to explore other constitutive approaches. Moreover, this is a good reminder that there is a need for a strong theoretical foundation in all constitutive formulations. The Green strain is related directly to the right Cauchy Green tensor C = F F, where F is the deformation gradient tensor, yet most work in finite elasticity has been based on forms of W that depend on C, thus allowing the Cauchy stress t to be determined via (as required by Clausius–Duhem, and consistent with (7.2) for the relation between the second Piola–Kirchhoff stress and Green strain): t= ∂W 2 F F . det F ∂C (7.4) For example, Spencer [7.21] suggested that materials consisting of a single family of fibers (i. e., exhibiting a transversely isotropic material symmetry) could be described by a W of the form W = Ŵ(I, II, III, IV, V) , (7.5) where I = tr C, 2II = (tr C)2 − tr C2 , IV = M · CM, V = M·C M , 2 III = det C, (7.6) and M is a unit vector that identifies the direction of the fiber family in a reference configuration. Incompress- Biological Soft Tissues ibility, III = 1, reduces the number of invariants by one while introducing an arbitrary Lagrange multiplier p, namely p (7.7) W = W̃(I, II, IV, V) − (III − 1) , 2 yet it is still difficult to impossible to rigorously determine specific functional forms directly from data. Indeed, this problem is more acute in cases of twofiber families, including orthotropy when the families are orthogonal. Hence, subclasses of this form of W have been evaluated in biomechanics. For example, Humphrey et al. [7.22] showed, and Sacks and Chuong [7.23] confirmed, that a stored energy function of the form Ŵ(I, IV), determined directly from in-plane biaxial tests (with I and IV separately maintained constant) on excised slabs of noncontracting heart muscle to be a polynomial function, described well the available in-plane biaxial stretching data. This 1990 paper [7.22] also illustrated the utility of performing nonlinear regressions of stress–stretch data using data sets that combined results from multiple biaxial tests as well as the importance of respecting Baker–Ericksen-type inequalities [7.2] in the parameter estimations. Holzapfel et al. [7.18] and others have similarly proposed specific forms of W for arteries based on a subclass of the two-fiber family approach of Spencer. Specifically, they propose a form of W that combines that of a neo-Hookean relation with a simple exponential form for two-fiber families, namely W̃ = c(tr C − 3) c1 exp b1 (M1 · CM1 − 1)2 − 1 + b1 c2 exp b2 (M2 · CM2 − 1)2 − 1 , + b2 (7.8) 175 depend on traditional invariants of C is not optimal, hence alternative invariant sets should be identified and explored [7.18, 24, 25]. Experiments designed based on these invariants remain to be performed, however. Preceding the one- and two-fiber family models were the microstructural models proposed by Lanir [7.26]. Briefly, electron and light microscopy reveal that the elastin and collagen fibers within many soft tissues have complex spatial distributions (notable exceptions being collagen fibers within tendons, which are coaxial, and those within the cornea of the eye, which are arranged in layered orthogonal networks). Moreover, it appears that, despite extensive cross-linking at the molecular level, these networks are often loosely organized. Consequently, Lanir suggested that a stored energy function for a tissue could be derived in terms of strain energies for straightened individual fibers if one accounted for the undulation and distribution of the different types of fibers, or alternatively that one could postulate exponential stored energy functions for the individual fibers (cf. (7.3)) and simply account for distribution functions for each type of fiber. For example, for a soft tissue consisting primarily of elastin and type I collagen (i. e., only two types of constituents), one could consider Ri (ϕ, θ) wif λif sin ϕ dϕ dθ , (7.9) φi W= i=1,2 φi where and Ri are, respectively, the volume fraction and distribution function for constituent i (elastin or collagen), and wif is the 1-D stored energy function for a fiber belonging to constituent i. Clearly, the stress could be computed as in (7.1) provided that the fiber stretch can be related to the overall strain, which is easy if one assumes affine deformations. In principle, the distribution function could be determined from histology and the material parameters for the fiber stored energy function could be determined from straightforward 1-D tests, thus eliminating, or at least reducing, the need to find many free parameters via nonlinear regressions in which unique estimates are rare. In practice, however, it has been difficult to identify the distribution functions directly, thus they have often been assumed to be Gaussian or a similarly common distribution function. Although proposed as a microstructural model, the many underlying assumptions render this approach microstructurally motivated at best; that is, there is no actual modeling of the complex interactions (including covalent cross-links, van der Waals forces, etc.) between the many different proteins and proteoglycans that endow the tissue with its bulk properties, Part A 7.2 where Mi (i = 1, 2) denote the original directions of the two-fiber families. Although neither of these forms is derived directly from precise knowledge of the microstructure nor inferred directly from experimental data, this form of W was motivated by the idea that elastin endows an artery with a nearly linearly elastic (neo-Hookean)-type response whereas the straightening of multiple families of collagen can be modeled by exponential functions in terms of fiber stretches. Thus far, this and similar forms of W have proven useful in large-scale computations and illustrates well the utility of the third approach to modeling noted above – trial and error based on experience with other materials or similar relations. It is important to note, however, that inferring forms of W for incompressible behaviors that 7.2 Traditional Constitutive Relations 176 Part A Solid Mechanics Topics which are