CALIFORNIA STATE UNIVERSITY, NORTHRIDGE. FORCED CONVECTION ON A ROTATING SPHERE IN FREON 113 A project submitted in partial satisfaction of the requirements for the degree of Master of Science in Engineering by Gina Giorgi O'Shaughnessy May 1988 The Project of Gina Giorgi O'Shaughnessy is approved by: Dr. E. Larson Dr. S .~ H. Schwartz ~Chair) California State University, Northridge ii DEDICATION The author dedicates this work to her mother, father (R.I.P.), brother and husband who always supported and encouraged her throughout the difficult times. iii ACKNOWLEDGEMENT My thanks go to Professor S. H. Schwartz who contributed much of his time advising me during the course of this project. My deepest gratitude go to my mother, father (R.I.P.), brother and husband whose love, devotion and unselfish support helped me reach my goal. iv TABLE OF CONTENTS Page Item .... Dedication iii Acknowledgement iv List of Tables ix List of Figures xi xvii Abstract Chapter I A. Introduction 1 . . General Background 1 . 1 1. Space Shuttle Turbopump 2. Heat Transfer on Cryogenic Fluid 3. B. 2 Film Boiling Correlation Needed for a Rotating Sphere 4. .... . Bearings ~n . . .. . . . . .... Experimental Study by Rocketdyne Theoretical Background ..... 4 5 . 6 1. Convection With Rotation; No Boiling 6 2. Convection Without Rotation; With Boiling 6 c. . Survey of Literature 1. 7 Studies of Film Boiling for Flow over a Sphere Without Rotation . . . 7 2. Subcooled Flow Film Boiling Over a Sphere 8 3. Saturated Flow Film Boiling Over a Sphere 8 4. Approach for this Research . .. . .. . 10 v TABLE OF CONTENTS (CONTINUED) Page Item Chapter II A. Experimental Apparatus and Instrumentation . 12 . . 15 Description of Apparatus 1. Ball (Test Specimen) 15 2. Rotating Device 15 3. Ball Heating Device 16 B. Description of Instrumentation . 17 1. Thermocouples in Ball Test Specimen 17 2. Thermocouples in Freon 113 Bath and System 18 3. Thermocouple Digital Display 19 4. Freon 113 Cooling Circuit . . . . 19 Chapter III Experimental and Calibration Procedures . . . 21 Static Experimental Procedures A. 22 1. Continuous Procedure 2. Discontinuous Procedure (In and Out). 3. Reheat Procedure 24 4. Static In Air 24 B. 22 Rotational Experimental Procedures . . 25 1. Rotate in Freon 113 (Discontinuous Method) 2. Rotate In Air . . . vi 23 .. . 25 26 p • TABLE OF CONTENTS (CONTINUED) Page Item c. 27 Calibration Procedures . 27 1. Freon 113 Purity 2. Thennocouples in Ball 27 3. Thennocouples in Freon Bath and System 28 4. Rotating Device Chapter IV . . . . .. . 28 .... Methods of Analysis . . . . . . . . . . . . . 29 A. Weighted Average of Thermocouples B. Curve Fit . . c. Calculations 29 . 30 . . 31 1. Heat Flux for this Study . 2. Heat Flux Using Witte and Orozco's . 31 Approach (Reference number 9) and Witte's Approach (Reference number 10) . . . . . . 32 3. Film Coefficient Using Witte and Orozco's Approach (Reference number 9) and Witte's Approach (Reference number 10) . Graphs D. Chapter V A. . 33 33 Discussion of Results . . . . . . . . . . . . 35 Boiling Without Rotation . . . . . . . . . . . . 37 1. Continuous Method at Different Degrees of Subcooling . . 37 vii TABLE OF CONTENTS (CONTINUED) Page Item 2. Continuous Method at the Saturation Temp. 3. Ball in Air . . . 42 4. Discont. and Reheat Methods With Subcooling 42 5. Discontinuous Method at the Saturation Temp 45 Boiling With Rotation. . . . . . . . . . . . . 47 1. Rotation at Different Levels of Subcooling. 47 2. Various Rotational Speeds at the Same Freon B. . 39 113 Temperature . . . . . . . . . 3. . 49 Comparison Between the Film Coef. from this Study and Witte and Orozco (Ref. No. 9) . . . 52 4. Rotation at the Saturation Temperature. . 55 5. Comparison Between the Film Coefficients for this Study and Witte (Reference number 10). 6. Chapter VI Ball Rotating In Air . . . . . . 55 . 58 Conclusions and Recommendations . . . . . . . 59 Nomenclature 62 References 65 Bibliography 67 Appendix A Thermodynamic Properties for Freon 113 Appendix B Raw Data Tables Appendix C Figures Appendix D Program Listing .173 Appendix E Sample Run . . . .177 71 . 75 .... . . 88 viii LIST OF TABLES No. 1 Title Specifications for Data from the 2" 2 Page o. D. Steel Ball . . . . . . . .. . . 36 .. 72 Thermodynamic Properties for Freon 113 . . . . . . 3 Test 1. Continuous Static Run 4 Test 2. Continuous Static Run 5 Test 3. Continuous Static Run 76 6 Test 4. Discontinuous Static Run. 76 7 Test 5. Reheat. . 76 8 Test 6. Continuous Static Run 9 Test 7. Continuous Static Run 10 Test 8. Reheat. 11 Test 9. Discontinuous Static Run. 77 12 Test 10. Continuous Static Run. . 78 13 Test 11. Discontinuous Static Run 78 14 Test 12. Reheat 15 Test 13. Continuous Static Run. 16 Test 14. Discontinuous Static Run 17 Test 15. Reheat 79 18 Test 15a. Continuous in Air 80 19 Test 16. Rotate at 3437 RPM 20 Test 17. Continuous Static Run. 80 21 Test 18. Continuous Static Run. . 80 22 Test 19. Continuous Static Run. 81 75 . . 75 77 .. . .. 77 77 . . . .. . . . . ix 78 . .. . 79 79 80 23 Test 20. Discontinuous Static Run. 81 24 Test 21. Discontinuous Static Run. 81 25 Test 22. Discontinuous Static Run. 82 26 Test 23. Rotate at 3437 RPM. 27 Test 24. Rotate at 3437 RPM. 28 Test 25. Rotate at 3437 RPM. 82 29 Test 26. Rotate at 3437 RPM. 83 30 Test 27. Rotate at 3437 RPM. 83 31 Test 28. Rotate at 3437 RPM. 83 32 Test 29. Rotate at 7830 RPM. 83 33 Test 30. Rotate at 7830 RPM. 84 34 Test 31. Rotate at 7830 RPM. 84 35 Test 32. Rotate at 9509 RPM. 84 36 Test 33. Rotate at 9509 RPM. 84 37 Test 34. Rotate at 9509 RPM. 85 38 Test 35. Rotate at 9509 RPM in Air . 85 39 Test 36. Rotate at 7830 RPM in Air . 85 40 Test 37. Rotate at 3437 RPM in Air 85 41 Test 38. Continuous Static Run . . 86 42 Test 39. Discontinuous Static Run. 87 43 Test 40. Rotate at 3437 RPM. ... 87 . 82 .... X 82 LIST OF FIGURES No. Page Title 1 Diagram of Experimental Arrangement . 13 2 Schematic Diagram of Test Section . . 14 3 Boiling Curves for Static Continuous Cases at Various Subcooling Levels 4 38 Comparison of the Boiling Curves for Static Cont., Discont. and Reheat Tests, Tl=89.6 F 5 40 Boiling Curves for Static Continuous and Discontinuous Tests Compared to Yilmaz, at the Liquid's Saturation Temperature 41 . .... 6 Boiling Curves for Static Discontinuous Tests 44 7 Boiling Curves for Static Reheat Tests 46 8 Boiling Curves with Rotation at 3437 Various Liquid Temperatures 9 48 Boiling Curves at Various Rotational Speeds . . . . . . 50 Boiling Curves at Various Rotational Speeds and Continuous Static, Tl 11 at ............ and Continuous Static, Tl = 69.8 F 10 RPM = 109.4 F . . . . 51 Experimental and Witte and Orozco (Reference No. 9) Film Coefficients for Various Rotational Speeds and Tl =69.8 F . . . . . . 12 53 Experimental and Witte and Orozco (Reference No. 9) Film Coefficients for Various Speeds and Tl = 109.4 F . . 13 54 Boiling Curves for The Ball Rotating at Various Rotational Speeds and Tl = 114.8 F xi 56 14 Experimental and Witte (Reference No. 10) Film Coefficients at Various Rotational Speeds and Tl = 114.8 F ..... 57 15 Boiling Data for Saturated Refrigerant 113. 74 16 Test 1, Tfreon=73.2 F . '. 89 17 Test 2, Tfreon=72.0 F 18 Tests 3C,3S,3R=0.5, Tfreon=72.0 F 91 19 Test 4, Tfreon=86.4 F 92 20 Test 5, Tfreon=84.2 F 21 Test 6, Tfreon=70.0 F 94 22 Test 7, Tfreon=70.0 F 95 23 Test 8, Tfreon=70.0 F 24 Test 9, Tfreon=70.0 F 97 25 Test 10, Tfreon=80.6 F. 98 26 Test 11, Tfreon=80.6 F. 99 27 Test 12, Tfreon=82.4 F. 28 Test 13, Tfreon=89.6 F. 29 Test 14, Tfreon=89.6 F. 102 30 Test 15, Tfreon=89.6 F. 31 Test 15A, Tamb=80.6 F . . 103 . 104 32 Test 16, Tfreon=69.8 F. 105 33 Test 17, Tfreon=100.4 F 34 Test 18, Tfreon=109.4 F 107 35 Test 19, Tfreon=114. 8 F 108 36 Test 20, Tfreon=114. 8 F 109 37 Test 21, Tfreon=109.4 F . 90 . 93 . 96 .. . . ... 101 . . xii 100 106 110 111 38 Test 22, Tfreon=l00.4 F. 39 Test 23, Tfreon=l00.4 F. 40 Test 24, Tfreon=l00.4 F. 41 Test 25, Tfreon=69.8 F 42 Test 26, Tfreon=69.8 F 115 43 Test 27, Tfreon=l09.4 F. 116 44 Test 28, Tfreon=ll4. 8 F. 117 45 Test 29, Tfreon=l09.4 F. 46 Test 30, Tfreon=ll4. 8 F. 119 47 Test 31, Tfreon=69.8 F 120 48 Test 32, Tfreon=ll4. 8 F. 121 49 Test 33, Tfreon=l09.4 F. 50 Test 34, Tfreon=69.8 F 123 51 Test 35, Tamb=75.2 F . 124 52 Test 36, Tamb=75.2 F 53 Test 37, Tamb=75.2 F 54 Test 38, Tfreon=l00.4 F. 55 Test 39, Tfreon=l00.4 F. 56 Test 40, Tfreon=100.4 F. 57 Heat Flux vs. Delta Temp. .... . 113 ....... . . 122 125 . .... 128 129 ...... 130 Heat Flux vs. Delta Temp. . . . 131 . .. . 132 Test 4, Discont. Static Run, TR113=86.4 F. . . . . 133 Heat Flux vs. De 1ta Temp. Tests 3S,3C,3R=.5~ TR113=77,81,84 F 60 126 127 Test 2, Cont. Static Run, TR113=72. 0 F 59 114 118 Test 1, Cont. Static Run, TR113=73.2 F 58 112 Cont. Static Run, . . . .... Heat Flux vs. Delta Temp. xiii 61 Heat Flux vs. Delta Temp. .... 134 . . . . .. 135 . . . . . 136 Test 5, Reheat Static Run, TR113=84. 2 F. 62 Heat Flux vs. Delta Temp. Test 6, Cont. Static Run, TR113=70.0 F 63 Heat Flux vs. Delta Temp. Test 7, Cont. Static Run, TR113=70. 0 F 64 Heat Flux vs. Delta Temp. ..... 137 . . . . 138 . .... 139 Test 11, Discont. Static Run, TR113=80.6 F . . . 140 Test 8, Reheat Static Run, TR113=70.0 F. 65 Heat Flux vs. Delta Temp. Test 9, Discont. Static Run, TR113=70.0 F. 66 Heat Flux vs. Delta Temp. Test 10, Cont. Static Run, TR113=80. 6 F. 67 68 Heat Flux vs. Delta Temp. Heat Flux vs. Delta Temp. Test 12, Reheat Static Run, TR113=82. 4 F 69 141 . . . . . 142 . . . . 143 Heat Flux vs. Delta Temp. Test 13, Cont. Static Run, TR113=89. 6 F 70 . .. Heat Flux vs. Delta Temp. Test 14, Discont. Static Run, TR113=89. 6 F 71 Heat Flux vs. Delta Temp. Test 15, Reheat Static Run, TR113=89.6 F. 72 144 . . 145 0 0 . . Heat Flux vs. Delta Temp. Test 17, Cont. Static Run, TR113=100. 4 F. 74 ... Heat Flux vs. Delta Temp. Test 16, Reheat Static Run, TR113=89. 6 F. 73 . .. 0 146 Heat Flux vs. Delta Temp. Test 18, Cont. Static Run, TR113=109. 4 F. xiv . .. 147 75 Heat Flux vs. Delta Temp. Test 19, Cont. Static Run, TR113=114. 8 F. 76 . . . . 148 . . 149 . . 150 Heat Flux vs. Delta Temp. Test 20, Discont. Static Run, TR113=114. 8 F 77 Heat Flux vs. Delta Temp. Test 21, Discont. Static Run, TR113=109.4 F 78 Heat Flux vs. Delta Temp. Test 22, Discont. Static Run, TR113=100.4 79 154 . .. . .. 155 .... 156 . . ... . .. 157 . . . 158 . 159 ......... 160 ........ 161 . . Heat Flux vs. Delta Temp. . . . Heat Flux vs. Delta Temp. . . Heat Flux vs. Delta Temp. Test 31, 7830 RPM, TR113=69.8 F 88 . . Heat Flux vs. Delta Temp. Test 30, 7830 RPM, TR113=114 .8 F. 87 . . . Heat Flux vs. Delta Temp. Test 29, 7830 RPM, TR113=109. 4 F . 86 153 . Test 28, 3437 RPM, TR113=114.8 F. 85 ........ . . . Test 27, 3437 RPM, TR113=109 .4 F . 84 152 Heat Flux vs. Delta Temp. Test 26, 3437 RPM, TR113=69. 8 F 83 ....... Heat Flux vs. Delta Temp. Test 25, 3437 RPM, TR113=69.8 F 82 151 Heat Flux vs. Delta Temp. Test 24, 3437 RPM, TR113=100. 4 F. 81 . . Heat Flux vs. Delta Temp. Test 23, 3437 RPM, TR113=100. 4 F. 80 F. Heat Flux vs. Delta Temp. Test 32, 9509 RPM, TR113=114. 8 F. XV 89 Heat Flux vs. Delta Temp. .. 162 ......... 163 Test 33, 9509 RPM, TR113=109 .4 F. 90 . . Heat Flux vs. Delta Temp. Test 34, 9509 RPM, TR113=69. 8 F 91 . . Heat Flux vs. Delta Temp. Test 38, Cont. Static Run, TR113=100. 4 F. 92 . . . Heat Flux vs. Delta Temp. ... 165 . . . . 166 . ... . . . 167 . ...... 168 ......... 169 ......... 170 Test 39, Discont. Static Run, TR113=100.4 F 93 Heat Flux vs. Delta Temp. Test 40, 3437 RPM, TR113=100. 4 94 164 .. . F Film coefficient vs. Delta Temp. Witte and Orozco (Reference No. 8) Test 27; 3437 RPM, TR113=109 F 95 Film Coefficient vs. Delta Temp. Witte and Orozco (Reference No. 8) Test 29; 7830 RPM, TR113=109 F 96 Film Coefficient vs. Delta Temp. Witte (Reference No. 9) Test 30; 7830 RPM, TR113=115 F 97 Film Coefficient vs. Delta Temp. Witte (Reference No. 9) Test 32; 9509 RPM, TR113=115 F 98 Film Coefficient vs. Delta Temp. Witte and Orozco (Reference No. 8) 99 . . . 171 . . . . . 172 . . Test 33; 9509 RPM, TR113=109 F Film Coefficient vs. Delta Temp. Witte and Orozco (Reference No. 8) Test 34; 9509 RPM, TR113=70 F xvi . ABSTRACT FORCED CONVECTION ON A ROTATING SPHERE IN FREON 113 by Gina Giorgi O'Shaughnessy Master of Science in Engineering This study is designed to obtain the boiling curves for Freon 113 using a rotating spherical surface at different rotational speeds . This is very important because this kind of heat transfer is encountered specifically in turbopump bearings for engines designed by the space industry. For this purpose, a two inch diameter ball was used as the test specimen to simulate a ball bearing. xvi.i Three thermocouples were soldered inside the ball to record the temperature at three different locations. The temperature of the ball was increased by an electric heat gun and then monitored while it decreased in the Freon 113 pool. The test prototype was held static as well as rotated at high speeds during the heat transfer process. The heat transfer results from this study were ultimately compared to two empirical formulas found in the literature. One for a cryogenic fluid at the subcooled temperatures and the other for a cryogenic fluid at the saturation temperature. The comparison between the two approaches for cryogenic fluids and this study's in Freon 113 showed an agreement between the film coefficient from this study and the one obtained from the two empirical formulas. xviii Chapter I INTRODUCTION A. General Background 1. Space Shuttle Turbopump A unique example of mankind's desire to conquer space materialized with the advent of the Space awesome vehicle Shuttle. is not only a means of transportation to outer space, but it can also be utilized as a Its incredible This capabilities can laboratory. only be rivaled by the complexity of its hardware. One of the many systems in the Space Shuttle is the Shuttle Main Engine (SSME). Its design includes two high pressure turbopumps, one for the and one for the liquid Space oxygen liquid hydrogen (oxidizer). The high pressure oxygen turbopump (HPOTP), as well as other 1 (fuel) parts in the SSME, are high performance components that are supposed to be reusable, even at rotational 31,000 revolutions per minute (RPM). speeds near Notwithstanding, the high speeds create a demanding environment for the ball bearings in the HPOTP. Rocketdyne, a division of Rockwell International Corporation, has been improving their product since 1983. (the SSME) In essence, they have embarked on an effort to re-examine the Space Shuttle Main Engine hardware in order to reduce the wear found in its parts after repeated use. This scrutiny is well founded, turbopumps, since during a flight. periodic especially for the the action here is extreme and intense One of replacement the system's are the parts bearings requiring inside the turbopumps. 