measurable using standard procedures. Indeed, perhaps one reason that this approach did not gain wider usage is that it failed to predict material behaviors under simple experimental conditions, thus like competing phenomenological relations it had to rely on nonlinear regressions to obtain best-fit values of the associated material parameters. As noted earlier, the extreme complexity of the microstructure of soft tissues renders it difficult to impossible to derive truly microstructural relations. Nevertheless, as we discuss below, microstructurally motivated formulations can be a very useful approach to constitutive modeling provided that the relations are not overinterpreted. Among others, Bischoff et al. [7.27] have revisited microstructurally motivated constitutive models with a goal of melding them with phenomenological models. In summary, although no soft tissue is truly elastic in its behavior, hyperelastic constitutive relations have proven useful in many applications. We have reviewed but a few of the many different functional forms reported in the literature, thus the interested reader is referred to Fung [7.12], Maurel et al. [7.28], and Humphrey [7.19] for additional discussion. 7.2.2 Viscoelasticity Although the response of many soft tissues tends to be relatively insensitive to changes in strain rate over physiologic ranges, soft tissues creep under constant loads and they stress-relax under constant deformations. Among others, Fung [7.12] suggested that single-integral heredity models could be useful in biomechanics just as they are in rubber viscoelasticity [7.29]. For example, we recently showed that sets of strain-dependent stress relaxation responses of a collagenous membrane, before and after thermal damage, can be modeled via [7.30] Part A 7.2 τ G(τ − s) t(τ) = − p(τ)I + 2F(τ) 0 ∂ ∂W × (s) ds F (τ) , ∂s ∂C (7.10) where G is a reduced relaxation function that depends on fading time (τ − s) and W was taken to be an exponential function similar to (7.3); all other quantities are the same as before except with explicit dependence on the current time. Various forms of the reduced relaxation function can be used, including a simple form that we found to be useful in thermal damage G(x) = 1− R +R, 1 + (x/τR )n (7.11) where n is a free parameter, τR is a characteristic time of relaxation, and R is the stress remainder, that is, the fraction of the elastic response that is left after a long relaxation (e.g., R = 0 for a viscoelastic fluid). If short-term responses are important, numerous models can be used; for example, the simple viscohyperelastic approach of Beatty and Zhou [7.31] is useful in modeling biomembranes [7.32]. Briefly, the Cauchy stress is assumed to be of the general form t = t̂(B, D), where B = FF is the left Cauchy–Green tensor, with F the deformation gradient, and D = (L + L )/2 is the stretching tensor, with the velocity gradient L = ḞF−1 . Specifically, assuming incompressibility, the Cauchy stress has three contributions: a reaction stress, an elastic part, and a viscous part, namely t = − pI + 2F ∂ W̃ F + 2μD , ∂C (7.12) where p is again a Lagrange multiplier that enforces incompressibility, W is the same strain energy function that was used in the elastic-only description noted above, and μ is a viscosity. Hence, this description of short-term nonlinear viscohyperelasticity adds but one additional material parameter to the constitutive equation, and the elastic response can be quantified first via quasistatic tests, thereby reducing the number of parameters in each regression. Some have considered a synthesis of the short- and long-term models. For a discussion of other viscoelastic models in softtissue mechanics, see Provenzano et al. [7.33] or Haslach [7.34] and references therein. 7.2.3 Poroelasticity and Mixture Descriptions Not only do soft tissues consist of considerable water, every cell in these tissues is within ≈ 50 μm of a capillary, which is to say close to flowing blood. Clearly then, it can be advantageous to model tissues as solid–fluid mixtures under many conditions of interest. A basic premise of mixture theory [7.2] is that balance relations hold both for the mixture as a whole and for the individual constituents, with the requirement that summation of the balance relations for the constituents must yield the classical relations. Moreover, it is assumed that the constituent balance relations include additional constitutive relations, particularly those that model the Biological Soft Tissues exchanges of mass, momentum, or energy between constituents. The first, and most often used, approach to model soft tissues via mixture theory was proposed by Mow et al. [7.35]. Briefly, their linear biphasic theory treated cartilage as a porous solid (i. e., the composite response due to type II collagen, proteoglycans, etc.), which was assumed to exhibit a linearly elastic isotropic response, with an associated viscous fluid within. They proposed constitutive relations for the solid and fluid stresses of the form t (s) = −φ(s) pI + λs tr(ε)I + 2μs ε , t (f) = −φ(f) pI − 23 μf div v(f) I + 2μf D , (7.13) and, for the momentum exchange between the solid and fluid, − p(f) = p(s) = p∇φ(f) + K (v(f) − v(s) ) , (7.14) 177 7.2.4 Muscle Activation Another unique feature of many soft tissues is their ability to contract via actin–myosin interactions within specialized cells called myocytes. Examples include the cardiac muscle of the heart, skeletal muscle of the arms and legs, and smooth muscle, which is found in many tissues including the airways, arteries, and uterus. The most famous equation in muscle mechanics is that postulated in 1938 by A. V. Hill to describe force–velocity relations. This relation, like many subsequent ones, focuses on 1-D behavior along the long axis of the myocyte or muscle; data typically comes from tests on muscle fibers or strips, or in some cases rings taken from arteries or airways. Although much has been learned, much remains to be learned particularly with respect to the multiaxial behavior. The interested reader is referred to Fung [7.12]. Zahalak et al. [7.42], and Rachev and Hayashi [7.43]. In addition, however, note that modeling muscle activity in the heart (i. e., the electromechanics) has advanced significantly and represents a great example of the synthesis of complex theoretical, experimental, and computational methods. Toward this end, the reader is referred to Hunter et al. [7.44, 45]. 7.2.5 Thermomechanics The human body regulates its temperature to remain within a narrow range, and for this reason there has been little attention to constitutive relations for thermomechanical behaviors of cells, tissues, and organs. Nevertheless, advances in laser, microwave, highfrequency ultrasound, and related technologies have encouraged the development and use of heating devices to treat diverse diseases and injuries. For example, supraphysiologic temperatures can destroy cells and shrink collagenous tissue, which can be useful in treating cancer and orthopedic injuries, respectively. Laser-based corneal reshaping, or LASIK, is another prime example. Due to space limitations here, the interested reader is referred to Humphrey [7.46], and references therein, for a brief review of the growing field of biothermomechanics and insight into ways in which experimental mechanics and constitutive modeling can contribute. Also see Diller and Ryan [7.47] for information on the associated bioheat transfer. Of particular note, however, it has been shown that increased mechanical loading can delay the rate at which thermal damage accrues, hence there is a strong thermomechanical coupling and a pressing need for more mechanics-based studies – first experimental, then computational. Part A 7.2 where the superscripts and subscripts ‘s’ and ‘f’ denote solid and fluid constituents, hence v(s) and v(f) are solid and fluid velocities, respectively. Finally, φ(i) are constituent fractions, μs and λs are the classical Lamé constants for the solid, μf is the fluid viscosity, and ε is the linearized strain in the solid. In some cases the fluid viscosity is neglected, thus allowing tissue viscoelasticity to be accounted for solely via the momentum exchange between the solid and diffusing fluid, where K is related to the permeability coefficient. Mow and colleagues have developed this theory over the years to account for additional factors, including the presence of diffusing ions [7.36, 37] (see also [7.38] for a related approach). Because of the complexity of poroelastic and mixture theories, as well as the inherent geometric complexities associated with most real initial–boundary value problems in soft tissues, finite element methods will continue to prove essential; see, for example, Spilker et al. [7.39] and Simon et al. [7.40] for such formulations. In summary, one can now find many different applications of mixtures in the literature on soft tissues (e.g., Reynolds and Humphrey [7.41] address capillary blood flow within a tissue using mixture theory) and, indeed, the past success and future promise of this approach mandates intensified research in this area, research that must not simply be application, but rather should include development and extension of past theories. Moreover, whereas many of the experiments in biomechanics have consisted of unconfined or confined uniaxial compression tests using porous indenters, there is a pressing need for new multiaxial tests. 7.2 Traditional Constitutive Relations 178 Part A Solid Mechanics Topics 7.3 Growth and Remodeling – A New Frontier As noted above, it has been thought at least since the time of Galileo that mechanical stimuli play essential roles in governing biological structure and function. Nevertheless an important step in our understanding of the biomechanics of tissues began with Wolff’s law for bone remodeling, which was put forth in the late 19-th century. Briefly, it was observed that the fine structure of cancellous (i. e., trabecular) bone within long bones tended to follow lines of maximum tension. That is, it appeared that the stress field dictated, at least in part, the way in which the microstructure of bone was organized. This observation led to the concept of functional adaptation wherein it was thought that bone functionally adapts so as to achieve maximum strength with a minimum of material. For a discussion of bone growth and remodeling, see Fung [7.12], Cowin [7.48], and Carter and Beaupre [7.49]. Although the general concept of functional adaptation appears to hold for most tissues, it is emphasized that bone differs significantly from soft tissues in three important ways. First, bone growth occurs on surfaces, that is, via appositional growth rather than via interstitial growth as in most soft tissues; second, most of the strength of bone derives from an inorganic component, which is not true in soft tissues; third, bone experiences small strains and exhibits a nearly linearly elastic, or poroelastic, behavior, which is very different from the nonlinear behavior exhibited by soft tissues over finite strains. Hence, let us consider methods that have been applied to soft tissues. 7.3.1 Early Approaches Part A 7.3 Murray [7.50] suggested that biological “organization and adaptation are observed facts, presumably conforming to definite laws because, statistically at least, there is some sort of uniformity or determinism in their appearances. And let us assume that the best quantitative statement embodying the concept of organization is a principle which states that the cost of operation of physiological systems tends to be a minimum. . . ” Murray illustrated his ideas by postulating a cost function for “operating an arterial segment.” He proposed that the radius of a blood vessel results from a compromise between the advantage of increasing the lumen, which reduces the resistance to flow and thereby the workload on the heart, and the disadvantage of increasing overall blood volume, which increases the metabolic demand of maintaining the blood (e.g., red blood cells have a life- span of a few months in humans, which necessitates a continual production and removal of cells). Murray’s findings