2. Heat Transfer on Cryogenic Fluid in Bearings Concentrating on the oxidizer turbopump, the balls the bearings friction races. appear to experience heat generation due to forces encountered while traveling in their A complete description of this frictional effect is complicated by the fact that the the inside shaft as well as their 2 own balls axes. rotate around To add to the of intricacy lubricated the and system, cooled the turbopump are by liquid oxygen (LOX) which is a cryogenic liquid with a low saturation performance bearings temperature. The of the ball bearings can be life limited as a consequence of these and possible other factors which are not under investigation in this study. The study of the different regimes involved in the conversion of liquid into vapor has been the focus of much exploration by engineers in the multidisciplines. The boiling regime is basically divided into four stages: free convection, nucleate boiling, partial transition boiling and film boiling. film boiling or Transition boiling and film boiling are the main regions of interest for this investigation. In the HPOTP, film boiling is believed to in the is generated the high pressure oxygen turbopump. as the balls rotate between the shaft and the outer race . believed encountered cooling/lubricating liquid oxygen surrounding the bearing's balls of the Heat be As a consequence, the temperature is to increase causing the liquid oxygen to boil on ball's surrounding surface. each ball This creates a film of vapor that may hinder the heat transfer process. 3 3. FiJ~ Boiling Correlation Needed for a Rotating Sphere Even though much engineering effort has the been to understanding of boiling regimes, no particular study was found in the literature on film spheres. boiling a on rotating Therefore, it was necessary to infer an approach to quantitatively determine the phenomenon on devoted rotating ball. of convection The experimental approach to study the effect of rotation on boiling was felt to have a better chance of success than an analytical approach. On the other hand, the HPOTP presents a thorny problem for researchers trying ocurrence in the to understand SSME because inaccessibility, thus making the difficult. This the ball by of film the study ball boiling ball temperature experimental rotational aspects of the HPOTP complicated the bearing measurement focuses bearing. on the This is possible randomness of the orientation of coordinate system while rotating around the shaft. The main objective of this investigation was directed at obtaining the experimental heat transfer-wall temperature relationships by quenching a heated rotating ball in Freon 113. with Here, the research was performed on a ball a fixed rotational vector. experimental investigation simulates 4 In a rotating addition, uniformly this heated ball. The immersion of a heated rotating stagnant fluid at different speeds provides studying the effect addition, by varying of rotation the on liquid's a ball in a method of film boiling. In temperature from subcooled to saturated, a fuller view of the heat transfer process, and thus more complete information can be obtained. 4. Experimental Study by Rocketdyne Rocketdyne conducted on a rotating sphere. from this first a preliminary study of film boiling With the observations step the Rocketdyne engineers expect to establish guidelines to quantize the heat rotating ball. (LN2). transfer on a In their early investigation thermocouples were not used to heated, ascertained rotating record ball the was ball's quenched temperatures as a in liquid nitrogen Instead, the total cool down time was measured and an approximate, overall film coefficient was obtained. 5 B. Theoretical Background 1. Convection With Rotating; No Boiling The forced convection encountered when a ball bearing is rotating about the shaft produces transfer of heat to the surrounding the fluid. This energy is generated frictional forces from the rotational movement. as by long As the fluid's temperature does not exceed the saturation temperature, boiling does not occur. 2. Convection Without Rotation; With Boiling Natural convection differences is encountered caused by the inducing when a a transfer displacement of the fluid. phenomena can occur during this transfer of instance, temperature between a surface and a fluid create a change in the fluid's density; thereby energy when of Other energy. For liquid comes in contact with a surface whose temperature is higher than the liquid's temperature, A layer of vapor is vaporization occurs. theorized to cover the surface preventing between the ball and the liquid. 6 saturation direct contact c. Suryey of Literature 1. Studies of Film Boiling for Flow Over a Sphere Without Rotation While surveying the literature, several studies located for flow film boiling over static spheres. were Two of these studies were performed by Aziz and Hewitt (Reference number 1) and Dhir and Purohit (Reference number 2). Aziz and Hewitt forced studied convection film the heat boiling transfer on spheres. goal was to obtain heat transfer rates copper spheres mounted on for in Their main nickel-plated a platform moving vertically downwards into a pool of water. developed regimes With this intention, they various tests aimeo at obtaining spherical data at different water temperatures and platform velocities. The work by Dhir and film Purohit concentrated boiling heat transfer from spheres. on subcooled In their study, they used steel, copper and silver spheres held statically while a container filled with water and attached to a pneumatic cylinder provided the upward motion. 7 2. Subcooled Flow Film Boiling over a Sphere The literature search did not reveal any particular study on the topic of subcooled film boiling on a rotating ball. However, a study by Witte and Orozco (Reference No. 9) was found concerning flow film boiling over a static sphere in subcooled Freon 11. hollow heated They designed an sphere exposed closed to the atmosphere. Witte and Orozco experiment with a to Freon 11 inside a loop With the data from this study developed an expression to predict the heat flux for subcooled flow film boiling over a sphere. Their empirical expression is presented below. fv ~v 5/8 Cpl(Ts-Tb)Prl fl ~l (--)(--) Nuv = 18.73 5/8 [-------------] Rev hfg' 5/8 ----------------------------------Cpy (Tw - Ts) 3/2 [-------------] hfg' Prv 3. Saturated Flow Film Boiling Over a Sphere During the literature search, two studies were uncovered on saturated flow studies were film performed boiling over a sphere. These by Epstein and Hauser (Reference number 7) and Witte (Reference number 10). Epstein and Hauser (Reference 8 number 7) performed an analytical study on flow over a sphere and they developed a correlation for forced convection film boiling. The correlation follows: fl 1/4 o.s Rev1/2 (--) Nuv = fv Cpv (Tw- Ts) 114 [------------] Prv hfg' research conducted by Witte (Reference number 10) was The on film boiling from developed a a sphere. In research, he theoretical model for calculating the forced convection film boiling over a sphere. this approach follows. Nuv this = CPv (Tw - Ts) 1/2 [-------------] Prv hfg' 9 The formula from 4. Approach for this Research For this research, a uniformly heated spherical surface was rotated in subcooled and spherical saturated Freon 113. The data obtained from the thermocouples inside the ball at the three different radii were used its distributed temperature. to determine Then, the heat transfer-wall temperature difference curves were plotted for this data. Results were also compared with the forced convection film boiling equation replacing the free stream the rotational speed, R x w. The velocity with formulas for this approach are presented below. The weighted average from the three thermocouples calculated by: T Wt Avg 0.016 x Tc + 0.406 x TR=O.S + 0.578 The formula for the rotational speed follows; 2 X n X R X W Vt = --------------60 fv X Vt X D Rev = ----------1-lv 10 X Tsurf was The expression to calculate the film coefficient follows: m x CPv x.AT Q = -------------At Q h = A X (Tw -Ts) 11 Chapter II EXPERIMENTAL APPARATUS AND INSTRUMENTATION In order to achieve the objectives of this study a basic system capable of inunersing a heated ball into a temperature bath also needed to (pool) rotate was the required. ball at constant This system was various speeds and measure the ball's temperature as rotational function of ~ time. The system consisted of a motor, the liquid, pump, power pulleys, supply, container thermocouple digital display and a version of the "French guillotine" to and raise the ball to or from the container. of the system is shown in Figure 1. close-up Figure for lower The diagram 2 gives view of the major parts for the test section. description of each apparatus follows. 12 used in the a A experiment MOTOR iJ COOLING COIL Figure 1. y Diagram of Experimental Arrangement. 13 CONNECTORS MOTOR. BEARINGS--<! COLAR--- PULLEYS PUMP I CONTAINER • ,~ ",, "• II I I.J ... " y BALL AND THERMOCOUPLES Figure 2. Schematic Diagram of Test Section. 14 A. Rescription of Apparatus 1. Ball (Test Specimen) The test specimen that was used to simulate a ball bearing was a 2 inch diameter ball made of 1018 steel. of the ball was 1.2 lbm. three places thermocouples. to permit Two 0.040 inches. The test specimen was drilled at the installation of three of the perforations were oriented at 120 degrees to each other. was The weight The size of each hole bored The third hole was drill€d and tapped to accomodate the 3/8 inch shaft. 2. Rotating Device The rotating mechanism included a shaft supported places by bearings. at two The shaft was driven by a pulley and belt system connected to an electric motor. Details of the aforementioned components are as follows: 15 A one of quarter horsepower motor was used at a fixed speed 1740 RPM. Appliance motor Corporation, utilized speeds. The in order to was model develop manufactured No. the L711F. Motor Pulleys were various rotational The four pulleys used in the experiment were made of cast iron with outside diameters of 2, 3.95, 10.93 by inches. The 7.93 shaft and the ball assembly included two bearings, a collar and a 2 inch diameter pulley. bearings were high and speed double The seal bearings and the collar was made of stainless steel. Finally, the shaft was made of stainless steel with an outside diameter of 3/8 inch, an inside diameter of 1/8 inch and a shaft length of 19 inches. 3. Ball Heating Device The ball was heated to various temperatures with the use of an electric heat gun. heat gun A 120 Volts McMaster model number 3149k84 was used. Its temperature range was 750 through 1000 rlegrees Fahrenheit. 16 adjustable B. Qescription of Instrumentation 1. Thermocouples in Ball Test Specimen The temperature distribution inside the ball was with three thermocouples. The three chramel-alumel (type K), were soldered to the ball with a 10% silver solder. measured thermocouples, the inside of The thermocouples were insulated with magnesium oxide and protected by an inconel sheath. The diameter of each thermocouple wire was 0.0035 inches and the total 0.020 The thermocouple wires were inches. the ambient humidity diameter by including sealing sheathing was p~otected from them with epoxy and heating them in an oven at 302 degrees Fahrenheit for four consecutive hours. The same treatment was performed on three chrarnel alurnel extensions for the thermocouples. The thermocouples inside the different radial locations. located at the center of ball were placed at three One of the thermocouples the ball. A second one was affixed one half inch from the center and finally a thermocouple was placed at the surface of the ball. 17 was third were thermocouples The joined to connectors that in turn were connected digital display. used in this were speeds. for to disconnect a temperature different kinds of connectors were Two experiment. utilized quick First, three mini-connectors the static and the two law rotational Secondly, one six pin connector encased in an aluminum cylinder was used for the high rotational speed. The six pin connector thermocouples was used to protect the from the high rotational forces encountered at this speed. 2. Thermocouples in Freon 113 Bath and System The temperature of the Freon 113 and the system was monitored with the iron-constantine (type measured the temperature, aid J) of thermocouples. thermocouples were trichlotrifluoroethane's the second measured the also Three used. One (Freon 113) ambient room temperature and the third measured the shaft's temperature near the collar. The glass insulated thermocouples were made by twisting their ends together and spot welding. The diameter of each thermocouple equaled thermocouple inches. The measuring the temperature of the Refrigerant 113 was placed at a ball's 0.170 equator when height equivalent submerged 18 in the to that of the container. The radial distance between the surface and the thermocouple thermocouple for at the the ball's Freon 113 was 2 inches and 3 inches between the thermocouple for the Freon 113 and the container's wall. 3. Thermocouple Digital Display Two Omega digital temperature displays were used to read the thermocouple temperatures. The model number displays was 400-L with one unit set up for for Type K thermocouples (ball) and the other unit for Type J 113 and system). both (Freon The Reference point for both displays was the ambient temperature. 4. Freon 113 Cooling Circuit The purpose of maintain down. a constant Freon pool active cooling. Refrigerant 113 pool The heat rejected subcooled the the by cooling temperature the ball circuit was to during ball cool would raise the temperature to unaceptable levels without The cooling was accomplished by pumping 113 through a copper coil heat exchanger 19 submerged in an ice bath. model No. 1020-614-14 Harrison Direct Packard Current An was (DC) Industrial used Diaphragm pump in this experiment. power supply by was utilized to power the diaphragm pump. A Hewlett At the beginning of each test series, 4 gallons of Freon 113 were placed inside a 5 gallon polymethylmethacrylate tank. The intake for the pump was placed at the fluid's the outlet was placed at the bottom of the tank. 20 level and CHAPTER III EXPERIMENTAL AND CALIBRATION PROCEDURES Familiarization with the various procedures utilized in this study is essential for an accurate interpretation the data. For this of reason, procedures are exclusively discussed here without being influenced by the resulting data or conclusions drawn. Generally, slip rings are required to make temperature measurements on a rotating body. device The high cost of such precluded its use in this study. alternative method had procedures to be a Consequently, an developed here. Various for measuring the temperature of the ball were experimentally performed in the static position in order to determine the reliability level for each method. Taking into account economic constraints, the method that most reliable in the static tests was also used for the rotational experiments. continuous, proved Three procedures discontinuous and reheat. were followed: An in-air calibration was also developed for both conditions: static and rotational. 21 Since this section deals with procedures only, validity of the individual techniques is tackled later the in Chapter 5. A. Static Experimental Procedures 1. Continuous Procedure The continuous method consisted of taking measurements of the ball's temperature with attached the thermocouples remaining to the recording device as the ball cooled down. Prior to quenching, the steel ball was heated to 305 degrees Fahrenheit with the temperature monitored by using the three thermocouples inside the ball. allowed to elapse for the 303.1 degrees Fahrenheit. the Freon connected. various 113 with Enough time was temperature to stabilize to Then, the ball was lowered into all the thermocouple extensions The static temperature readings were taken at time intervals to quantify the drop in the ball's temperature (see Appendix B 22 for exact time intervals). After every four runs the ball as well as the shaft were polished with 800 grit emery cloth, and scrubbed with Freon 113 to eliminate any decomposition products. 2. Discontinuous Procedure (In and Out) The discontinuous method involved spherical surface from the Freon temperature measurement. 113 the removal bath of the before every The test specimen was heated to 305 degrees Fahrenheit and the temperature from the thrmocouples was monitored closely until it stabilized. Subsequently, the spherical surface was submerged Refrigerant 113 pool. three in the Then, fifteen seconds elapsed and the ball was removed from the pool in order to record a temperature reading from each of the thermocouples inside the ball (see Appendix B for time). after the recording, the pool again. removed from measurement. spherical actual Immediately the test specimen was submerged in Fifteen seconds elapsed and the ball the These was Freon 113 bath for another temperature steps were continued until the surface's temperature approached the saturation temperature of the Freon 113. 23 3. Reheat Procedure The reheat method involves the heating of the ball to temperature after every time interval. original was heated to degrees 305 in and Fahrenheit continuous the stabilize, as procedures. The test specimen was then Refrigerant 113 and was then The ball allowed in time period heated back to be taken. twice that of The 305 degrees Fahrenheit, for the preceeding step (see Appendix B for actual time). The test prototype was removed the for a predetermined time period and then stabilized and then re-immersed in the Freon 113 bath a to discontinuous immersed removed for a temperature measurement to ball the again from the Freon 113 for a temperature measurement. These steps were repeated until the ball was close to liquid's, Refrigerant the 113, temperature at the end of the last time step. 4. Static In Air The test specimen was quenched in air heat during loss encountered from it to determine the removal and recording for the discontinuous and reheat ball Fahrenheit was heated to 305 degrees 24 the methods. The as in the continuous procedure. Subsequently, the ball was to the cool down temperature in measurements ambient at each air while allowed recording with interval the thermocouples attached over the entire period. B. Rotational Exgerimental Procedures 1. Rotate in Freon 113 (Discontinuous Method) The sphere was quenched in Freon 113 while rotating on a fixed axis at different speeds. compiled, the discontinuous measuring the rotational this Once the static data were method was temperature. The selected for reasons for choice are dealt with in the results section of this paper. In order to take rotating out. an on a temperature measurements of the shaft the following procedure was carried The ball was heated to 305 degrees Fahrenheit electric ball heat gun. The 25 using temperature was allowed to stabilize to 303.1 degrees Fahrenheit. Consequently, the thermocouple connectors were disconnected from the ball in order for the ball to be free to spin. The motor was then started and the ball was lowered into the pool tank. The timer was started at the moment the ball touched the Freon 113. liquid The ball was spun (see Appendix B for for five exact removed from the Refrigerant 113. The once the seconds time). timer in the It was then was stopped ball was outside the fluid. The ball rotated in air only a half second before stopping. Subsequently, the thermocouple extensions and were connected the temperature was displayed on the digital display. The thermocouple's extensions were disconnected before the motor was again started and the ball was lowered into the container. The above steps were repeated until the ball's temperature was near that of the liquid. After every four runs the ball as well as the shaft were polished with 800 grit emery cloth, and scrubbed with Freon 113 to eliminate any decomposition products. 2. Rotate In Air The test specimen was rotated in ambient air to 26 determine the heat loss to air at the different rotational speeds. The ball was readings quenched in the air while temperature were taken every two seconds (see Appendix B for exact time). c. Calibration Procedures 1. Freon 113 Purity The purity of the Freon 113 was checked by determining its boiling point. The Refrigerant 113 covered Erlenmeyer flask until the first was heated drops of 113 vapor were condensated in a water heat exchanger. in a Freon The temperature recorded was 114.8 degrees Fahrenheit. 2. Thermocouples in Ball The three chromel-alumel thermocouples the inside the ball, three mini-connectors and the three type K extensions 27 I were calibrated daily before testing using the boiling point of water and Freon 113 as well as the freezing point of water. The calibration showed an average agreement in the measurements of ± 0.1 degrees Fahrenheit. For the calibration of the single six pin connector the average result changed to ± 0.2 degree F. 3. Thermocouples in Freon Bath and System The three type J thermocouples used to measure 113, shaft and the Freon room temperatures were calibrated weekly using the boiling point of water, and Freon 113 as well as the freezing point of water. The average agreement between the measurements was ± 0.2 degrees Fahrenheit. 4. Rotating Device The rotational speeds were calibrated with the strobe tachometer. 28 aid of a • CHAPTER IV METHODS OF ANALYSIS The data obtained from the different tests were analyzed in steps. First, the weighted average of the at different the calculated. the cubic ball thermocouple locations Consequently, the data were curve spline technique. fit was using Finally, the heat flux and film coefficient were calculated. exposed temperature Tests with the ball to the ambient air temperature were performed and referred to as calibration curves. A. Weighted Average of Thermocouples The weighted calculated to average in the three thermocouples was obtain the ball's temperature distribution at each time interval. nodes of The ball was divided into which the thermocouples were located. 29 three Then, an equation was derived by taking independently, each thermocouple region as a proportion of the total volume of the ball (refer to Nomenclature for weighted average formula). B. Curve Fit A computer code was developed using the cubic spline curve fit algorithm in order temperature values between data eleven continuously points. estimate Originally, an coefficient polynomial program utilizing the least squares technique was employed. versus to time curve fits The resulting temperature deviated from the actual data points enough to introduce significant error in subsequent calculations. As then implemented. for a consequence, the cubic spline fit was With this approach, a cubic fit is used each interval between data points, with the condition that the slope and the curvature agree at the joint point. This has the advantage of the resulting curve fit going through each and every data point. This technique proved to be more accurate for this study's data than the polynomial curve fit for two reasons. First, it retained smoothness when the data called for it. Second, it fitted local irregularities without 30 the least squares fit misbehavior usually encountered by the polynomial method. On the other hand, the specific heat used needed this study to be used as a function of temperature because of its variability. eleven in The specific heat was curve coefficient polynomial. The fit by an reason behind this selection was that the shape of the curve was known to be fitted well by this technique. c. Calculations A computer code was created to handle all the necessary calculations and graphs for this investigation. 1. Heat Flux for this Study The heat flux for all the tests conducted for this study was calculated by using a distributed temperature model of the three thermocouples. time as knowns, the With heat 31 the flux temperature was and obtained the from essentially the change in ball's internal energy over change in time. See the the Nomenclature section for the appropriate formulas. 2. Heat Flux Using Witte and Orozco's Approach (Reference number 9) and Witte's Approach (Reference number 10) The heat flux was using the calculated empirical for the formulas rotational by Witte and tests Orozco (Reference number 9) and Witte (Reference number 10). this purpose, two For thermal regions were considered which are subcooled and saturated. For the subcooled region the approach by Witte and Orozco (Reference number 9) was used while for the saturated region the approach by Witte found in Reference number 10 was utilized. See the Nomenclature section for the appropriate formulas. These equations are only their valid for film boiling and use transition region is at best an approximation. also be It in the should noted that most of the cooling period was in the transition region with actual film boiling onJy ocurring at the early part of the cool down period. When performing the heat transfer calculations for film boiling on a rotating sphere assumed that the tangential 32 for this project, it was velocity vector is greater than the forced convection counterpart resulting from inflow from the heat exchanger. number for this study was Thus, based on the the Reynold's the tangential velocity. 3. Film Coefficient Using Witte and Orozco's Approach (Reference number 9) and Witte's Approach (Reference number 10) For the film coefficient using the heat flux was a straightforward calculation required. The formula can be found in the Nomenclature section. D. Graphs There are three types of computer generated graphs used to display the work of this time, the heat flux study; versus the temperature versus the temperature difference (Tw- Ts) and the film coefficient versus (Tw- Ts)· The temperature versus time the weighted average cubic spline curve fit. graphs were the result of of the three thermocouples and the A curve that passes 33 through the real data points was assumed to be continuous and treated as such throughout the calculations. The heat flux boiling versus curves Ts) (Tw for each test graphs condition represent the (static and rotating). The film coefficient versus temperature difference were displayed for each Freon 113 thermal region and rotational speed using the results from this study, and Orozco (Reference number m.unber 10). 34 9) and graphs Witte Witte (Reference CHAPTER V DISCUSSION OF RESULTS In this study tests were of boiling on phenomenon without rotation. a at defining the spherical surface with and tests The These temperatures. directed targeted temperatures different fluid were divided into two regions: subcooled and saturated for each case of boiling with and without rotation. From the static tests (no rotation), towards the discontinuous method as measure the ball's the temperature. results pointed best choice This decision involved the careful examination of the accuracy, the time and available to the resources involved (the discontinues method was inexpensive in comparison acquisition hardware). to From telemetry the temperature rotational tests, the results demonstrated that it is possible to obtain a fair agreement between the film coefficient from this study and the film coefficient correlation from Witte and Orozco (Reference number 9) and Witte (Reference number 10). Table 1 is a summary of the test history showing relevant information applicable to each test. 35 TABLE 1 SPECIFICATIONS FOR DATA FROM THE 2" 0. D. STEEL BALL TEST # 1 2 3S 3C 3R=.5 4 5 6 7 8 9 10 11 12 13 STATIC R-113 CONT. CONT. CONT. CONT. CONT. DISCONT. REHEATED CONT. CONT. REHEATED DISCONT. CONT. DISCONT. REHEATED CONT. DISCONT. REHEATED RarATION R-113 RPM R-113 STATIC TEMP. IN AIR F 73.2 72.0 77.0 81.0 84.0 86.4 84.2 70.0 70.0 70.0 70.0 80.6 80.6 82.4 89.6 89.6 89.6 CONT. 69.8 100.4 109.4 114.8 114.8 109.4 100.4 100.4 100.4 69.8 69.8 109.4 114.8 109.4 114.8 69.8 114.8 109.4 69.8 RarATE AMB. COOLING IN AIR TEMP SYSTEM F ON/OFF RPM OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF 80.6 ON OFF OFF OFF OFF OFF OFF ON ON ON ON ON ON ON ON ON ON ON ON 9509 75.2 OFF 7830 75.2 OFF 3437 75.2 OFF OFF OFF ON 14 15 15A 3437 16 17 CONT. 18 CONT. 19 CONT. DISCONT. 