suggest that “. . . the flow of blood past any section shall everywhere bear the same relation to the cube of the radius of the vessel at that point.” Recently, it has been shown that Murray’s ideas are consistent with the observation that the lumen of an artery appears to be governed, in part, so as to keep the wall shear stress at a preferred value – for a simple, steady, incompressible, laminar flow of a Newtonian fluid in a circular tube, the wall shear stress is proportional to the volumetric flow rate and inversely proportional to the cube of the radius [7.19]. Clearly, optimization approaches should be given increased attention, particularly with regard to the design of useful biomechanical experiments and the reduction of the associated data. Perhaps best known for inventing the Turing machine for computing, Turing also published a seminal paper on biological growth [7.51]. Briefly, he was interested in mathematically modeling morphogenesis, that is, the development of the form, or shape, of an organism. In his words, he sought to understand the mechanism by which “genes . . . may determine the anatomical structure of the resulting organism.” Turing recognized the importance of both mechanical and chemical stimuli in controlling morphogenesis, but he focused on the chemical aspects, especially the reaction kinetics and diffusion of morphogens, substances such as growth factors that regulate the development of form. For example, he postulated linear reaction– diffusion equations of the form ∂M1 = a (M1 − h) + b (M2 − g) + D1 ∇ 2 M1 , ∂t ∂M2 = c (M1 − h) + d (M2 − g) + D2 ∇ 2 M2 , ∂t (7.15) where M1 and M2 are concentrations of two morphogens, a, b, c, and d are reaction rates, and D1 and D2 are diffusivities; h and g are equilibrium values of M1 and M2 , and t represents time during morphogenesis. It was assumed that the local concentration of a particular morphogen tracked the local production or removal of tissue. Numerical examples revealed that solutions to such systems of equations could “develop a pattern or structure due to an instability of the homogeneous equilibrium, which is triggered off by random disturbances.” These solutions were proposed as possible descriptors of the morphogenesis. It was not until the Biological Soft Tissues 1980s, however, that there was an increased interest in the use of reaction–diffusion models to study biological growth and remodeling, which now includes studies of wound healing, tumor growth, angiogenesis, and tissue engineering in addition to morphogenesis [7.52–56]. As noted by Turing, mechanics clearly plays an important role in such growth and remodeling, thus it is not surprising that there has been a trend to embed the reaction–diffusion framework within tissue mechanics (albeit often within the context of linearized elasticity or viscoelasticity). For example, Barocas and Tranquillo [7.53] suggested that reaction–diffusion models for spatial–temporal information on cells could be combined with a mixture theory representation of a tissue consisting of a fluid constituent and solid network. In this way, they studied mechanically stimulated cell migration, which is thought to be an early step towards mechanically stimulated changes in deposition of structural proteins. See the original paper for details. In summary, there has been significant attention to modeling the production, diffusion, and half-life of a host of molecules (growth factors, cytokines, proteases) and how they affect cell migration, mitosis, apoptosis, and the synthesis and reorientation of extracellular matrix. In some cases the reaction–diffusion models are used in isolation, but there has been a move towards combining such relations with those of mechanics (mass and momentum balance). Yet because of the lack of attention to the finite-strain kinematics and nonlinear material behavior characteristic of soft tissues [7.57], there is a pressing need for increased generalization if this approach is to become truly predictive. Moreover, there is a pressing need for additional biomechanical experiments throughout the evolution of the geometry and properties so that appropriate kinetic equations can be developed. 7.3.2 Kinematic Growth being conserved, the overall mass density appeared to remain constant, thus focusing attention on changes in volume.) Tozeren and Skalak [7.59] suggested further that finite-strain growth and remodeling in a soft tissue (idealized as fibrous networks) could be described, in part, by considering that “The stress-free lengths of the fibers composing the network are not fixed as in an inert elastic solid, but are assumed to evolve as a result of growth and stress adaptation. Similarly, the topology of the fiber network may also evolve under the application of stress.” One of the remarkable aspects of Skalak’s work is that he postulated that, if differential growth is incompatible, then continuity of material may be restored via residual stresses. Residual stresses in arteries were reported soon thereafter (independently in 1983 by Vaishnav and Fung; see the discussion in [7.19]), and shown to affect dramatically the computed stress field in the arterial wall. The basic ideas of incompatible kinematic growth, residual stress, and evolving material symmetries and stress-free configurations were seminal contributions. Rodriguez et al. [7.60] built upon these ideas and put them into tensorial form – the approach was called “finite volumetric growth”, which is now described in brief. The primary assumption is that one models volumetric growth through a growth tensor Fg , which describes changes between two fictitious stress-free configurations: the original body is imagined to be fictitiously cut into small stress-free pieces, each of which is allowed to grow separately via Fg , with det Fg = 1. Because these growths need not be compatible, internal forces are often needed to assemble the grown pieces, via Fa , into a continuous configuration. This, in general, produces residual stresses, which are now known to exist in many soft tissues besides arteries. The formulation