20 21 DISCONT. DISCONT. 22 23 3437 24 3437 3437 25 26 3437 27 3437 28 3437 29 7830 30 7830 31 7830 32-DC 9509 9509 33-DC 34-DC 9509 35-DC 36-DC 37-DC 100.4 38-DC CONT. 100.4 39-DC DISCONT. 40-DC 3437 100.4 DC - DIFFERENT CONNECTOR CONT. - CONTINUOUS READ DISCONT. - DISCONTINUOUS READ C - CENTER THERMOCOUPLE R=.S - RADIUS=.S THERMOCOUPLE S - SURFACE THERMOCOUPLE A - AIR (AMBIENT TEMPERATURE) 36 A. Boiling Without Rotation The cooling of a 2 inch diameter ball was monitored in the static position and submerged observe the effect of boiling. levels and evaluation the of saturation the Five point various while in Freon 113 to different subcooled were targeted for the methods of temperature acquisition. 1. Continuous Method at Different Degrees of Subcooling The continuous temperature acquisition method was used as the baseline ball methods to evaluate rated in how well their the other static performance to depict the temperature of the test specimen at different levels of subcooled Freon 113. Boiling curves for three c0ntinnous tests (7, 13 and 18) at different degrees of subcooling are shown in Figure 3. Observing Figure 3 in detail, note that as the temperature of the fluid increases, the peak for decreases. reduction This indicates transfer rate. 37 a maximum in heat flux the heat 10~--------------------------------.-.--.-.~. . . ..... : .... : .. -: .. : . ·: . ~ . :· ! . . . . . ... : .... .. ·: .. : . ·: . .:· . . . . . .... . . ... . . . . .... ~ 0 • • • 0 ••••••• • • • • • • ~ .... •• • • •• •• • 0 • ' •••••• ' ; ~ •• • ~ • • • • • 0 , • ' 0 •• ' • . . .. . . . . . . . . . .. . . .. . -. ...... • . .. .. ·'. . .. . • ••• • ••• . ••• . . .. .. .. . . . . ••• 0 .. .. 0. o o . I . • . ••••••••• • . . 0 0 ••• . .... . ... . . ..... . ... .. ... ... .. .. ... . . . .. . . .... . ' o o o 0 • .. .. • 0 o 0 • •••• ' 00 0 o • 0 o • • o 0 0 0 00 0 0 • ........... ' .... . . .... . . . ... . 0 . . . ; .... :0. ·:· 0:. ·:·: ·:·: 0 • • . ... . ... . ......... ... ... . ····· .... ... . 0 0 o 0 0 0 o 0 0 0 • • • • • .................... o o 0 0 I I I 0 o o 0 o,o 0 0 o o 0 'lo' ''o' I o ... • o • OoO o ool • • • t+---+-~-.-:89.. ' ' '• ' 0 . . . . .... . ...... , ........ ... -. . "''.... 0 0 o o 0 I 0 o,o • •••• o 0 0 I 0 00 o o 0 0 o • 0 0 0 0 0 0 ... • !:: • o • o,o,o • o o o 0 o . I ' ' ' ' ' o o ' , ' ' ' r:::: . . . ... "' o o o 0 0 o o o0 o • • • , '• ,• o • 0 ' I •• . ' ' '• ' .. o0 o 0 0o o o o , o o o 0 • . : : ::: . . ... 0 •••• ' • ' '• ' ~ ' ,• \ ' . ' 0 • : • o , • ·: • ~ • :· ~ 0 ••• . . ..... o \ • ..... . .... . .... 0 o 0 : : ::: 0 • 0 . .. . .. .. .. .. . . o 0 . • 0 o 0 • • ·: •.. :· . ·: .• :. ·: • : . :. :o . . . . . . . : • • .• : .• ·: • o 0 0 0 • ~.. 1-': I;:: ' ' ,• ' '• ' ' , ' '• ' , ',' .' ' ~-+-_...-:70 • .. 0 • • • . . •. . 0 \0 . . . . .. . •.. .. .J.Q9.:~ . . :1.: . . f.~ . . ................... . . . .:,;,:.~:. .... • Ooo I 0 0 o 0 • • • o o o0 o o 0 o • • • 0 I I , o o '• o 10L+----~--r-~~~~----~--~~~~rM 10' 10Z 10~ Tw- T•. DEG F Figure 3 Boiling Curves for Static Continuous Cases at Various Subcooling Levels 38 The heat flux curves for three tests (13, 14 and 15) using the continuous, discontinuous and reheat methods with the Freon 113 at 89.6 degrees Fahrenheit are graphed in Figure 4. In this Figure, it is noticed that the maximum heat flux peak for the reheat test other two methods. is higher than from the This is believed to be caused by the greater amount of heat added to the pool by reheating the ball following this procedure in comparison with the other two methods. On the other hand, the continuous and discontinuous methods follow each other closely. 2. Continuous Method at the Saturation Temperature Observing the Refrigerant continuous quenching 113 and aids the effects in the of a ball in saturated comparison discontinuous methods between in the order to determine the best temperature acquisition system. The boiling curves obtained from the discontinuous methods at from same graph Yilmaz for discontinuous (Reference comparison. boiling and the the saturation temperature are shown in Figure 5 (tests 19 and 20). curve continuous curves the boiling number 8) is shown in the Here, the continuous and agree reasonably well with Yilmaz's (Reference number 8) curve. 39 Also, Although the 10-r----~~~~~~----~----~.-.-..~. . . • • ••••• : • • • 0 : •• ·: • • • • • : • • • 0 ~ •• ·: • • : •• -:·.:. 0 ••• • 0 •• : • ·: • : • ·: • ·:· . . !. . ~ • :· ! . :· ! . i .:. i . . . ... . . . . : .... ; ...: .. .: . .:.. ;. .:.. ;. . . . ... . . . . .... • • 0 • ... 0 o :0 0 o o ~ o ••• ~ •• ·: • • : I • : 0 • : • 0 o :- : • • • • • 0 • 0 • 0 • • • 0. I o 0 o 0 :: .. .. .. .. .. .. .. ... ... ... ... ... ... o 0 • ................ o :• I : • - 0 •: 0 I:· 0: 0 : •:• :• 0 0 o • 0 o o o • 0 o o o s: o 0 : I ...... • • • • • • o •••• ~+---.-biS<!:ON'T!iNUO 0 • •• • ~-9-+--F.-R EH EAT. - • 0 * • 0 I • 0 o o o : 0 0 • o 0 ' • •• • 0 • • • • • 0 * . .... .. ... ... .. 00 0 ·: o I 0 0 0 • 0 0 o 00 0 • • • • •• 0 • • •• 0 • O :, : : 0 ~ O = 0 0 o 0' . . . . .. .. .. .. .. .. .. • • • ·:· ••• ·:· 0 ·:-. • • • • 0 • • • • -:· ·:- • ·:·: 0 • -:·:· . ... : .. ·: .... ·: . ! . :· •••••• . ~ . . . ... . . . . ....:.... ~ ... :.....: .. .:...: . .: .:...:........ : .... .; .. .:.. ..... : . ~. : . ;. : . • • • • • ·: • • • • :. 0 0 • :· • • • • • • • ·: • • :· ": 0 : · : · :- • • • • • • • . • 0 • • • .................... . . . . . . . . ·: .... : ... :· . -~ .. ~- ~ . ~ . ~. ~ . . ..... : .... : .. ·= .. : . : . : . ~ : . . . . . . .:. .... ~. ... .:....:.. ..... :..: . : .: .:........ : .... ~ ...: .. : . ~ . ; . :. ; . . .... . . . . . .. . . . . . . .. . . . . . ·: .... ... :· . ·: .. :· -:. : ·:· :- ....... : .... : .. ·: .. : . . : .:- : . . . . . .. ..... . .... . . . . .. . . . . . . . ..:.....: .. ·>. ·:· ·> .:. : .:-:· ...... . . . . . : . ..; .. :. ·:· i ·:· \. . ..... . .. .. .. .. .. .. .. ... . . . . . .. ... .. . . ..... . . . . . . ·:· ... ·:·. ·:·. -:· ·:- ·:·: ......... . . ... : .. ·: . . : . ·.: . . .:· . . .... .. .. .. .. .. .. .. ... ... ... ... ... ... ... ... .. . . . . . . ·: .... ~ ... :...:.. :..:. : .: .:........ : .... ~ ...:.. : . ~ . ~ .:. ~ . ~ ~ 0 0 o I 0 0 0 I o o 0 ~ 10 2 ~ 10~ Tw- T•, DEG F Figure 4 Comparison of the Boiling Curves for Static Continuous, Discontinuous and Reheat Tests, Tl = 89.6 F. 40 . . . . . . . ·:· ... . ...... : . . .. : .. -: .. :. . ·: . .:- . 0 •••••••• • •••••• • • • • • • • • 0 • o o o o o o o •' • • 10'T------------~--------------------~ . .... • 0 ••• ~ •••• •,• ••• : ~ • 0 •• : • • •• o o o o o • o o ' I ' ' •,• . • •• ·: • • ; •• -:. • : • ' o o' o o o o . ' : • ·: • ~ ! . :· ! . . . =· i . .. .. .·=... . . .. ~ , • I ''• I ... .. .. .. ... . . .... • • • o • • • • • • • 'lo' \ '•' • • • o 0 \ • 0 . . ... . 0 •••••••• 0 0 ••• 0 . . . . . . . . . . • • • 0 •• • • • 0 •• . 0 . o 0 o 0 0 . . . . . . . . . . I o 0 • tot I • 0 o .... .. .. .. 'II o. o,o • : • •••• • 0 •• 'o • • • 0 • • • • 0 0 0 I • 0 • • •• 0 . . : . . .. : .. ·: . . : . ·: . ~ .:· •• ~ • • • 0 • • • • • 0 : 0 • -:·.: • •: . : 0 • ·: • • • • • o • • 0 ••• : ·: • ~ •• 0 :· 0 ~ • • 0 ~ 0 0 I 0 • • • • • • • • • 0 ~. 0 • 0 0 • • ~ . .. .. ... ... .. . . .... i .:. i. .. .. ... ... ... .. .. ... ... . . . ... .. .... .. . ..... .... ... .. .... . . ..... . . . . .... . . . . . ·:· ... ... ·:·. ·:· ·:· ·:·: ·:·:· ....... : .... .. ·:·.:. . . . . .. .. ·:· .. . .. . . .. . ... ... .. . .. .. .. .. .. . • • • • ~ ~. 10~----~~~~-r~~----r-~~~~~ 10Z 101. Tw- T•, DEG F Figure 5 Boiling Curves for Static Continuous and Discontinuous Tests Compared to Yilmaz (Reference number 8) at the Liquid's Saturation Temperature. 41 temperature difference at the peak heat flux is shifted by forty degrees Fahrenheit (40 F). 3. Ball in Air The tests with the ball rotating in air were conducted to determine the heat losses when the ball is in ambient air. An average loss of 0.90 degrees interval ocurred for the static Figure C). 31 in Appendix F over ball This in was a 15 second the air (See assumed to be a negligible affect. 4. Discontinuous and Reheat Method with Subcooling The discontinuous circumstance where fluid each media required. and reheat methods addressed the sphere is removed from the active time a Investigating temperature the measurement discontinuous techniques under static conditions was the way of establishing rotational tests. the static the and only continuous readings. reheat possible their validity for later use in the However, it should be noted cases is can actually be 42 only checked against the Hence, the validity of the case can only be inferred. that rotating The discontinuous procedure reheat procedure due to First, heat loss to the rated following best against the various factors. the air while measuring the ball's temperature was negligible. for is Second, the total time needed a discontinuous test run was less than the total time required for the reheat method. transfered into the Third, Refrigerant less 113 energy pool for was the discontinuous method in contrast with the reheat see released to the Figure 4. The extra energy was method, surrounding Freon 113 medium as a consequence of reheating the ball to measurement. caused its original This increase in the Freon significant adverse experimental control. required temperature less 113 each temperature changes in the heat transfer Fourth, manual after the discontinuous method labor than its reheat contemporary since there was no reheating involved for each recording of temperature. The 22 boiling are curves for the discontinuous tests 9, 21 and shown subcooling. compared in Figure The with (continuous). 6 boiling at different curves the boiling The comparison from curves levels Figure from 6 can be Figure the continuous case, the discontinuous case shows that the peak flux decreases with an temperature. 43 3 shows that the graph from Figure 6 emulates closely the one from Figure 3. in of increase trend for in Also as for the maximum heat the fluid's 10~----~----------------------------••• 0 • • • • • • •• 0 •••••• 0 ••• ·:· 0 ••• . ...... : .... : . . ·:·.:. ·:·: ·:-! . 0. ••• . . ..... : . . .. 0 0 ••• •••••• • : 0 ••• . ••••• 0 ~ .. ·: .. : . ·: . ! . :· ! . : •• . •• 0 ·=·.; . .;. . •••••• - . i .;. i. ••• - •• ....................... . . . . .... . .... ....... ... . ·····. .. 0 00 0 ••• 0 o 0 • 0 ·: 0 ·: ••• : •• ·: • • :. ·: 0 : • :. :· • • • • - o 00 00 0 0 00 00 I 0 ooo ... 0 0 0 o • • 0 0 0 o 0 ~ 0 0 • 0 o o :· • 0 .: 0 0 :· • • • • ••• ·: • • • • • ~ • • • :· ••••• :· • o : -:. : ·: • • • • : o :· • o • • 0 o • ••••• . : • • •• 0 0 0 0 0 • o o o o o . . .... . ' •••••• : . •• ·: • • : • ·: • : • 0 0 00 0 0 0 0 • 0 0 o .. 0 O o ~ 0 : 0 0 • 0 .......... ". . . .... :· ~ 0 ~ 0 •••••••••• 0 ................. : 0 • ; • I o 0:0 I 0 • 0 • o 0 • ·:·: . • • • • :. 0 0 • . 70: f. : : : ; : . . . .. . . . .... ." . . . ·: .... : ... :· . ·: .. :· -:. : ·:· :- ........................... I 0 • ·: 0 0 ••• ~ I • • • :· • ·: • • :· ·:. : ·:. :· ••••••• : 0 •••• , o o o •••••••• "" o • ~ 0 o ••••• ~ . . .;.....; ... ;.. ·=· ·=· .:. : .;.;............ -: .. .;.. ' ' • ' 1'o' \ 0 . ·: . .:· : . ~ ... ·: .... ~ . . . ... :· . ·: .. :· ·:. : ·:. :· . . . . . . . : .... . .. ·:... :. . ... ' . . :· ! . ~ ~ ~ 10• 10 1 Tw- Ts. DEG F Figure 6 Boiling Curves for Static Discontinuous Tests 44 The reheat procedure to acquire the ball's temperature involved the heating of the test prototype to the original temperature every time it was removed from the bath at temperatures below saturation. Freon 113 The boiling curves for the reheat tests 8, 12 and 15 are shown in Figure 7 at different levels of subcooling. The reheat boiling curves from Figure 7 were compared for similarity to the continuous boiling curves from Figure 3. The comparison shows that the reheat data provides a broader boiling curve for a Refrigerant 113 temperature of 89.6 degrees Fahrenheit, as well as a higher heat flux by about 10,000 observed Btu/(hr-ft2). for a Freon 113 Basically, temperature the of same 70 is degrees Fahrenheit, but the effect is not as pronounced as for the liquid's temperature of 89.6 degrees Faherenheit mentioned before. The difference between the reheat graphs and continuous graphs is attributed the to the increase in the fluid's temperature during a reheat run. 5. Discontinuous Method at the Saturation Temperature The discontinuous temperature acquisition method was on the test temperature. specimen at the liquid's used saturation A comparison of the boiling curves for the 45 10~------------~--------~--~--~~~ ....... : .... : . . ·:·.:. ·:·! ·:·: . . ·> .. ·. . ..... • • , • • • • ' • • • • \ . • ,•, • ' • ,•, I ,•, I • o •••••• , , , , , 0 • 0 • : . . o 0 • • •,,,,',, ''' ..... . . . .. •.. ····· 0. .... ............... o 0 • • 'o • o o o • o I I I • • 0 •• •, . . ,, 0 o •'•. o • •,• o o '•' 0 o • • • • •, • • o 0 ~ ••• 0 0 ~ 1 •'• r, 0 0 • I • ... ''•' \ • o "'' \ \ o • o o 'o' . . 0.: .. -:·.:. ·:·: ·:·:. • • • ••• • ••• • • • • • ••• ••• • • 0 0 • .... 0 .............. • • • 0 • •• • •• • • ••••• ••••• . . . .. •• .. ••• 0 ••• 0 • • • • • ••• .. • • . . . •••• , ••••••• 0 ... ' ••• ' • . . . ................... ' ... ' . ••• 0 .. . ••• ••• • 0 ................... - . . .; .. <· . ·: .. :. ·: . : .; . :· ....... : .... : .. ·:. 0 : • •: • •• i . :· \ . ..·: ... } 9.. ~ .~. ~ .~. ~........ :.... ;.. -: .. :.·:. :.:· :. o o o o o o o o0 o o o o • r/' o • o o 'o • o ,o o • o '• 0 o0 o • 0 • o' o 'o • o o o • , o o o ' • o o o o \ • o o o0 o 0 o 0 o # o I o 1o I o • • • • • 10~-----r--~~--~~~----~~~~~~~ 10 2 10' 10~ Tw- Ts, DEG F Figure 7 Boiling Curves for Static Reheat Tests 46 continuous and discontinuous (Reference number 8) is methods, presented and in for Figure Yilmaz 5. By observing the Figure, it is evident that the discontinuous curve follows the continuous one very closely. continuous and discontinuous curves Both, the emulate the Yilmaz curve. B. The Boiling with Rotation temperature Refrigerant discontinuous 113 recording was procedure of achieved used in a by ball rotating employing the static tests. in the The reasons behind the selection of this method were stated in the discontinuous discussion addressed before. 1. Rotation at Different Levels of Subcooling Several levels of subcooling were studied in the rotating experiments. the ball Figure 8 represents the boiling curves for rotating at 3437 RPM with three different Freon 113 temperatures below saturation (tests 24, 26 and 28). These curves demonstrated that the heat transfer for the 47 .. 