is completed by considering elastic deformations, via Fe , from the intact but residually stressed traction-free configuration to a current configuration that is induced by external mechanical loads. The initial–boundary value problem is solved by introducing a constitutive relation for the stress response to the deformation Fe Fa , which is often assumed to be isochoric and of the Fung type, plus a relation for the evolution of the stress-free configuration via Fg (actually Ug since the rotation Rg is assumed to be I). Thus, growth is assumed to occur in stress-free configurations and typically not to affect material properties. See, too, Lubarda and Hoger [7.61], who consider special cases of transversely isotropic and orthotropic growth. Among others, Taber [7.62] and Rachev et al. [7.63] independently embraced the concept of kinematic 179 Part A 7.3 In a seminal paper, Skalak [7.58] offered an approach very different from the reaction–diffusion approach, one that brought the analysis of biological growth within the purview of large-deformation continuum mechanics. He suggested that “any finite growth or change of form may be regarded as the integrated result of differential growth, i. e. growth of the infinitesimal elements making up the animal and plant.” His primary goal, therefore, was to “form a framework within which growth and deformation may be discussed in regard to the kinematics involved.” (Note: Although it was realized that mass may change over time, rather than 7.3 Growth and Remodeling – A New Frontier 180 Part A Solid Mechanics Topics growth and solved initial–boundary value problems relating to cardiac development, arterial remodeling in hypertension and altered flow, and aortic development. For the purposes of discussion, briefly consider the model of aortic growth by Taber [7.62]. The aortic wall was assumed to have material properties (given by Fung’s exponential relation) that remained constant during growth, which in turn was modeled via additional constitutive relations for time rates of change of the growth tensor Fg = diag[λgr , λgθ , 1], namely dλgr 1 ge t¯θθ (s) − t¯θθ , = dt Tr dλgθ 1 ge t¯θθ (s) − t¯θθ = dt Tθ 1 ge + τ̄w (s) − τ̄w eα(R/Ri −1) , Tτ (7.16) where Ti are time constants, t¯jj and τ̄w are mean values of wall stress and flow-induced wall shear stress, respectively, the superscript ‘ge’ denotes growthequilibrium, α is a parameter that reflects the intensity of effects, at any undeformed radial location R, of growth factors produced by the cells that line the arterial wall and interact directly with the blood. Clearly, growth (i. e., the time rate of change of the stress-free configuration in multiple directions) continues until the stresses return to their preferred or equilibrium values. Albeit not in the context of vascular mechanics, Klisch et al. [7.64] suggested further that the concept of volumetric growth could be incorporated within the theory of mixtures (with solid constituents k = 1, . . . , n and fluid constituent f ) to describe growth in cartilage. The deformation of constituent k was given by Fk = Fke Fak Fkg , where Fkg was related to a scalar mass growth function m k via t Part A 7.3 det Fkg (t) = exp m k dτ, (7.17) 0 and mass balance requires dk ρ k + ρk div vk = ρk m k , dt dfρf + ρ f div v f = 0 . dt (7.18) This theory requires evolution equations for Fkg (or similarly, m k ), which the authors suggested could depend on the stresses, deformations, growth of other constituents, etc., as well as constitutive relations for the mass growth function. It is clear that such a function could be related to the reaction–diffusion framework of Turing, and thus chemomechanical stimulation of growth. Although it is reasonable, in principle, to consider a full mixture theory given that so many different constituents contribute to the overall growth and structural stability of a tissue or organ, it is very difficult in practice to prescribe appropriate partial traction boundary conditions and very difficult to identify the requisite constitutive relations for momentum exchanges. Indeed, it is not clear that there is a need to model such detail, such as the momentum exchange between different proteins that comprise the extracellular matrix or between the extracellular matrix and a migrating cell, for example, particularly given that such migration involves complex chemical reactions (e.g., degradation of proteins at the leading edge of the cell) not just mechanical interactions. For these and other reasons, let us now consider an alternative mixture theory. 7.3.3 Constrained Mixture Approach Although the theory of kinematic growth yields many reasonable predictions, we have suggested that it models consequences of growth and remodeling (G&R), not the processes by which they occur. G&R necessarily occur in stressed, not fictitious stress-free, configurations, and they occur via the production, removal, and organization of different constituents; moreover, G&R need not restore stresses exactly to homeostatic values. Hence, we introduced a conceptually different approach to model G&R, one that is based on tracking the turnover of individual constituents in stressed configurations [7.65]. Here, we illustrate this approach for 2-D (membrane-like) tissues [7.66]. Briefly, let a soft tissue consist of multiple types of structurally important constituents, each of which must deform with the overall tissue but may have individual material properties and associated individual natural (i. e., stress-free) configurations that may evolve over time. We employ the concept of a constrained mixture wherein constituents deform together in current configurations and tacitly assume that they coexist within neighborhoods over which a local macroscopic homogenization would be meaningful. Specifically, not only may different constituents coexist at a point of interest, the same type of constituent produced at different instants can also coexist. Because of our focus on thin soft tissues consisting primarily of fibrillar collagen, one can consider a constitutive relation for the principal Cauchy stress resultants for the tissue (i. e., constrained mixture) of the Biological Soft Tissues form T1 (t) = T10 (t) + 1 ∂wk , λ2 (t) ∂λ1 (t) k 1 ∂wk , T2 (t) = T20 (t) + λ1 (t) ∂λ2 (t) (7.19) k where Ti0 (i = 1, 2) represent contributions by an amorphous matrix (e.g., elastin-dominated or synthetic/reconstituted in a tissue equivalent) that can degrade but cannot be produced, λi are measurable principal stretches that are experienced by the tissue, and wk is a stored energy function for collagen family k, which may be produced or removed over time. Note, too, that 2 2 (7.20) λk (t) = λ1 cos α0k + λ2 sin α0k are stretches experienced by fibers in collagen family k relative to a common mixture reference configuration, with α0k the angle between fiber family k and the 1 coordinate axis. To account for the deposition of new collagen fibers within stressed configurations, however, we further assume the existence of a preferred (i. e., homeostatic) deposition stretch G kh , whereby the stretch experienced by fiber family k, relative to its unique natural configuration, can be shown to be λkn(τ) (t) = G kh λk (t)/λk (τ) , (7.21) with t the current time and τ the past time at which family k was produced. Finally, to account for continual production and removal, let the constituent stored energies be [7.66] wk (t) = 0 (7.22) where ρ is the mixture mass density, M k (0) is the 2-D mass density of constituent k at time 0, when G&R commences, Q k (t) ∈ [0, 1] is the fraction of constituent k that was produced before time 0 but survives to the current time t > 0, m k is the current mass density production of constituent k, W k λkn(τ) (t) is the strain energy function for a fiber family relative to its unique natural configuration, and q k is 181 an associated survival function describing that fraction of constituent k that was produced at time τ (after time 0) and survives to the current time t. Hence, consistent with (7.4), the principal Cauchy stress resultants of the constituents that may turnover are k M (0)Q k (t)G kh ∂W k ∂λk (t) 1 T1k (t) = λ2 (t) ρλk (0) ∂λkn(τ) (t) ∂λ1 (t) t m k (τ)q k (t − τ)G kh ρλk (τ) 0 ∂W k ∂λk (t) × k dτ , ∂λn(τ) (t) ∂λ1 (t) k M (0)Q k (t)G kh ∂W k ∂λk (t) 1 k T2 (t) = λ1 (t) ρλk (0) ∂λkn(τ) (t) ∂λ2 (t) + t m k (τ)q k (t − τ)G kh ρλk (τ) 0 ∂W k ∂λk (t) × k dτ . ∂λn(τ) (t) ∂λ2 (t) + (7.23) As in most other applications of biomechanics, the key challenge therefore is to identify specific functional forms for the requisite constitutive relations, particularly the individual mass density productions, the survival functions, and the strain energy functions for the individual fibers, not to mention relations for muscle contractility and its adaptation. Finally, there is also a need to prescribe the alignment of newly produced fibers, not just their rate of production and removal. These, too, will require contributions from experimental biomechanics. Illustrative simulations are found nonetheless in the original paper [7.66], which show that stable versus unstable growth and remodeling can result, depending on the choice of constitutive relation. Given that the biomechanics of growth and remodeling is still in its infancy, it is not yet clear which approaches will ultimately prove most useful. The interested reader is thus referred to the following as examples of alternate approaches [7.67–71]. Finally, it is important to emphasize that, regardless of the specific theoretical framework, the most pressing need at present is an experimental program wherein the evolving mechanical properties and geometries of cells, tissues, and organs are quantified as a function of time during adaptations (or maladaptations) in response to altered mechanical loading, and that such information must be Part A 7.3 M k (0) k Q (t)W k λkn(0) (t) ρ t k m (τ) k + q (t − τ)W k λkn(τ) (t) dτ , ρ 7.3 Growth and Remodeling – A New Frontier 182 Part A Solid Mechanics Topics correlated with changes in the rates of production and removal of structurally significant constituents, which in turn depend on the rates of production, removal, and diffusion of growth factors, proteases, and related substances. Clearly, biomechanics is not simply mechanics applied to biology; it is the extension, development, and application of mechanics to problems in biology and medicine, which depends on theoretically motivated experimental studies that seek to identify new classes of constitutive relations. 7.4 Closure In summary, much has been accomplished in our quest to quantify the biomechanical behavior of soft tissues, yet much remains to be learned. Fortunately, continuing technological developments necessary for advancing experimental biomechanics (e.g., optical tweezers, atomic force and multiphoton microscopes, tissue bioreactors) combined with traditional methods of testing (e.g., computer-controlled in-plane biaxial testing of planar specimens, inflation and extension testing of tubular specimens, and inflation testing of membranous specimens; see [7.19] Chap. 5) as well as continuing advances in theoretical and computational mechanics are helping us to probe deeper into the mechanobiology and biomechanics every day. Thus, both the potential and the promise of engineering contributions have never been greater. It is hoped, therefore, that this chapter provided some background, and especially some motivation, to contribute to this important field. The interested reader is also referred to a number of related books, listed in the Bibliography, and encouraged to consult archival papers that can be found in many journals, including Biomechanics and Modeling in Mechanobiology, the Journal of Biomechanics, and the Journal of Biomechanical Engineering. Indeed, an excellent electronic search engine is NIH PubMed, which can be found via the National Institutes of Health web site (www.nih.gov); it will serve us well as we continue to build on past achievements. 