10~-------------------------------.-.-.--~ ~ !. . . ·:· ..... ·:· . ... . . • : -:. • . . ,•,. . . ·.·. •••• 0 • : • • •• : •• -: •• : • ·: • • :· . . . . . . . . . . .. .. ·: .. : . ·: . .:· . ~ ~ ~ . . . . . . . : .... : . . <·.:. ·:·.: . . ·:·.: .... 0 , , , 0 , , . o 0 , , , . . . . .. . . . ' , • • • • • • . • . . .. .... . ... .... ..... . . ... . . ... . . . ... ,• 0 0 o o , • • '''' • • •'' • 'I' • , • • • 0 o . '•' • • •••••••• • • • 0 .. ••••••••• • 0 , '• • 0 \ I '•' \ 0 ....... o . • • • • .. ..... . . ... 0 o • ._, •••••• • f o 0 • , • - ....... . • • • • • . : .. 6 ~. !3.:. f: . ~. :. ~ :. 0 • • ••• . . . . : . . <· ... ·:·: ·:·! . . . ... .. .. .. . ... .. . .. ......... :~;. :. ~ :. . . . -..... . . . .-.. .. .. ... .U:4 . .·.~. . ..... 0 ...... ... ... ... ... ... ... 0 ••• ·: • • • :· 0 -: • • :- ·: • : -:. :· . 0 I 0 o o • • •• . : 0 o : •• 0 . . .... .. ... ... ... . ... 0 0 • • o o o o o I • • • • • • • • • • • • 0 O o o 0 0 \ o 0 o ~ o . ... . • • ••••• : -: .. .. .. .. .. .. • 0 •• : • ·: • ~ • :· ~ • .. 0. .. .... • • • • • 0 0 o 0 0 o • • 0 •• • 0 •• • • • 0 • 0: 0 0 0 • -: •• 0:· • 0: • 0:. ·: • : •• 0•• 0 .• 0 0 • : • • . 0 ~ • 0 0: •• : • ~ • ~ • :· • 0 0 ~ • 10~----~~~~-r~~----T--T~-T~~~ 10& Figure 8 1QZ Tw- T•. DEG F Boiling Curves with Rotation at 3437 RPM at Various Liquid Temperatures 48 rotational cases subcooling level. increased with This observation an increase in the holds for the also other rotational speeds. 2. Various Rotational Speeds at the Same Freon 113 Temperature The ball single was liquid effect. spun different rotational speeds at a temperature Figures this situation, at 9 and to isolate the rotational and 10 depict the boiling curves for the ball in the static position ( 0 RPM). Figures 9 and 10 provide good evidence showing the trend that as the rotational speed increases, the heat transfer increases. In other words, the peak of the boiling curves is higher. Also, Figure 10 shows a more complete view the of film boiling regime including the point were the heat flux is a minimum. This point of minimum heat flux to with also increase an increase in seems the rotational velocity. Another observation that can be drawn from Figures 10 is that the heat flux increases with rotation. shown by comparing the static both Figures. and rotational 9 and This is curves in It is also noticed that with an increase in 49 10-·~---------------.--.-.-.-.--------------.-.--.-.~. 0 ·:- •:o: -:•:• o' o o o 0 0: o o o ':I 0 0:0 0: o •: o! •:•! o ... . . . .... ! ' :· ! . ~ •• ·: • • . <· -:.: -:-:· ....... : .... i .. ·>.:. ·:. ~ -:· • • :· ·: • 0 :0 : • ; • :· • •: • o : • 0 ••••• : •••• o · : 0 :• ''•' '•' • - 1 o . • ..... ... ... ... ... ... o 0 0 •• • . . .. . o • o o o 0 0 0 - o : o 0 I o • • • • • •, ~ o o • o 1 0 ~ 0 o ·: o 0 0 • o • i. . . .... • o 0 'o'o'' ••••• o : : • • • o ~ I o ~ 0 o 0 0 ... \ 0 :- ~ o o •,o o 0 '•' \ ................... 0 ......... o 0 . ..:... .1~. ~9. ~ ~?~. ~ ~ . • • 0 0 ..... • 0 ••• . . . . :· . - .. .. ................. .. .. .. ... ..... : ' ... ! .. -: . . : . ·: . ~ 0 I 0 0 0 0 ~ 0 0 ' '• ... . •' o I . . o ••••••• o 0 I 0 0 0 ••• • 0 0 .. 0 • • • •• • • • • •• .. • • ••• .. • • • • • 0 0 •:o • 0 • 0. 0 0 0 ·:· ·:- •• ·:·: o 'o' 0 .. . . 0 • 0 0 '1.' ''•' \' . .... . . . ... .... . .... ......... o 0 .. 0 , o \ 0 0 0o . \I 0 0 . • • • • • ..... . .... o 0 0 0 ••• • : •••• . ~ 0 0 I 0 • • • • 0 • • • • . 0.:· ! . .. .. .. .. .. •• ·: • 0 : • 0: • . . . . .. 0 o 0 ............. 0 -:·:· 'o • : •••• : • • -:·.:. ·:· \0:0 i .. .. .. .. .. .. .. . . . . .. 0 • 0 •••••••• 0 0 0 '•' .. 0 o I •••••• I o 0 ~ •••• 0 ~ .•• :· 0 o: 0 0:0 0: 0 : •.•.•••••• 0 •• • 0 •••• • 0 •••••• • • , • 0 , 0 •• •• , • 0 10 1 Tw- Figure 9 T•. DEG F Boiling Curves at Various Rotational Speeds and Continuous Static, T! = 69.8 F 50 10~----------.-.~.-.~.~ ..~--~.~~~~.~.-.~.~ . 0 •••••• ·:·. 0 • • ·:·. 0. • • • • 0 • . . . . . . . ·.· ... • • ·:·. ·:· ·:- ·:·: -:·:· •..•. 0.: .••• : •• -:·.:. ·:·: ·:·:. • 0 0 •• : •• ·:·! . . ·:·! .... <· ·> ·:·: -:-:· ............ : .. <·.: ..;. ; ·> \ . . : • • •: •• ; . . . .. .. . . . .. . . . • • •: . : . : . :• • • • • • • • ... .. .. .. .. .. ..... . . . .. . . . .. . . ... .. .. .. .. .. . . ... .. .. . . .. .. .. .. .. .. . . • • • 0 • : ••• '; . • • . . . :· . ·: .. :. ·: . : . :. :· . . ..... : . . .. • • • • 0 •• ••• ••• • • • : • • •: • • : • •: 1 oo o oo 0 0 o .. oO 0 0 ••••••••••• • • • ••• • 0 o,o 00 - • : .: • o 0 ooo . . : •••••• o o o 0 0 0 • o o : . . o 0 ••• o 0 ° o •• :. ~ .. ·: . . : . ~ . ! . :· ; • • •: ~ • . . • 0 o •• : • o 0 o •o• 0 • • . . . .. 0 • OoooO. 0 0. 0 0 0 0 0 • 0 0 • . 0 • 0.,. . 0 0 • ~ • :. ~ . \ • . ..... . ..... . .... ... ... ..... . . .. .. .... . ... .. .. . . . . .... 00 o OoO • 0. o • . . . . . . . . . . . . . . . . . . . . . . . . . . . . • • • • o,o . . •••; - • 0 .. • 0 0 ...... . • • • • 0 .... "•o• . '0 • • 0 0 • • • • . . ... . • • • • • 0 ...................... - o • . . : .... : . .. ; .. : ..:. \ ·:· i. . . . .... ... ... ... ... ... . . ... • ...... .• .• .• .• .0.. . . . . .. • • • 0 • • • : • 0 ·: • • : • ·: • ~ • :· ; • .. ... ... .. . ·:·. ·:· ·:· ·:·: ·:·:· .... 10~----~~~-T~rn~--~--~~~~Mrl 10' Figure 10 1QZ Tw- Ta, DE:G F 10~ Boiling Curves at Various Rotational Speeds and Continuous Static, Tl = 109.4 F 51 the fluid's temperature the heat flux decreases. should also be noted that data were obtained at 9509 These data are It RPM. not shown in the main text as there were problems with the thermocouple connections at this speed which make all data at this speed questionable. 3. Comparison Between the Film Coefficients from this Study and Witte and Orozco (Reference number 9) The film coefficients for the different rotational tests were calculated using the weighted average thermocouples (this study) of the three and the correlation by Witte and Orozco (Reference number 9). Figures 11 and 12 show the film coefficient versus the temperature difference for two different temperature was while different observed trend speeds. Here, the Refrigerant 113 maintained constant at a subcooled level rotational shows speeds that as were the depicted. rotational The speed increases so does the film coefficient. The film coefficient Figures 11 curves (exponential in shape) in and 12 show a difference between this study's approach and Witte and Orozco's. The curves using the correlation by Witte and Orozco lag more than this study's curves by a constant factor. 52 This is believed to be 2500~----------------------------------------~ THIS $TUDY 2000 .............................. . t+-----78 30 RPM ~ 1500 .... I ~ 1000 • •• ~--7830 0 0' • . .. ••••••••• 0 0 ••••• 3437 RPM ........ <·. ............... ·:·. ......... . .. .. ... ... WITTE AND OROZCO • ' : • ••••...•••• 0. 0. ~PM ... ...................... 0 •••••••• 0 0 3437 RPM o~~~~~~~~rrrr~~~~~~~~~~~ 0 Figure 11 so 120 Tw- T•. DEG F 180 240 Film Coefficients for this Study and Witte and Orozco (Reference number 9) for Various Rotational Speeds, and Tl = 69.8 F 53 2500--------------------~------~---------. ....... THI~. STUD~ .. · .. ·;.· .. ·· .......... : .. ·· .. ····· .. ··· 3437 RPM ~ 1500 ......... . .... .;..... 7.8 3.0 .. EP.~................. ;. ............... . . . . . : ... ... . ... ... ... I ~ Ia ~ 1000 .. O 0 0 WITTE:AND OROZCO O 0 .. ... ... . ... . 0: 0 0 o 0 o o 0 t 0 o o 0 o o 0 : ... ... .. ... .. . .. o: .. ... ... .. .. . 0 o I 0 0 o 0 0 o 0 o 0 o 0 o o ~----3437 RPM ............................... '. .. 5()() .. o~~~~~~~~~~~~~ 0 Figure 12 so 120 Tw- Ts. DEG F 180 240 Film Coefficients for this Study and Witte and Orozco (Reference number 9) for Various Speeds, and Tl = 109.4 F 54 caused by the formula's sensitivity to the combination natural and forced convection. of The correlation by Witte and Orozco was developed for forced convection. 4. Rotation at the Saturation Temperature The test specimen was rotated at different speeds Freon 113 saturation temperature. at Figure 13 shows the boiling curves for the two different speeds (tests 28 30). Looking at these curves This and it is observed that the maximum heat flux peak is lowest at the lowest speed. the rotational is consistent with the fact that the static case (0 RPM) boiling curve is lower than the boiling curve for the lowest speed. 5. Comparison Between the Film Coefficients for this Study and Witte (Reference number 10) The film coefficient from this study and the one from Witte (Reference number 10) were calculated, and against each other. compared Here, the film coefficient from two different rotational speeds at saturation are graphed 55 . 10~------------.-.-.-.-.-.-----.---.--.--.-.-.-.~ • • • • • • • • • • • • • • 0 •••••• ·: 0 • • •• ••• ••• 0 ·: • •• ••• • • • ••• ••• •• • -: • • : . • -: • • : . 0 -: • • : . o ,• o ·: • : • :. :· • • ••••• : • • •• : •• ·: • : • ·: • ~ • :· ·: 0 : • :. :· • • •••• : • • •• ~ •• ·: • • : • ·: • ~ • :· 0 • !. !. ·> : ·> :- ....... : .... : .. ·> . : . ·> i <· ~ . . . . ... . .... . ,. ........... . . . .''•' . . . ..... ..... ..., .... .. .. ............ . . . ... . . . . . . . . . . ..... . .. . ... .. . . .. . .. . . . . . . . . . . . . . . . .. . . . . . . . ... . . .. ... ...... ... .. . . . . .. ..... ....... . .. .. -...... . - ............................. .. .. .. .. ....... . . . .. .. .. .. .. .. • • • 0 , '• o' • • • o • • • • • ' • '• • • , , 0 , o o • , • , , , , • \ • 0 0 • • ,•, • , • • • • • o , , • • # 0 , •, •,•,• • • 0 ••• o o o o o • o '•' 0 • o,o 0 • 0 • '•', • o 0 I • o,o,o , \. I o 1 •• 0 • • o o o • • •, 0 0 • • • o • I • o • •0 o o 0 0 I 0 o o I 0 0 0 o 0 0 0 0 0 I 0 • • • 0 • •• 0 0 • •, • ""' ''•' • '• . . .. . . . . . . . ·:· ... ·:· .. . ...: .. ..:. ·:...... .:. :·. ....... .:. . . .. .:. .. ·:... . .... : . ·: . . :· . . .. . ... .. . . ... .. . . . . . . . .. . . . . .. . . .... . .. . .... . ..... .... . . . . . ... . . . . . . . . . . , ........... ' ... .' . . . . . .. . . .?:Cl ~PM.~;. .................. . }.R. . ..... . . . . . . . . . . . . ' ............... ' ... '. . . . . .. . . .. . ........... . . ......... . \w:.t~. - 3;4 3 7 RE'M : : ...... : .. ·. . . .. •, . ..· . .. .. .. .. .. .. .. .. .. .. . : . . .. : .. ·: . . : . ·: . .:· : . .. .. .. .. .. .. .. .. .. .. .. .. ..... ... : .... .. ·: .... . ' ... ' . ~ ~ ~ ~ \ ~ ~ ~ ~ 10' 10 1 Tw- T•, DEG F Figure 13 Boiling Curves for The Ball Rotating at Various Rotational Speeds and Continuous Static, Tl = 114.8 F 56 2500~----------------------------------------~ ............ f:~.I.$ .. $f:"QPY ..................................... 2000 ••••••••••• . . ... .. . ... .. .. ••• ••••••••••••••• . .. .. ... . ... .. . : ••••••••••••• 0 . •• 500 3437 WITTE o~~~~~~~~~~~~~~~~~~~~~~~~ 0 Figure 14 80 120 Tw- Ts. DEG F 180 240 Film Coefficients for this Study and Witte (Reference No. 10) at Various Rotational Speeds, and Tl = 114.8 F 57 together with the formula that film coefficient by Witte, Figure 14. the film coefficient from the empirical The exponential curves show increases faster for this study's calculations than for the one's by Witte. 6. Ball Rotating in Air The ball in this was rotated in air to monitor the heat transfer medium. temperature It was determined that the drop of the ball was± 7.2 degrees F for 9509 RPM (6 pin connector), ± 3.6 degrees Fahrenheit RPM, and ± 1.8 degrees an actual in 7830 Appendix C). But rotation test run, the ball rotated in air for half a second only. encountered for F for 3437 RPM for a 15 second interval (see Figures 51, 52 and 53 in during average Thus, the heat loss is mainly the static position (0.9 degrees F per 15 seconds interval). Therefore, the heat loss assumed to be negligible. 58 in air was I CHAPTER VI CONCLUSIONS AND RECOMMENDATIONS The research of a static and rotating spherical surface submerged in Freon 113 provided good transfer evaluation on a ball version of the conclusions reached data bearing. by the for the heat A condensed end of this experiment are summarized below: 1. The discontinuous data acquisition method is an acceptable system to obtain data when economics are an obstacle. 2. The reheat data acquisition method is inadequate since it significantly changes the temperature of due to the fluid the transfering of heat every time the ball is heated to the original temperature. Also, it involves a large time expenditure. 3. The boiling curves for the static and rotational tests 59 • show a decrease in the heat transfer between the ball and the fluid with a decrease in the subcooling level. 4. The maximum heat flux increases with an increase in the rotational speed. 5. The minimum heat flux seems to increase with an increase in the rotational speed. 6. Fairly good agreement is found between the shape of the static boiling curves developed from this data experiment's and the pool boiling data for saturated Freon 113 from Yilmaz study (Reference number 8). 7. Fair agreement is found between the coefficient from coefficient this rotational film investigation correlation from and Witte the and film Orozco (Reference number 9). 8. Fair agreement is found between the rotational film coefficient obtained curves from for this saturated investigation forced and convection from Witte's empirical formula (Reference number 10). 9. The magnitude of the film coefficient (rotation) for this study is greater than the magnitude coefficient from the of the film empirical formulas by Witte and Orozco (Reference number 9) and Witte (Reference number 10). 60 A follow-up of this investigation broaden the amount of information transfer on a rotating ball. can be performed to obtained on the heat A set of recommendations to improve a follow up experiment are as follow: 1. If economically feasible use a drive motor instead of variable speed direct pulleys to reach the desired rotational speed. 2. Increase the wire lead size of the ball's thermocouple to at least 0.1 inches outside diameter. 3. Use a continuous recording data acquisition system during the rotational tests. 4. Lower and raise the Freon 113 container instead of the entire ball rotational system. 5. Use solder that can withstand higher temperatures in order to be able to reproduce more completely the pool boiling data. 6. Start testing with the Freon 113 at the saturation temperature because the heat transfer time. This facilitates is slower with an easier observation of the phenomenon. 