7.5 Further Reading Part A 7.5 Given the depth and breadth of the knowledge base in biomedical research, no one person can begin to gain all of the needed expertise. Hence, biomechanical research requires teams consisting of experts in mechanics (theoretical, experimental, and computational) as well as biology, physiology, pathology, and clinical practice. Nevertheless, bioengineers must have a basic understanding of the biological concepts. I recommend, therefore, that the serious bioengineer keep nearby books on (i) molecular and cell biology, (ii) histology, and (iii) medical definitions. Below, I list some books that will serve the reader well. • • • • H. Abe, K. Hayashi, M. Sato: Data Book on Mechanical Properties of Living Cells, Tissues, and Organs (Springer, New York 1996) Dorland’s Illustrated Medical Dictionary (Saunders, Philadelphia 1988) S.C. Cowin, J.D. Humphrey: Cardiovascular Soft Tissue Mechanics (Kluwer Academic, Dordrecht 2001) S.C. Cowin, S.B. Doty: Tissue Mechanics (Springer, New York 2007) • • • • • • • • • D. Fawcett: A Textbook of Histology (Saunders, Philadelphia 1986) Y.C. Fung: Biomechanics: Mechanical Properties of Living Tissues (Springer, New York 1993) F. Guilak, D.L. Butler, S.A. Goldstein, D.J. Mooney: Functional Tissue Engineering (Springer, New York 2003) G.A. Holzapfel, R.W. Ogden: Biomechanics of Soft Tissue in Cardiovascular Systems (Springer, Vienna 2003) G.A. Holzapfel, R.W. Ogden: Mechanics of Biological Tissue (Springer, Berlin, Heidelberg 2006) J.D. Humphrey, S.L. Delange: An Introduction to Biomechanics (Springer, New York 2004) V.C. Mow, R.M. Hochmuth, F. Guilak, R. TransSon-Tay: Cell Mechanics and Cellular Engineering (Springer, New York 1994) W.M. Saltzman: Tissue Engineering (Oxford Univ Press, Oxford 2004) L.A. Taber: Nonlinear Theory of Elasticity: Applications to Biomechanics (World Scientific, Singapore 2004) Biological Soft Tissues References 183 References 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 7.13 7.14 7.16 7.17 7.18 7.19 7.20 7.21 7.22 7.23 7.24 7.25 7.26 7.27 7.28 7.29 7.30 7.31 7.32 7.33 7.34 7.35 J.R. Walton, J.P. Wilber: Sufficient conditions for strong ellipticity for a class of anisotropic materials, Int. J. Nonlinear Mech. 38, 441–455 (2003) A.J.M. Spencer: Deformations of Fibre-Reinforced Materials (Clarendon, Oxford 1972) J.D. Humphrey, R.K. Strumpf, F.C.P. Yin: Determination of a constitutive relation for passive myocardium: I. A new functional form, ASME J. Biomech. Eng. 112, 333–339 (1990) M.S. Sacks, C.J. Chuong: Biaxial mechanical properties of passive right ventricular free wall myocardium, J. Biomech. Eng. 115, 202–205 (1993) J.C. Criscione, J.D. Humphrey, A.S. Douglas, W.C. Hunter: An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity, J. Mech. Phys. Solids 48, 2445–2465 (2000) J.C. Criscione, A.S. Douglas, W.C. Hunter: Physically based strain invariant set for materials exhibiting transversely isotropic behavior, J. Mech. Phys. Solids 49, 871–897 (2001) Y. Lanir: Constitutive equations for fibrous connective tissues, J. Biomech. 16, 1–12 (1983) J.E. Bischoff, E.M. Arruda, K. Grosh: A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissues, Biomech. Model. Mechanobiol. 3, 56–65 (2004) W. Maurel, Y. Wu, N. Magnenat, D. Thalmann: Biomechanical Models for Soft Tissue Simulation (Springer, Berlin 1998) G.A. Johnson, G.A. Livesay, S.L.Y. Woo, K.R. Rajagopal: A single integral finite strain viscoelastic model of ligaments and tendons, ASME J. Biomech. Eng. 118, 221–226 (1996) S. Baek, P.B. Wells, K.R. Rajagopal, J.D. Humphrey: Heat-induced changes in the finite strain viscoelastic behavior of a collagenous tissue, J. Biomech. Eng. 127, 580–586 (2005) M.F. Beatty, Z. Zhou: Universal motions for a class of viscoelastic materials of differential type, Continuum Mech. Thermodyn. 3, 169–191 (1991) G. David, J.D. Humphrey: Further evidence for the dynamic stability of intracranial saccular aneurysms, J. Biomech. 36, 1143–1150 (2003) P.P. Provenzano, R.S. Lakes, D.T. Corr, R. Vanderby Jr: Application of nonlinear viscoelastic models to describe ligament behavior, Biomech. Model. Mechanobiol. 1, 45–57 (2002) H.W. Haslach: Nonlinear viscoelastic, thermodynamically consistent, models for biological soft tissues, Biomech. Model. Mechanobiol. 3, 172–189 (2005) V.C. Mow, S.C. Kuei, W.M. Lai, C.G. Armstrong: Biphasic creep and stress relaxation of articular cartilage Part A 7 7.15 J.F. Bell: Experimental foundations of solid mechanics,. In: Mechanics of Solids, Vol. I, ed. by C. Truesdell (Springer, New York 1973) C. Truesdell, W. Noll: The nonlinear field theories of mechanics. In: Handbuch der Physik, ed. by S. Flügge (Springer, Berlin, Heidelberg 1965) R.P. Vito: The mechanical properties of soft tissues: I. A mechanical system for biaxial testing, J. Biomech. 13, 947–950 (1980) J.C. Nash: Compact Numerical Methods for Computers (Wiley, New York 1979) J.T. Oden: Finite Elements of Nonlinear Continua (McGraw-Hill, New York 1972) K.T. Kavanaugh, R.W. Clough: Finite element application in the characterization of elastic solids, Int. J. Solid Struct. 7, 11–23 (1971) B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter: Molecular Biology of the Cell (Garland, New York 2002) D.Y.M. Leung, S. Glagov, M.B. Matthews: Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro, Science 191, 475–477 (1976) S. Glagov, C.-H. Ts’ao: Restitution of aortic wall after sustained necrotizing transmural ligation injury, Am. J. Pathol. 79, 7–23 (1975) L.E. Rosen, T.H. Hollis, M.G. Sharma: Alterations in bovine endothelial histidine decarboxylase activity following exposure to shearing stresses, Exp. Mol. Pathol. 20, 329–343 (1974) R.S. Rivlin, D.W. Saunders: Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber, Philos. Trans. R. Soc. London A 243, 251–288 (1951) Y.C. Fung: Biomechanics (Springer, New York 1990) M.F. Beatty: Topics in finite elasticity: Hyperelasticity of rubber, elastomers, and biological tissues with examples, Appl. Mech. Rev. 40, 1699–1734 (1987) L.R.G. Treloar: The Physics of Rubber Elasticity, 3rd edn. (Oxford Univ Press, Oxford 1975) A.E. Green, J.E. Adkins: Large Elastic Deformations (Oxford Univ. Press, Oxford 1970) R.W. Ogden: Non-Linear Elastic Deformations (Wiley, New York 1984) H.W. Haslach, J.D. Humphrey: Dynamics of biological soft tissue or rubber: Internally pressurized spherical membranes surrounded by a fluid, Int. J. Nonlinear Mech. 39, 399–420 (2004) G.A. Holzapfel, T.C. Gasser, R.W. Ogden: A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elast. 