7. Use different ball diameters to monitor the relationship between the size of the surface and the heat transfer. 8. Use different density fluids. 9. Change the test specimen from solid to hollow to determine what changes ocurred by changing mass. 61 NOMENCLATURE Ball radius R = d = Ball diameter CPv = Specific heat of vapor Cpl = Specific heat of liquid hfg' = hfg + 0.5 CPv Delta Tw Kv = Thermal conductivity for vapor Nuv = Nusselt number, vapor, (h x d)/ Kv Pr1 = Prandtl number for liquid Prv = Prandtl number for vapor fl = Density of the liquid fv = Rev = Reynolds number for vapor Tb = Bulk temperature Tf = Film temperature Ts = Saturation temperature Tw = Wall temperature Density of the vapor Vt = Tw - Ts = Tangential velocity w = Rotational speed m = Mass of the ball t =Time 6t = tfin~l - tinitial A = ..6.Tw Area of ball T Wt Avg = Temperature weighted average Tc = Temperature TR=O.S = Temperature at R=O.S thermocouple = Temperature at surface thermocouple Tsurf at center thermocouple 62 The weighted average from the three thermocouples was calculated by: T Wt Avg: 0.016 x Tc + 0.406 x TR=0.5 + 0.578 The film coefficient assuming a lumped for mass this sphere X Tsurf study was calculated by in a quasi-equilibrium state, therefore: m ·Q = X CPv x AT m x CPv Q: x~T -------------6t Q h = A x (Tw -Ts) From Kays and Bjorklund (Reference No. 3) the approximate equation for the Nusselt's number for forced single phase flow past a rotating sphere is: Nuv = 0.1545 x Rerot2/3 x Prl/3 From the literature search an expression was found to determine the Nusselt's number for forced convection 63 from Witte and Orozco (Reference No. 9). They studied forced convection subcooled boiling on a sphere using Freon 11. Their equation to obtain the forced film coefficient for a sphere in a subcooled environment is: 2 X Tt X R X W Vt = --------------60 Rev = ----------- fv Nuv = X Vt X D 18.73 fv ~v 5/8 Cpl(Ts-Tb)Prl (--)(--) [-------------] fl ~l hfg' 5/8 5/8 Rev CPv (Tw- Ts) 3/2 [-------------] hfg' Prv From the literature search an expression was found for saturated forced convection for flow over a sphere. The following approach was provided by Witte (Reference No. 10): Nuv = 2.98 Rev1/2 CPv (Tw- Ts) 1/2 [-------------] Prv hfg' Epstein and Hauser (Reference number 7) developed a correlation for forced convection film boiling. correlation follows: fl o.5 Rev1/2 (--) Nuv = 1/4 !v Cpv (Tw- Ts) 1/4 [------------] Prv hfg' 64 The REFERENCES 1. Aziz S. and G. F. Hewitt: Heat Transfer Regimes in Forced Convection International Film Boiling Developments presented at the 1986 in on Heat Spheres. Transfer, paper International Heat Transfer Conference. 2. Dhir, v. K. and G. P. Purohit: "Subcooled Film Boiling Heat Transfer From Spheres." Design. Vol. 47, 1978. Nuclear Engineering and PP. 49-66. 3. Kays, W. M. and Bjorklund, I. S.: "Heat Transfer From a Rotating Cylinder With an Without.Cross-flow." Transactions of the Asme. Vol. 80, 1958. PP. 70-78. 4. Park, E. L. Jr., Colver, C. P. and Sliepcevich, C. M.: "Nucleate and Film Nitrogen and Boiling Heat Vol. 70, 1960. Rotating s. to Methane at Elevated Pressures and Large Temperature Differences." Transactions 5. Schwartz, Transfer of the Asme. PP. 516-528. H.: Heat Transfer Coefficient Between a Ball Moving Through Rocketdyne Internal Letter, Canoga ATU-87-5016, 26 January 1987. 65 a Cryogenic Park, Fluid. California, s. 6. Schwartz, Rocketdyne H.: Comparison Between the SRS and a Approach for Calculating Coefficient for a Rotating Ball. Letter, the Rocketdyne Film Internal Canoga Park, California, ATU-87-5131, 19 June 1987. 7. Schwartz, s. H.: Experimental Program to Study Boiling on a Letter, Rotating Canoga Sphere. Park, Rocketdyne California Internal ATU-86-5154, 10 December 1986. 8. Yilmaz, Salim and J. Velocity on Heat w. Westwater: "Effect of Transfer to Boiling Freon Transactions of the A$ME. Vol. 102, 1980. 9. Witte, L. PP. 26-31. c. and J. A. Orozco: "Flow Film Boiling From a Sphere to Subcooled Freon 113. " ~. 113." Vol. 108, 1986. Transactions of the PP. 934-938. 10. Witte, L. C.: "Film Boiling From a Sphere." Fundamentals. Vol. 7, 1968. 66 PP. 517-518. I and EC BIBLIOGRAPHY 1. s. Aziz Forced and G. F. Hewitt: "Heat Transfer Regimes in Convection International Film Developments presented at the 1986 Boiling on in Transfer, paper Heat International Spheres." Heat Transfer Conference. 2. Chapman, Alan J.: "Heat Transfer." Macmillan Publishing Co., Inc., New York, New York, 1974. 3. Dhir, v. K. and G. P. Purohit: "Subcooled Film Boiling Heat Transfer Engineering and Pesign. from Spheres." Vol. 47, 1978. Nuclear PP. 49-66. 4. Kays, W. M. and Bjorklund, I. S.: "Heat Transfer From a Rotating Cylinder With an Without Transactions of the Asme. Cross-flow." Vol. 80, 1958. PP. 70-78. 5. Gould: "Temperature Measurement With Thermocouples." Gould Inc., Cleveland, Ohio, 1985. 6. Hendricks, Comparison Reduced Robert of Theory Gravity. Aeronautics and C.: Film Boiling From Spheres. and Lewis Space Ohio, 129-01, 17 May 1971. 67 Data Research at Standard Center, Administration, A and National Cleveland, 7. Kreith, Frank: "Principles of Heat Transfer." International Textbook Company, Scranton, Pennsylvania, 1961. 8. Kuethe, Arnold Aerodynamics . " and Chuen-Yen John Wiley Chow: and "Foundation of Sons, New York, New York, 1976. 9. Kutateladge, Samson Semenovich: Fundamentals Academic Transfer. Press of Heat Inc., New York, New York, 1963. 10. Park, E. C. M.: L. Jr., "Nucleate Colver, and C. P. and Sliepcevich, Film Boiling Heat Transfer to Nitrogen and Methane at Elevated Pressures Temperature Differences." Vol. 70, 1960. Transactions Large of The A5me. PP. 516-528. 11. Rohsenow, Warren M. and Harry M9mentum and Transfer. Choi: Prentice-Hall, ~H:::.:e~a~t"",_...,Ma~s~s:__~a~n-d Inc., Englewood Cliffs, New Jersey, 1961. 12. Schwartz, S. H.: Heat Transfer Coefficient Rotating Ball Moving Through Rocketdyne Internal Letter, Canoga ATU-87-5016, 26 January 1987. 68 a Between Cryogenic Park, a Fluid. California, s. 13. Schwartz, H.: Experimental Program to Study Cryogenic Boiling Heat to Obtain Correlation Equation for Convection the Rocketdyne Internal Transfer Heat Coefficient. Letter, Canoga Park, California, ATU-87-5066, 14 February 1987. s. 14. Schwartz, Rocketdyne H. : Comparison Between the SRS and a Approach Coefficient Internal for for Rotating a Letter, the Calculating Canoga Film Rocketdyne Ball. Park, California, ATU-87-5131, 19 June 1987. 15. Schwartz, s. H.: Prelyminary Estimates of the Flow Subcooled Coefficients Internal Film for a Boiling Rotating Letter, Canoga Heat Transfer Ball. Park, Rocketdyne California, ATU-87-5139, 19 June 1987. 16. Schwartz, S. H.: Experimental Program to Study Boiling on a Letter, Rotating Canoga Sphere. Park, Rocketdyne California, Internal ATU-86-5154, 10 December 1986. 17. Yilmaz, Salim and J. Velocity on Heat w. Westwater: "Effect of Transfer . .,T=-r.. ,a'""'n""s.. ,a""'c....t""'i""oAln.:=s'----""o""f'--"""'t~h:.::.e"--.o!:.-'A~S::.,ME~ . 26-31. 69 to Boiling Vo 1 . 10 2 , Freon 19 80 . 113." PP. 18. Ungar, E. K. and R. Eichhorn: "Local Surface Boiling Heat Transfer From a Societies. Quenched Sphere." Engineering April 1982. 19. Witte, L. C. and J. A. Orozco: "Flow Film Boiling From a of ASME· Sphere to Subcooled Freon 113." Transactions Vol. 108, 1986. 70 PP. 934-938. APPENDIX A THERMODYNAMIC PROPERTIES FOR FREON 113 71 TABLE 2. TEMP c PRESSURE ~1PA 0 0.003894 0.005232 0.006936 0.009083 0.010083 0.011174 0.012361 0. 013650 0.015048 0.016562 0.018199 0.019967 0.021872 0.023923 0.026127 0.028494 0.031032 0.033750 0.036657 0.039761 0.043074 0.046604 0.050362 0.054357 0.058602 0.063105 0.067878 0.072932 0.078278 0.083929 0.089895 0.096188 0. 101325 0.10282 0.10981 0.1:!889 0.15045 0.17468 0.20181 0.23204 0.26559 0.30270 0.34358 0.38848 0.43764 0.49129 llO 0.54969 0.61310 115 0.68177 120 0.75598 125 130 0.83600 0.92212 135 140 1.0146 145 1.1139 150 1.2201 155 1.3337 160 1. 4550 165 1. 5845 170 1.7224 175 1. 8693 180 2.0256 2.1918 185 2.3685 190 2.5564 195 2.7562 200 2.9692 205 210 3.1968 *214.4 3. 4110 *CRITICAL POINT -30 -25 -20 -15 -10 8 - 6 4 - 2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 47.56 48 50 55 60 65 70 75 80 85 90 95 100 105 - THERMODYNAMIC PROPERTIES FOR FREON 113. VOLUME VAPOR m3/k~ 3.761 2.8148 2.1351 1. 6401 1. 27 48 1.1562 1.0505 0.95598 0. 87144 0.79563 0.72756 0.66631 0.61113 0.56132 0.51630 0.47554 0.43859 0.40503 0.37452 0.34673 0.32140 0.29827 0.27712 0.25776 0.:4001 0.22373 0.20877 0.19501 0.18233 0.17064 0.15986 0.14989 0.14067 0.13397 0.13214 0.12423 0.10684 0.09235 0.08018 0.06992 0.06123 0.05381 0.04747 0.04201 0.03730 0.03321 0.02964 0.02653 0.02379 0.02138 0.01925 0.01736 0.01568 0.01418 0.01283 0.01162 0.01053 0.009539 0.008640 0.007819 0.007066 0.006373 0.005729 0.005127 0.004556 0.004006 0.003456 0.002857 0.001750 DENSITY LI9UID k~ m3 1 85.7 1674.7 1663.7 1652.6 1641. 5 1637.0 16J 2. 5 1628.0 1623.5 1619.0 1614.5 1609.9 1605.4 1600.8 1596.2 1591.6 1587.0 1582.4 1577.8 1573.1 1568.5 1563.8 1559.1 1554.4 1549.6 1544.9 1540.1 1535.3 1530.5 1525.7 1520.9 1516.0 1511.2 1507.3 1506.3 1501.3 1489.0 1476.4 1463.7 1450.8 1437.8 1424.6 1411.1 1397.4 1383.5 1369.3 1354.9 1340. 1 1325.0 1309.5 1293.5 1277.2 1260.3 1242.8 1224.7 1205.9 1186.3 1165.7 1144.0 1121.0 1096.4 1069.9 1040.9 1008.8 972.43 929.65 876.30 800.26 570.00 ENTHALPY VAPOR LI9UID kJ/k~ K kJ k~ 339. 2 17 3. 0 178.14 342.46 182.43 345.53 348.62 186.76 351.72 191.13 192.89 352.97 194.66 354.22 196.43 355.47 198.21 356.72 357.97 200.00 359.23 201.79 203.59 360.49 205.40 361.75 207.21 363.01 209.03 364.28 210.86 365.54 212.69 366.81 214.53 368.08 216.37 369.35 218.22 370.62 220.08 3 71. 89 373. 16 221.94 374.43 223.81 375.71 225.69 227.57 376.98 229.45 378.25 379.53 231.34 380.80 233.24 382.08 235.14 237.05 383.35 238.97 384.62 240.89 385.90 242.81 387.17 388.16 244.31 388.44 244.74 389.72 246.68 392.89 251.53 256.43 396.07 399.23 261.35 266.30 402.39 271.27 405.54 276.28 408.67 411.80 281.32 286.38 414.90 291.47 417.99 296.59 421. 07 301.73 424.12 306.91 427.14 312.12 430.14 317.36 433.11 322.64 436.05 327.96 438.95 333.32 441.81 444.61 338.13 447.37 344.1·9 349.71 450.06 355.30 452.68 360.97 455.21 457.65 366.73 372.60 459.97 378.59 462.15 464.17 384.75 465.97 391.10 397.71 467.49 404.65 468.65 112.08 469.26 420.31 469.00 ~30.26 466.91 453.60 453.60 72 ENTROPY VAPOR LI9UID kJ kh K kJ/k~ K 1. 57 6 0.89885 1. 5783 0.91613 1.5775 0.93324 1.5772 0.95017 1. 5772 0.96694 1.5773 0. 97360 1.5775 0.98024 1.5777 0.98685 1.5780 0.99344 1.5783 1. 0000 1. 57 87 1.0065 1.5792 1.0131 1.5796 1. 0195 1. 5 802 1. 0260 1. 5807 1. 0325 1. 5813 1. 0389 1.5820 1. 045 3 1. 582 7 1. 0516 1. 5834 1.0580 1. 5842 1. 0643 1. 0706 1. 5850 1. 5858 1. 0769 1. 5 867 1. 083 2 1.5876 1. 0894 1.0956 1.5885 1.1018 1. 5894 1.1080 1.5904 1.5914 1. 1141 1.5925 1.1203 1.1264 1.5935 1.5946 1.1324 1.5957 1. 1385 1. 5969 1.1445 1. 5978 1.1492 1. 5980 1. 1505 1.1565 1.5992 1. 6022 1.1714 1.1862 1. 6053 1. 2008 1.6086 1.6119 1. 215 3 1. 6152 1. 2296 1.6187 1. 2438 1. 2579 1. 6222 1.2719 1.6258 1.2857 1. 6294 1. 2994 1.6330 1.3130 1. 6366 1.6403 1. 3265 1. 6439 1. 3399 1.3532 1. 64 76 1.3664 1. 6512 1. 3795 1.6548 1. 3925 1. 6583 1. 6618 1.4055 1.4184 1. 6652 1.4314 1. 6685 1. 6717 1. 4443 1.6748 1.4572 1.6776 1.4701 1. 4832 1. 6803 1. 6828 1. 4963 1.5096 1. 6849 1.5232 1. 6866 1.5371 1.6878 1.6883 1.5515 1.6876 1.5668 1.5834 1. 6852 1.6789 1. 6031 1.6470 1. 64 70 ' TABLE 2. VISCOSITY, Pa TEMP SAT. LIQUID K 1790 240 1475 250 1232 260 270 1038 280 885 763 290 664 300 586 310 320 520 320.7a 516 330 465 340 419 379 350 344 360 370 315 380 289 267 390 400 246 410 228 420 210 430 193 440 175 450 158 460 133 470 107 480 77.3 487.5b 29.8 490 500 520 540 560 580 600 a NORHAL BOILING s SAT. VAPOR 8.71 9.27 9.80 10.29 10.74 10.77 11.15 11.49 11.78 12.04 12.28 12.51 12.75 13.02 13.38 13.85 14.43 15. 12 15.92 16.84 18.02 19.84 29.8 POINT (CONTINUED) THERMODYNAHIC PROPERTIES FOR FREON 113. THERHAL CONDUCTIVITY mW/m K GAS SAT SAT ( 1 Atm.) LIQUID LIQUID 87.0 83.7 83.0 80.9 78.7 76.8 74.7 72.6 70.7 10.77 70.5 8.66 68.7 11.00 66.4 11.24 11.47 64.5 11.69 62.4 11.90 60.4 12.11 58.3 12.32 56.4 12.53 54.3 12.73 52. 1 12.93 49.8 13.14 47.4 13.35 44.8 13.56 41.8 13.78 38.6 14.00 34.6 14.22 30+ (21+) 14.38 14.43 14.64 b CRITICAL POINT 73 SPECIFIC HEATS Cp kJ/kg K SAT. GAS SAT. ( 1 Atm.) LIQUID VAPOR 0.845 0.584 0.877 0 .• 594 0.895 0.604 0.916 0.614 0.933 0.624 0.946 0.634 0.958 0.644 0.971 0.654 0.983 0.664 8.66 0.984 0.665 9.11 0.992 0.675 9.58 1.000 0.686 10.07 0.697 1.013 10.56 0.709 1. 029 11.05 1. 042 o. 722 11.54 0.737 1.059 12.04 0.753 1.084 12.54 1.109 o. 770 13.05 1.138 0.796 13.59 0.841 1.176 14.19 0.902 1. 218 14.83 1. 268 15.51 1. 318 16.23 1 .381 16.99 1. 452 17.79 1. 54 ( 1. 6) 18.42 18.64 19.54 21.53 23.54 25.55 27.56 GAS (0 Atm.) 0.583 0.591 0.599 0.607 0.615 0.623 0.632 0.641 0.650 0.651 0.659 0.668 0.678 0.688 0.697 0.706 0.715 0.724 o. 733 0.742 0.750 0.758 0. 766 0. 774 0.782 0.790 0.798 0.705 0.719 . 200 J.4------ Zuber's Predicted tAaximum N ~ ~ 100 /Hesse's Boiling Curve ~ t:- 70 -~ Cl) - o50 30 20 Bromley's Equation 130 Figure 15. Boiling Data for Saturated Refrigerant 113. Yilmaz (Reference number 8) 74 APPENDIX B RAW DATA TABLE 3. TEST 1 CONTINUOUS STATIC RUN. TEMPERATURE IN DEG F, TIME IN SEC. FREON TIME SURFACE CENTER R=0.5 73.2 0 302 302 302 73.2 123.44 121.28 130.1 30 74.6 45 109.04 109.22 104.36 76 60 100.4 101.12 99.68 77.4 75 97.16 97.52 96.26 78.8 90 94.46 94.1 93.92 78.8 105 91.76 92.12 91.94 78.8 120 90.68 89.6 90.5 78.8 135 89.06 89.42 87.8 78.8 150 87.8 87.98 87.98 78.8 165 86.72 86.9 86.54 78.8 180 85.64 85.64 85.64 78.8 195 84.2 84.56 84.56 78.8 210 83.48 83.84 83.84 78.8 225 83.12 83.12 83.12 78.8 240 82.4 82.76 82.76 78.8 255 82.04 82.4 82.4 78.8 270 81.68 81.86 82.04 TABLE 4 . TEST 2 CONTINUOUS STATIC RUN .. TEMPERATURE IN DEG F, TIME IN SEC. FREON TIME SURFACE CENTER R=0.5 72 0 305.6 310.1 310.64 73 15 248.36 268.52 244.4 74.1 30 141.8 176 156.2 75.1 45 122 133.34 125.6 76.1 60 113.36 117.68 114.62 76.2 75 107.96 109.94 108.5 76.4 90 104.36 105.98 104.9 76.5 105 101.48 102.56 102.2 76.7 120 99.14 99.86 99.68 76.8 135 97.16 98.06 97.88 76.9 150 95.54 96.26 96.08 165 93.92 94.46 94.46 76.9 77 180 92.48 93.38 93.2 195 91.4 91.94 91.94 77 77 210 90.14 90.86 90.86 77 225 89.24 89.78 89.96 77 240 88.52 89.06 89.06 77 255 87.62 88.16 88.34 77 270 86.9 87.44 87.44 75 WT. AVG 302 126.1094 107.1428 100.1192 96.80036 94.235 91.83884 90.58964 88.5542 87.87596 86.6498 85.64 84.35192 83.63192 83.12 82.55192 82.19192 81.82904 WT. AVG 307.7182 247.0748 148.1936 123.6430 113.9406 108.2109 104.6051 101.7896 99.37076 97.46672 95.77076 94.14788 92.78672 91.62788 90.44384 89.54096 88.74788 87.92096 87.12788 TABLE 5. TESTS 3C, 3S, 3R=0.5, THREE CONT. STATIC SEPARATE TESTS . TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE FREON CENTER FREON R=O . 5 FREON 0 303.08 77 304.34 81 305.06 84 296.6 77.4 303.44 81.4 303.44 84.3 15 30 285.8 77.8 302.54 81.8 298.76 84.5 45 276.8 78.2 297.68 82.2 295.52 84.8 60 266 78.6 289.4 82.6 291.74 85.1 75 258.8 79 282.92 82.9 284.9 85.3 90 246.2 79.4 273.02 83.3 277.34 85.6 105 221 79.8 266 83.7 269.6 85.9 120 206.6 80.2 254.3 84.1 259.52 86.1 135 158 80.6 244.94 84.5 244.58 86.4 150 145.4 81 225.32 84.5 234.5 86.4 165 145.4 81 209.12 84.5 210.74 86.4 180 145.4 81 178.34 84.5 198.5 86.4 195 145.4 81 166.84 84.5 183.4 86.4 TABLE 6. TEST 4 DISCONTINUOUS TEMPERATURE IN DEG F, TIME IN TIME SURFACE CENTER 0 303.08 305.24 15 280.4 291.2 45 233.6 240.8 75 132.8 147.2 105 118.4 123.8 STATIC RUN. SEC. R=0.5 FREON WT. AVG 305.6 86.4 304.1376 282.2 87 281.3036 217.4 87.5 227.138 145.4 88. 1 138. 146 123.8 88.6 120.6788 TABLE 7. TEST 5 REHEAT STATIC RUN. TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE CENTER R=0.5 0 303.08 303.8 303.62 15 276.8 284 282.2 30 233.6 239 239 45 143.6 181.4 161.6 60 129.2 143.6 154.4 76 FREON 83.9 84.2 86.4 87.8 88.5 WT. AVG 303.3107 279.1076 235.8788 151.5128 139.6616 TABLE 8. TEST 6 CONTINUOUS STATIC RUN. TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE FREON 0 302 70 15 249.8 70.8 30 141.8 71.6 45 125.6 72.4 60 112.28 73.2 TABLE 9. TEST 7 CONTINUOUS STATIC RUN. TEMPERATURE IN DEG F, TIME IN SEC. FREON TIME SURFACE CENTER R=0.5 0 302.72 303.8 305.6 70 70.7 15 260.6 262.4 266 30 143.6 177.8 156.2 71.3 45 129.2 150.8 141.8 72 72.6 60 116.6 123.8 120.2 75 107.6 111.2 111.2 73.2 73.7 90 104 105.8 105.8 105 100.4 102.2 102.2 74.1 74.4 120 96.8 98.6 98.6 TABLE 10. TEST 8 REHEAT STATIC RUN. TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE CENTER R=0.5 0 303.08 305.6 303.8 15 251.6 271.4 246.2 30 161.6 179.6 170.6 45 123.8 143.6 136.4 60 111.2 114.8 113 75 107.6 109.4 109.4 FREON 70 70.6 71.2 71.5 71. 8 72 WT. AVG 303.9065 262.8212 149.2628 134.6612 118.1768 109.1192 104.7596 101.1596 97.5596 WT. AVG 303.4126 249.7244 165.542 129.2324 111. 9884 108.3596 TABLE 11. TEST 9 DISCONTINUOUS STATIC RUN. TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE CENTER R=0.5 FREON WT. AVG 0 303.08 303.8 303.8 70 303.3838 15 244.4 255.2 249.8 70.6 246.7652 30 141.8 174.2 154.4 71.2 147.434 45 120.2 134.6 1~27. 4 71.9 123.3536 60 111.2 116.6 72.5 112.0172 113 75 104 107.6 105.8 73.1 104.7884 90 98.6 100.4 100.4 73.8 99.3596 77 TABLE 12. TEST 10 CONTINUOUS STATIC RUN. TEMPERATURE IN DEG F, TIME IN SEC. FREON WT. AVG TIME SURFACE CENTER R=0.5 0 303.08 305.24 305.96 80.6 304.2838 15 266 284 282.2 83.3 272.8652 30 147.2 195.8 190.4 86 165.5168 45 125.6 138.2 136.4 87.8 130.1864 60 114.8 120.2 118.4 87.8 116.348 75 107.6 113 111.2 87.8 109.148 90 104 107.6 107.6 87.8 105.5192 105 102.2 104 104 87.8 102.9596 120 98.6 100.4 100.4 87.8 99.3596 TABLE 13. TEST 11 DISCONTINUOUS STATIC RUN. TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE CENTER R=0.5 FREON 0 303.08 305.6 305.6 80.6 15 260.6 282.2 278.6 81.5 30 150.8 206.6 190.4 82.4 45 123.8 140 134.6 83.3 60 113 120.2 118.4 84. 2 75 107.6 111.2 111.2 85.1 90 102.2 109.4 109.4 86 105 100.4 104 104 86.9 120 98.6 100.4 100.4 87.8 TABLE 14. TEST 12 REHEAT STATIC RUN. TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE CENTER R=0.5 0 303.08 305.6 303.8 15 264.2 284 280.4 30 152.6 201.2 190.4 45 125.6 138.2 134.6 60 116.6 122 120.2 75 109.4 114.8 111.2 90 104 107.6 107.6 105 100.4 102.2 102.2 78 FREON 80.6 81.1 81.7 82.4 83.4 85.1 86.5 87.8 WT. AVG 304.1434 268.2536 167.7704 128.444 115. 307 6 109.1192 105.2384 101.9192 99.3596 WT. AVG 303.4126 271.094 168.7244 129.4556 118.148 110.2172 105.5192 101.1596 TABLE 15. TEST 13 CONTINUOUS STATIC RUN. TEMPERATURE IN DEG F, TIME IN SEC. FREON WT. AVG TIME SURFACE CENTER R=0.5 0 303.08 305.6 305.6 89.6 304.1434 15 282.2 291.2 289.4 90.3 285.2672 30 242.6 253.4 251.6 91 246.4268 45 136.4 159.8 158 91.8 145.544 60 122 131 129.2 92.5 125.0672 75 114.8 118.4 118.4 93.2 116.3192 90 111.2 113 113 93.7 111.9596 105 107.6 109.4 109.4 94.3 108.3596 120 105.8 107.6 107.6 95 106.5596 TABLE 16. TEST 14 DISCONTINUOUS STATIC RUN. TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE CENTER R=0.5 FREON 0 303.08 305.6 305.6 89.6 15 284 293 291.2 90.3 30 233.6 244.4 242.6 91.2 45 131 149 147.2 91.9 60 120.2 127.4 125.6 92.7 75 111.2 114.8 114.8 93.4 90 104 105.8 105.8 94.3 105 96.8 102.2 102.2 95 TABLE 17. TEST 15 REHEAT STATIC RUN. TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE CENTER R=O. 5 0 303.08 305.6 305.6 15 280.4 289.4 293 30 239 257 251.6 45 131 136.4 134.6 60 125.6 131 129.2 75 118.4 122 122 90 111.2 113 113 79 FREON 89.6 90.9 91.9 93.2 94.5 95.5 96.8 WT. AVG 304.1434 287.0672 237.4268 137.8652 122.5076 112.7192 104.7596 99.0788 WT. AVG 304.1434 285.6596 244.4036 132.548 127.148 119.9192 111.9596 p • TABLE 18. TEST 15A CONT. STATIC RUN IN AIR. TEMPERATURE IN DEG, TIME IN SEC . TIME SURFACE AIR 0 276.6 80.6 15 275.5 80.6 30 273.2 80.6 45 272.3 80.6 60 271 80.6 75 269.6 80.6 90 268.2 80.6 105 266.7 80.6 120 265.3 80.6 TABLE 19. TEST 16 DISCONT. RUN, BALL RarATING AT 3437 RPM. TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE CENI'ER R=. 5 FREON WT. AVG 0 303.8 305.6 305.6 69.8 304.5596 23 108.86 113 110.84 73.4 109.7301 TABLE 20. TEST 17 CONI'INUOUS STATIC RUN. TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE CENTER R=O. 5 FREON WT. AVG 0 303.08 305.6 303.8 100.4 -303.4126 15 271.4 282.2 276.8 100.9 273.7652 30 244.4 253.4 251.6 101.5 24 7. 4672 45 145.4 156.2 154.4 102 149.2268 60 129.2 132.8 131 102.4 129.9884 75 122 127.4 125.6 102.9 123.548 90 120.2 122 122 103.5 120.9596 105 118.4 118.4 118.4 104 118.4 120 116.6 118.4 116.6 104 116.6288 TABLE 21. TEST 18 CONTINUOUS STATIC RUN. TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE CENTER R=0.5 FREON WT. AVG 0 303.08 305.6 303.8 109.4 303.4126 15 275 284 278.6 109.6 276.6056 30 255.2 264.2 251.6 109.9 253.8824 45 150.8 204.8 170.6 110.1 159.7028 60 134.6 147.2 138.2 110.3 136.2632 75 127.4 131 129.2 110.5 128.1884 90 123.8 125.6 123.8 110.8 123.8288 105 122 122 122 111 122 120 120.2 122 120.2 111.2 120.2288 80 TABLE 22. TEST 19 CONTINUOUS STATIC RUN. TEMPERATURE IN DEG F, TIME IN SEC. FREON WT. AVG TIME SURFACE CENTER R=0.5 114.8 303.4126 0 303.08 305.6 303.8 15 278.6 285.8 282.2 115 280.1768 30 246.2 273.2 258.8 115.2 251.7476 45 163.4 208.4 174.2 115.5 168.5048 60 132.8 143.6 138.2 115.7 135.1652 75 125.6 131 129.2 115.9 127.148 116.1 124.5596 90 123.8 125.6 125.6 105 122 123.8 122 116.3 122.0288 120 122 122 122 116.5 122 116.6 120.2 135 120.2 120.2 120.2 TABLE 23. TEST 20 DISCONTINUOUS STATIC RUN. TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE CENTER R=0.5 FREON 0 303.08 305.6 303.8 114.8 15 273.2 284 276.8 115 30 253.4 266 258.8 115.3 45 158 204.8 177.8 115.5 60 134.6 147.2 140 115.7 75 125.6 129.2 127.4 115.9 90 122 125.6 123.8 116.1 105 120.2 122 120.2 116.3 120 118.4 118.4 118.4 116.6 WT. AVG 303.4126 274.8344 255.794 166.7876 136.994 126.3884 122.7884 120.2288 118.4 TABLE 24. TEST 21 DISCONTINUOUS STATIC RUN. TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE CENTER R=0.5 FREON 0 303.08 305.6 303.8 109.4 15 269.6 280.4 275 109.8 30 244.4 251.6 248 110.1 161.6 194 177.8 45 110.7 60 129.2 141.8 134.6 111 75 123.8 129.2 127.4 111.4 90 122 125.6 123.8 111.7 105 120.2 123.8 118.4 112. 3 120 116.6 118.4 118.4 112.6 135 114.8 116.6 116.6 113 WT. AVG 303.4126 271.9652 245.9768 168.6956 131.594 125.348 122.7884 119.5268 117.3596 115.5596 81 TABLE 25. TEST 22 DISCONTINUOUS STATIC RUN. TEMPERATURE IN DEG F, TIME IN SEC. FREON TIME SURFACE CENTER R=O. 5 100.4 0 303.08 305.6 305.6 15 260.6 267.8 264.2 101.5 30 226.4 239 237.2 102.4 45 140 168.8 152.6 103.5 60 127.4 134.6 131 105.4 106.5 75 122 123.8 122 90 118.4 120.2 118.4 107.6 107.6 105 116.6 116.6 116.6 WT. AVG 304.1434 262 .1768 230.9864 145.5764 128.9768 122.0288 118.4288 116.6 TABLE 26. TEST 23 DISCONT. RUN, BALL RarATING AT 3437 RPM. TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE CENI'ER R=. 5 FREON WT. AVG 0 303.08 305.6 305.6 100.4 304.1434 15 154.04 154.4 154.4 101.3 154.1919 30 102.2 104 104 102.2 102.9596 TABLE 27. TEST 24 DISCONT. RUN, BALL ROTATING AT 3437 RPM. TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE CENI'ER R=.S FREON WT. AVG 0 303.08 305.6 305.6 100.4 304.1434 17 154.4 159.8 156.2 101.3 155.2172 32 110.84 111.2 111.2 102.2 110.9919 TABLE 28. TEST 25 DISCONT. RUN, BALL ROTATING AT 3437 RPM. TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE CENTER R=. 5 FREON WT. AVG 0 303.08 305.6 305.6 69.8 304.1434 6 195.8 201.2 197.6 70.52 196.6172 11 126.32 127.04 127.04 71.24 126.6238 17 96.26 96.8 96.8 71.96 96.48788 22 84.56 84.74 84.56 72.68 84.56288 27 77.36 77.18 77.36 73.4 77.35712 82 TABLE 29. TEST 26 DISCONT. RUN, BALL ROTATING AT 3437 RPM. TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE CENTER R=. 5 FREON WT. AVG 0 303.08 305.6 305.6 69.8 304.1434 7 183.74 188.42 185 70.7 184.3264 14 118.04 118.4 118.4 71.6 118.1919 21 89.96 89.96 90.14 72.5 90.03308 28 78.08 77.9 78.26 73.4 78.1502 TABLE 30. TEST 27 DISCONT. RUN, BALL ROTATING AT 3437 RPM. TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE CENTER R=. 5 FREON WT. AVG 0 303.08 305.6 305.6 109.4 304.1434 7 283.46 286.16 284.18 109.4 283.7955 14.4 239.72 242.6 239.54 109.4 239.693 21.4 173.84 174.74 174.92 109.4 174.2928 27.9 133.16 133.7 133.52 109.4 133.3148 34.1 114.62 115.34 115.7 109.4 115.07 TABLE 31. TEST 28 DISCONT. RUN, BALL ROTATING AT 3437 RPM. TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE CENTER R=. 5 FREON wr. AVG 0 303.08 305.6 305.6 114.8 304.1434 6.8 288.14 293 293.72 114.8 290.4832 13 260.96 265.82 259.52 114.8 260.4531 19.5 204.98 208.04 205.52 114.8 205.2482 25.5 155.12 155.84 155.48 114.8 155.2776 31.5 127.22 128.12 128.3 114.8 127.6728 37.5 116.78 116.96 116.78 114.8 116.7828- TABLE 32 . TEST 29 DISCONT. RUN, BALL ROTATING AT 7830 RPM. TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE CENTER R=. 5 FREON WT. AVG 0 303.08 305.6 305.6 109.4 304.1434 7 268.88 272.12 272.3 109.04 270.3203 14 232.52 234.86 234.86 108.68 233.5074 21 160.34 161.78 161.24 108.32 160.7284 28 123.98 124.16 124.16 107.96 124.0559 35 109.94 110.12 109.94 107.6 109.9428 83 TABLE 33. TEST 30 DISCONTI. RUN, BALL ROTATING AT 7830 RPM. TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE CENTER R= . 5 FREON WT. AVG 0 303.08 305.6 305.6 114.8 304.1434 7.5 277.88 282.92 282.92 114.26 280.0068 15.3 250.52 253.58 254.12 113.54 252.0305 22.3 208.58 210.74 209.84 113 209.1261 29.3 152.78 153.14 153.14 112.46 152.9319 35.8 120.2 122.54 122.36 111.74 121.1144 42.8 114.8 116.24 115.88 111.2 115.2615 TABLE 34. TEST 31 DISCONT. RUN, BALL ROTATING AT 7830 RPM. TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE CENTER R=. 5 FREON WT. AVG 0 303.08 305.6 305.6 69.8 304.1434 6 157.46 162.68 162.14 70.7 159.4436 12.5 99.68 102.02 101.84 71.6 100.5944 19.5 78.62 79.34 79.52 72.5 78.99692 26.5 70.88 70.88 70.88 73.4 70.88 TABLE 35. TEST 32 DISCONT. RUN, BALL ROTATING AT 9509 RPM. TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE CENTER R=. 5 FREON WT. AVG 0 303.08 305.6 305.6 114.8 304.1434 4.5 266.36 271.22 271.22 114.26 268.4109 8.5 241.52 246.02 246.02 113.54 243.419 13 211.82 212.9 212.9 113 212.2757 17.5 164.3 163.58 163.58 112.46 163.9961 21.5 131.18 131.72 131.72 111.74 131.4078 25.5 124.16 124.7 124.88 111.2 124.4609 29.5 118.58 118.94 119.12 110.66 118.805 33.5 115.16 115.34 115.34 109.94 115.2359 37.5 111.02 110.48 110.48 109.4 110.7921 TABLE 36. TEST 33 DISCONT. RUN, BALL ROI'ATING AT 9509 RPM. TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE CENTER R=. 5 FREON WT. AVG 0 303.08 305.6 305.6 109.4 304.1434 4.5 288.86 290.3 290.66 108.5 289.6138 8.5 263.48 264.02 266 107.6 264.5117 13.5 190.4 190.94 190.94 106.7 190.6278 18 136.04 136.04 136.04 105.8 136.04 22.5 114.62 114.62 114.62 104.9 114.62 26.5 104 104.18 104.18 104 104.0759 31 102.56 102.56 102.56 103.1 102.56 35 102.2 102.2 102.2 102.2 102.2 84 TABLE 37. TEST 34 DISCONT. RUN, BALL ROTATING 9509 RPM. TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE CENTER R=.5 FREON WT. AVG 0 303.08 305.6 305.6 69.8 304.1434 5 183.74 185.72 185.72 70.34 184.5755 9 132.44 132.26 132.26 71.06 132.3640 13.5 102.02 102.02 102.02 71.6 102.02 18 85.64 85.82 85.82 72.14 85.71596 22 77.36 77.54 77.54 72.86 77.43596 26 75.38 75.38 75.38 73.4 75.38 TABLE 38. TEST 35 DISCONT. RUN, BALL ROTATING IN AIR AT 9509 RPM. TEMP. IN DEG F, TIME IN SEC. TIME SURFACE AMB. 0 300.2 75.2 2 292.1 75.2 4 286.7 75.2 6 281.3 75.2 8 275.72 75.2 10 269.78 75.2 12 265.64 75.2 14 259.16 75.2 TABLE 39. TEST 36 DISCONT. RUN, BALL ROTATING IN AIR AT 7830 RPM. TEMP. IN DEG F, TIME IN. SEC. TIME SURFACE AMB. 0 303.08 75.2 2 294.98 75.2 4 290.12 75.2 6 285.08 75.2 8 280.58 75.2 10 277.34 75.2 12 274.64 75.2 14 270.5 75.2 TABLE 40. TEST 37 DISCO~IT. RUN, BALL ROTATING IN AIR AT 3437 RPM. TEMP. IN DEG F, TIME IN SEC. TIME SURFACE AMB. 0 303.08 75.2 2 295.16 75.2 4 292.1 75.2 6 287.78 75.2 8 285.26 75.2 10 282.02 75.2 12 278.78 75.2 14 277.16 75.2 85 TABLE 41. TEST 38 CONTINUOUS STATIC RUN. TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE FREON 0 300.92 100.4 2 298.4 100.9 4 296.24 101.3 6 294.26 101.8 8 292.1 102.4 10 289.4 102.9 12 287.06 103.3 14 285.62 103.8 16 282.38 104.4 18 279.68 104.9 20 275 105.3 22 272.3 105.8 24 271.04 105.8 26 268.9 105.8 28 266.9 105.8 30 265.1 105.8 32 262.4 105.8 34 256.5 105.8 36 246 105.8 38 228.2 105.8 40 212 105.8 42 199.4 105.8 44 185 105.8 46 174.2 105.8 48 167 105.8 50 159.8 105.8 52 154.4 105.8 54 149 105.8 56 145.4 105.8 58 141.8 105.8 60 140 105.8 62 136.4 105.8 64 135.5 105.8 66 132.8 105.8 68 131 105.8 70 129.2 105.8 72 127.4 105.8 74 127.4 105.8 76 126.7 105.8 78 126 105.8 80 124.9 105.8 82 124 105.8 84 123.4 105.8 86 122.9 105.8 88 122.2 105.8 86 TABLE 42. TEST 39 DISCONTINUOUS STATIC RUN. TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE FREON 0 303.08 100.4 15 280.4 100.9 30 264.2 101.3 45 183.2 101.8 60 141.8 102.2 75 127.4 102.7 90 120.2 103.1 105 114.8 103.6 120 109.4 104 135 106.7 104.5 150 105.8 104.9 TABLE 43. TEST 40 DISCONT. RUN, BALL ROI'ATING AT 3437 RPM. TEMPERATURE IN DEG F, TIME IN SEC. TIME SURFACE FREON 0 303.08 100.4 5 244.4 100.94 10 212 101.66 15 149 102.2 87 APPENDIX C LIST OF FIGURES Note: The experimental data obtained at the rotational speed of 9509 RPM with the six pin connector was distorted by some heating during testing. A shift in the thermocouple's reference point is believed to be caused by the difference in material in the six pin connector, thus any temperature change in the connector during testing was not accounted for. The distortion in the ouput signal can not be compensated for because it depends on the temperature of the shaft instead of the temperature of the ambient. No calibration curve can be determined since the friction created by the bearings on the shaft while the ball was rotating relies on time, the ball's temperature and the rate of heat traveling up the shaft from the bearing. 