61, 1–48 (2000) J.D. Humphrey: Cardiovascular Solid Mechanics (Springer, New York 2002) 184 Part A Solid Mechanics Topics 7.36 7.37 7.38 7.39 7.40 7.41 7.42 7.43 7.44 7.45 7.46 Part A 7 7.47 7.48 7.49 7.50 7.51 in compression: Theory and experiments, ASME J. Biomech. Eng. 102, 73–84 (1980) W.M. Lai, V.C. Mow, W. Zhu: Constitutive modeling of articular cartilage and biomacromolecular solutions, J. Biomech. Eng. 115, 474–480 (1993) V.C. Mow, G.A. Ateshian, R.L. Spilker: Biomechanics of diarthroidal joints: A review of twenty years of progress, J. Biomech. Eng. 115, 460–473 (1993) J.M. Huyghe, G.B. Houben, M.R. Drost, C.C. van Donkelaar: An ionised/non-ionised dual porosity model of intervertebral disc tissue experimental quantification of parameters, Biomech. Model. Mechanobiol. 2, 3–20 (2003) R.L. Spilker, J.K. Suh, M.E. Vermilyea, T.A. Maxian: Alternate Hybrid, Mixed, and Penalty Finite Element Formulations for the Biphasic Model of Soft Hydrated Tissues,. In: Biomechanics of Diarthrodial Joints, ed. by V.C. Mow, A. Ratcliffe, S.L.Y. Woo (Springer, New York 1990) pp. 401–436 B.R. Simon, M.V. Kaufman, M.A. McAfee, A.L. Baldwin: Finite element models for arterial wall mechanics, J. Biomech. Eng. 115, 489–496 (1993) R.A. Reynolds, J.D. Humphrey: Steady diffusion within a finitely extended mixture slab, Math. Mech. Solids 3, 147–167 (1998) G.I. Zahalak, B. de Laborderie, J.M. Guccione: The effects of cross-fiber deformation on axial fiber stress in myocardium, J. Biomech. Eng. 121, 376–385 (1999) A. Rachev, K. Hayashi: Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries, Ann. Biomed. Eng. 27, 459–468 (1999) P.J. Hunter, A.D. McCulloch, H.E.D.J. ter Keurs: Modelling the mechanical properties of cardiac muscle, Prog. Biophys. Mol. Biol. 69, 289–331 (1998) P.J. Hunter, P. Kohl, D. Noble: Integrative models of the heart: Achievements and limitations, Philos. Trans. R. Soc. London A359, 1049–1054 (2001) J.D. Humphrey: Continuum thermomechanics and the clinical treatment of disease and injury, Appl. Mech. Rev. 56, 231–260 (2003) K.R. Diller, T.P. Ryan: Heat transfer in living systems: Current opportunities, J. Heat. Transf. 120, 810–829 (1998) S.C. Cowin: Bone stress adaptation models, J. Biomech. Eng. 115, 528–533 (1993) D.R. Carter, G.S. Beaupré: Skeletal Function and Form (Cambridge Univ. Press, Cambridge 2001) C.D. Murray: The physiological principle of minimum work: I. The vascular system and the cost of blood volume, Proc. Natl. Acad. Sci. 12, 207–214 (1926) A.M. Turing: The chemical basis of morphogenesis, Proc. R. Soc. London B 237, 37–72 (1952) 7.52 7.53 7.54 7.55 7.56 7.57 7.58 7.59 7.60 7.61 7.62 7.63 7.64 7.65 7.66 7.67 R.T. Tranquillo, J.D. Murray: Continuum model of fibroblast-driven wound contraction: Inflammationmediation, J. Theor. Biol. 158, 135–172 (1992) V.H. Barocas, R.T. Tranquillo: An anisotropic biphasic theory of tissue equivalent mechanics: The interplay among cell traction, fibrillar network, fibril alignment, and cell contact guidance, J. Biomech. Eng. 119, 137–145 (1997) L. Olsen, P.K. Maini, J.A. Sherratt, J. Dallon: Mathematical modelling of anisotropy in fibrous connective tissue, Math. Biosci. 158, 145–170 (1999) N. Bellomo, L. Preziosi: Modelling and mathematical problems related to tumor evolution and its interaction with the immune system, Math. Comput. Model. 32, 413–452 (2000) A.F. Jones, H.M. Byrne, J.S. Gibson, J.W. Dodd: A mathematical model of the stress induced during avascular tumour growth, J. Math. Biol. 40, 473–499 (2000) L.A. Taber: Biomechanics of growth, remodeling, and morphogenesis, Appl. Mech. Rev. 48, 487–545 (1995) R. Skalak: Growth as a finite displacement field, Proc. IUTAM Symposium on Finite Elasticity, ed. by D.E. Carlson, R.T. Shield (Martinus Nijhoff, The Hague 1981) pp. 347–355 A. Tozeren, R. Skalak: Interaction of stress and growth in a fibrous tissue, J. Theor. Biol. 130, 337– 350 (1988) E.K. Rodriguez, A. Hoger, A.D. McCulloch: Stressdependent finite growth in soft elastic tissues, J. Biomech. 27, 455–467 (1994) V.A. Lubarda, A. Hoger: On the mechanics of solids with a growing mass, Int. J. Solid Struct. 39, 4627– 4664 (2002) L.A. Taber: A model for aortic growth based on fluid shear and fiber stresses, ASME J. Biomech. Eng. 120, 348–354 (1998) A. Rachev, N. Stergiopulos, J.-J. Meister: A model for geometric and mechanical adaptation of arteries to sustained hypertension, ASME J. Biomech. Eng. 120, 9–17 (1998) S.M. Klisch, T.J. van Dyke, A. Hoger: A theory of volumetric growth for compressible elastic biological materials, Math. Mech. Solid 6, 551–575 (2001) J.D. Humphrey, K.R. Rajagopal: A constrained mixture model for growth and remodeling of soft tissues, Math. Model. Meth. Appl. Sci. 12, 407–430 (2002) S. Baek, K.R. Rajagopal, J.D. Humphrey: A theoretical model of enlarging intracranial fusiform aneurysms, J. Biomech. Eng. 128, 142–149 (2006) R.A. Boerboom, N.J.B. Driessen, C.V.C. Bouten, J.M. Huyghe, F.P.T. Baaijens: Finite element model of mechanically induced collagen fiber synthesis and degradation in the aortic valve, Ann. Biomed. Eng. 31, 1040–1053 (2003) Biological Soft Tissues 7.68 7.69 A. Gamba, D. Ambrosi, A. Coniglio, A. de Candia, S. Di Talia, E. Giraudo, G. Serini, L. Preziosi, F. Bussolino: Percolation morphogenesis and Burgers dynamics in blood vessels formation, Phys. Rev. Lett. 90, 118101 (2003) D. Ambrosi, F. Mollica: The role of stress in the growth of a multicell spheroid, J. Math. Biol. 48, 477–488 (2004) 7.70 7.71 References 185 A. Menzel: Modeling of anisotropic growth in biological tissues: A new approach and computational aspects, Biomech. Model. Mechanobiol. 3, 147–171 (2005) E. Kuhl, R. Haas, G. Himpel, A. Menzel: Computational modeling of arterial wall growth, Biomech. Model. Mechanobiol. 6, 321–332 (2007) Part A 7
© Copyright 2026 Paperzz