88 350.-------~--------~----------------~ ••••••••••• .. .. .. ·:· ••••••••••••••• .. .. ... .. .. ... •• : • • • • • • • • • • • ••• 0 ••••••••••• ·:· 150 •••• 0 • 0 •• . . ... ... ... ... .. ... .. :· ~ . ••••••••••••••••••••••• ••••••••••• ... . .... . ... . ... ... . .. . ... . ... .. .. .. . ... . 0 ••••••••• ·:· 0. • • ... • • o 20 Figure 16. • • o o • • 0 0 •••• •••••••••••• •,, o, 40 TIME CSec> o o o o o o o,, .. . ... .. . ... .. .. .. .. . ... .. .. .. . ... .. .. . ~ • : .. 1 • • • • •••••••••••• ' ••• o , •,, o • o • o so Test 1, Tfreon=73.2 F 89 • •••••••• • o,, • 0 o • • •, • • • 0 • • eo 350~----------------------------------------~ :3()0 ................................................................. . • • ... • • :· • • • • • •••••• 0 ••• ... .. . .... . ............... ·.· 200 0 I 0 o o 0 o 150 ························· o o o o 0 0 0 ••••••• ~ .. ... • ... .. .. . ... ... . .... . o: .. .. .. ... .. ... .. .. .. . • • • • ••••••••••• o:o o o 0 o o .. . ... .. •• 0 •••••••••• .. . ... .. . .... .. .. .. .. ... . ... """ 0 0 0 o o o o o o ~ 0., • • • • • • • • • • • • • • •• 0 0 0 o o 0 0 0 o 0 0 o 0 o o 0 0 •••••• •••••• 0 0. 100·~~rrTT~~~~~~~~~~~~~~~~~~ 0 20 40 so TIME <Sec> Figure 17. Test 2, Tfreon=72.0 F 90 eo 350~----------------------------------------~ ••••••••••••• • 150 • 0 • 0 •••••••••••• • • • • • 0 0 0 • . ... . ... . ... . ... . :· ••••••••••••••• ... .. ... .... .. ... ... . ... ·:·. 0 ••••••••••••• ••••••••••••• ~ .. 0 .. ... .. ... ... ... .. .. ·:· ••••••••• ••••••••••• .. "'' ••••• 0 ... . .... .. ... .. . ... . 0.: ............... . .. .. ... .. ... .. .. ... .. ••••• ••••••••••••• .. . ... . ... ... .. .. 0 0 ••••••••• ~ •••••••••••••• , ••• 0 0 • •••••••••••• 100~~rrTT~~~~~~~~~~~~~~~~~~ 0 20 Figure 18. 40 TIME <S.c> so eo Tests 3C,3S,3R=0.5, Tfreon=72.0 F 91 350~----------------------------------------~ :3()() . . ..............................•................•................ • • • • • • • • • • • • • • • ••• . ... ... .. ... ... . ... . .. • • • • • • • • • • ••••••••••••••• •••• 0 •••••••• • ••• • • 150 • • • • • • • • • • • • • • • • • • • • 0 • • ' •••• ••• • 0 • "· . . ... . ... .. .. .. .. ... .. ••• •••• 0 •••••••••• •••••••••• 0. ' •••••••••• 0 0 •••• 0.: ...•.••.....•••. . . . . . . . . . . . . . . . . . . . . . ' •••• 0 •• 100~~~~~~~~~~~~~~~~~~~~~~ o m ~ ~ TIME (Sec:> Figure 19. Test 4, Tfreon=86.4 F 92 ~· 350~----------------------------------------~ 300 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • -*• • 150 • • 0 ••••••••••• ••••••••••••• 0 ••• •••••••• . •••••• 0 0 0. 0 ••••••••• • 0. • 0 .. .. ... .. ·:· 0 0 ••••••••••••• ••••••••••• 0 ••• ' •••••••••••••••• .. ... .. : •••••• 0 ••••••• 0 • .. . ..... 100~~--~~~~~~~~~~~~~~~~~~~ 0 20 Figure 20. 40 TIME <Sec> so Test 5, Tfreon=84.2 F 93 eo 350~----------------------------------------~ 300 •••••• 0 •••••••• ·> •••••••••••••• .. .. ·:· ••••••••• 0 ••• 0.: ............... . .... . ... .. .. .. ... .. . ... . ... 150 ························ 0 ••••••• .. . ""'. 0 ••••••••••••• .. .. .. .. , •••••••••••••••• 100~~~~~~~~~~~--~~~~~--~~~~ 0 20 Figure 21. 40 TIME <Sec> so Test 6, Tfreon=70.0 F 94 80 350,-----------------------------------------~ :3()() . . .............................................................. . o . .. o :· 0 0 I 0 0 o o o o o 0 0 o o ~ o I • • • • • • • • • • • • • ·:· ••••••••••••••• o 0 0 0 0 o o ~ .... . ••••••• 150 0 ••••••• ·:- • ... ... .. . ... .. . ... .. .. . ... ... ... . ... .. 0 ........................ . .. . o 0 0 0 0 0 o 0 o o o 0 o 0 0 0 o 0 0 0 0 0 0 0 0 o 0 I 0 o ..... .. .. . ... .. . ... . .. .. .. . ... .. .. .. .. . .. ~ 0 0 0 I : •••••• 0 ••••••••• I 0 o 0 o o 0 0 0 0 0 0 0 o 0 0 0 0 I 0 0 0 o 0 0 o 0 o o 10Q~~~~~~~rrrr~TTTTTT~~~~~~~~ 0 20 Figure 22. 40 TIME <Sec> so Test 7, Tfreon=70.0 F 95 80 350,---------~--------~------~--------~ 300 0 ••••• 0 .. • • • • • • • • :· •••• 0 •••••••••• ... . ... ... .. . ... .. • • • ••••••••••••••• 150 o o o o o o o o o o o o o o o :· .. ... ... .. .. ... .. .. .. ·:· o,• : . ... •••••••••••••••• .. ... ... .. . ... . •••••••• 0 ••• 0 •• ••••••••••••••• o o o o o o o o, 20 Figure 23. o, 0 o o o . ... .. .. . ~ •••••••••••••••• .. .. ... .. .. . ... .. ~ •• 0 ~ •• 0 ••••••••••••• 0 • 0 •••••••••• .. .. ·:· 0 •••••••• ... .. ... .. .. ... . o o ,, ... .. . .... .. .... .. .. .. .. .. .. .. .. ... . o o,,, 40 TIME CS.c> o 0 o, ••• o o o 0.: ............... . o o ... .. . ... .. ... .. .. . .. 1,,, 0 0 0 , 0 so Test 8, Tfreon=70.0 F 96 o o 0 ,, 0 , o eo 350~----------------------------------------~ 300 •••••• 0 •••••••• ·> •••• 0 •••••• 0. 0 ... ·:· ••••••••••••••• ... .. .. ... .. .. 150 ........................ . • o o o o o o .... 'It' o o • o o o o o o o o o o o o .. . ... .. . ... ... ... ... : •••••••••••• ' ••• 1 • • o • • o • • • o • • o o • • 100~~~~~~~~~~~~~~~~~~~~~~ 0 20 40 80 TIM£ CSec> Figure 24. Test 9, Tfreon=70.0 F 97 eo 350,---------~----------------------------~ • .. :· ••••••••••••••• .. .. .. ~ ••• ' •• 0 •• 0 •••••• .. .. .. ... ... .. ••••••••••• 150 ........................... . • • • • ... .. ·:· .. .. .. . ... .. ... . ... . ... .. ... .. .. . ~ •••••••••••••••• . ... . •• 0 •••••••••••• • • 0 • ••••••••••• . .. .. ... ... .. .. .. ... .. : •••••••••••••••• , 0 ••••••••••• 0 ••• 100t~~~~~~rrrr~~TT~~~~~~~~~~ 0 20 Figure 25. 40 TIME <Sec> so Test 10, Tfreon=80.6 F 98 80 350~------------------------------~--------~ •• 150 • • • • • • • • • • • • 0 . 0 ••• 0 •••• .. ·:· •••••• 0 •••••••• .. . ... .. ... . ... . •••••••••••••••• 0. 0 ... . . . . . . . . . . . . . . . . . . . . ... . ... ... .. . ... ... : . , •• 0 ••• 0 ••••••••• •••••••••••••••• 100~~~~~~~~~~~~~~~~~~~~~~~ 0 20 Figure 26. 40 TIME <Sec:> so Test 11, Tfreon=80.6 F 99 eo 350,-----------------------------------------~ .. . o :· o ............... ·>. 0 o 0 • 0 ..... .. .. ... .. .. ... . .. .. . ... .. . ... ... .. .. o 0 o 0 o ~ o 0 o • 0 0 •••••••• ·:· 0 •••••••••••••• o o o o 150 ........................... . 0 I I o o o o o '1.' o • 0 o o o 0 o o o 0 o 0 o I o o o o o 0 o 0 o 0 • . ... .. ... ... .. ... .. . ... .. . ... .. .. ... ... . ~ o 0 0 0 : ••••••••• 0 •••• 0. . o o • • 1 0 o 0 o 0 o 0 o 0 o 0 o 0 • o o o o o 0 o o o • 10Q~~~~~~TT~~~~~rr~~TT~~~~~~ 0 20 40 so TIME <Sec> Figure 27. Test 12, Tfreon=82.4 F 100 eo 350------------------------------------------~ . . •••••••• 0 •••••••••••••••••••••••••••••••••••••••••••••••••••••• • ••••••••••••••• 150 ••• 0 .. .. . ... .. . ... .. .. ... ·:- •• 0 • • • • • • • •••••••••••• •••••••••••••••••••••••••• 0 •• ~ .. . ... . ... ... ... . .. • . .. .. .. .. ·:· , . • 0 0 • ' • 0 •••••••• ••••••••••••••• ••••••••••••••• .. .. ... ... .. ... .. ... .. .. .. .. ... ... .. ... . 0 ~ • • : 0 ••••••••••••••• , 0 ••••••••••••••• • • • • • • • • • • • • • • 100~~~~~~~~rrrr~~~TTTT~~~~~~ 0 20 Figure 28. 40 TIME <Sec> so Test 13, Tfreon=89.6 F 101 eo 350~------~--------------------------------~ 0 150 • 0 • 0 • 0 • 010 • ' 0 0 0 0 o 0 0 0 .. ... . ... ... ... .. .. .. o:o 0 0 0 0 0 0 o o 0 o o o 0 0 0 ••••••••••••••••••••••••••• ... .. .. ... .. o:o . "'' 0 0 0 ••• o 0 0 0 o o o o •••• o 0 0 o o o o: .. ••••• .. . ... ... .. . ... .. .. , o o 0 o o o o o o o o o o o o o •••••••••••••••• 100~~~~TT~~~~~TT~~~~~~~~~~~ 0 20 Figure 29. 40 TIME <Sec:> so Test 14, Tfreon=89.6 F 102 eo 350~----------------------------~--------~ . :3()() . • . .............................................................. . • • • •••• 0 - 0 o 0 • • • 0 •'• 0 •••••••••• 0 0 o 0 o •••••• 0 o 0 o o o 0 •••••••••••••• "· ·:· ••••••••••••••• ·:· o o "'o' .. .. . ... . ... ... .. ... . 0 o o o o o o o o o o o o o o 0 .. .. ... . ... .. . ••••••••••••• 0 0' ••••••••••••••• 0 o 0 o o o o o o o o o o o . ... ... ... ... . ... 0 ••••• 0 •••••••• 0 : •••••••••••••••• I 0 ... o o o o 0 0 0 0 0 0 0 o I o o 1001 ~~~~~~~~~~~~~~~~~~~~~~ 0 20 Figure 30. 40 TIME CSec> so Test 15, Tfreon=89.6 F 103 eo 350~--------------------------------------~ :3()0- ............... ·:· ............... : ................ : ............... . - . . . G: 250- ................ ;................ ~ ................ ; ............... . i I 200- ················:·················:················:················ . . . ... ... ... ... ... .. .. .. ... .. .. .. ... ... .. .. .. ... ... ... ... 150- ················:················:················:················ . .. ... ... . . . . . .. ... ... . .. . .. . . .. . .. . ... ... ... . ... ... ... . . . 100~~~~~~~.·~~~~~~.·~~~~~~;~~~~~~ 0 20 Figure 31. 40 TIM£ CSec> so Test 15A, Tamb=80.6 F 104 eo 350~----------------------------------------~ ~-:y····· ···r·· ··· 1· ··· .. ... ... . .. ,. · ·· · .. ... . ... .. . . ... .. .. G: 250- ................ ;................ ~· ............... ; ............... . I i . 200- .... . . . . . . . . . . ·=·. ...... 150- ..... . 0 0 o o o 0 0 o .. .. ... .. ... .. .. ... . o,o 0 0 o o 0 o 0 o •••••••• 0 0 o 0 o 0 o o .. . ... .. .. ... ... . ... . ·:· '\o' ••••••••••••••• 0 0 o 0 o 0 o 0 0 0 o o 0 0 o . : ... . ... . ... .. .. ... .. I •••• 0 •••• 0 •••• '. 0 0 o 0 o 0 0 0 0 o o I 0 o o o . 100~~~~~.~~.~~~~~~~.~~~~~.~r?~~~~ 0 20 Figure 32. 40 TIME (Sec> 80 Test 16, Tfreon=69.8 F 105 80 350~--------------------------------------~ 300 0 0 0 o 0 0 o 0 o 0 0 o 0 o o o'o 0 o 0 0 o o o o I o o o 0 o o ,i o o 0 o 0 o o 0 0 o o 0 0 0 0 o \ o o o 0 o 0 0 o 0 o o o o o 0 0 . ·:· ............... : ............... . .. ... .. .. .. . 150 •••••••••• 0 . • • • • • , •• 0 •••••••• 0 . ........ 0 1001~~~~~~~~~~~~~~~~~~~~~~ 0 20 40 60 TIME <Sec> Figure 33. Test 17, Tfreon=100.4 F 106 eo 350~--------------------------------------~ . 300 . •••••••••••••••••••••••••••••••• • • • • • • • • • • • • • • • •'• •••• 0 0 - . • 0 0 •••••••••••••••••••••••••••••• ••••••••••••••••• . . . . . . . . . . . . . . . ·:· ............. . . . ·:· 0 ••••••••• ••••••••••••• 0 ' •••••••••••••••• 0: ...•......•..... .. . . 150 ........................................ 10Q~~~~~~~~rrrrTTTTTT~~~~~~~~ 0 20 Figure 34. 40 TIME <Sec:> so Test 18, Tfreon=109.4 F 107 eo 350~--------~--------~------~---------, .. . 300 •••••••• 0 . .. . .. .. ... •••••• 0. 0 ... .. ... .. . ... .. .. . .. . ... ... .............................. •••••• ·:· ••••••• o 0 o o 0 o o ~ o o f o o 0 o o o 0 0 o I o 0 o 0 ••••••••••••• 0 ••••••••••••••• . ••••• 0 • 0 0 0 o o o o o 0 o o 0 0 0 ••••••••••••• •••••••••••••••• : •• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , ••••••••••• . o 0 I ... .. ... . ... . ' ••• ~ . ' .. . ... . ... .. ••••••••••••••• ... . ... .. ... ... . ... .. ... ... ........................... 0 •••• 100~~~~~~~~~~~~rrrr~~~~~~~~ 0 ~ ~ ~ TIME <Sec> Figure 35. Test 19, Tfreon=114.8 F 108 ~ 350~------------------~------~--------~ ... ·, 300 . . . . . . . . . .. .:· . . . . . . . . . . . . . .. : . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . .. . . ... ... . .. ... ... . . ... ... ... ....---... .. .. ... .. .. ... ... . ... ... .. . ... ... .. .. ... ... .. .. .. ... .. ... ~ • • • • • • • • • • • • • • • • • ;. 150 , , 0 o o o, o, o o o o o 0 . '•' • • • 0 • ••••••••••••••• o, o, o o o o o o o o o o o ~ • . • 0 ••••••• •••• .,, • o o 0 0 • 0 ••• ~ • • • • 0 ••• 0 • • • • • • • 0 •••• 0 •••••• : •••••••••••••••• o o o o 1 • o o o o o o o • o o • • o o • • • • • • • • 100~~~~~~~rrrrrr~~TTTTTT~~~~,~ 0 20 Figure 36. 40 TIME CSec> so Test 20, Tfreon=ll4.8 F 109 eo 350------------------------------~---------. . 300 . • • • • • • • • • • • • • • • • • • •• • ' •••• 0 ••• 0 •• .. . ... ... ... : . •••••••••••••• 0 • .. ... ... • • • • • • • • • • 0 •••• ·:· •••••••• •••••• .. .. .. . ... .. .. .. ~ •••••••••••••••• . ... ••••••••••••••• 150 0 0 I 0 o o o 0 0 o 0 0 0 0 0 .. ... .. .. ... ... ... .. .. ... .. . ... .. .. . ... . ·:· o :. ••••••••••••••• 0 0 0 o o o 0 0 o o o o 0 o o ·:· . ... .. ... ... ... .. ... ~ 0 0 0 •••• o 0 o o 0 0 ••• o 0 0 0 0 •• I o 0 o •• 0 o .. .. .. ... .. .. ... .. .. ... ... .. ... .... .. . ~ •• ~ 0 .. ... .. . : .. ... .. .. . ... . .. .... . ~ 0 ••••••••••••• ••••••••••••••• ••••••••• 0 •••••• 0 O 0 0 O 0 O 0 O O 0 O 0 0 0 0 100~~~~~~r·rT~~~~~·~~~~~~~rr~~~ 0 20 Figure 37. 40 TIME <Sec> so Test 21, Tfreon=109.4 F 110 eo 350~----------------------------------------~ . . 300 0 . o o I o o o o 0 o o o o 0 0 00o o o 1 0 1 0 0 0 0 0 o 0 0 0 0 o 0 °o 0 0 o ' . o o o o o 0 o o 0 o o o ... o o 0 o o o o o o o o o o o o. o o 0 o o 0 o o o o o 0 o o o o o o 0 o o 0 0 0 0 o I 0 , o o I o 0 0 o o o 0 0 o t 0 0 o o I o 0 o o o o o o o 0 o o o o \ ............... ·:·. ............... ·:·. ............... .: ............... . . . .... .. .. . . . .. . ... .. ... . .. .. ... ... . ... ... . .. .. . . . 200 150 • • • • • • • • • • 0 ••••••• 0 •• 0 ••••••••• 0 ............ 0 ••• 0 •• , •••••••••••••••• 100~~~~~~~~~~~~~~~~~~~~~~ 0 20 Figure 38. 40 TIME CSec> so Test 22, Tfreon=l00.4 F 111 eo 350~----------------------------------------~ 300 ••••••••• ,•, •••••• 0 •••••••• •'• ••••••••••••••• ' ••••••••••••• 0 •• . . . . . . . . . . . . . . . ·:· ............... ·:· ............... : ............... . .. ... ... .. .. . .. ... .. ... .. ... . . ... .. .. .. ... .. ... ... . .. .. ... .. .. . . ... . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . .' ......... ' ..... . ~~~rrTT~~~~~TT~~~~~TT~~~~TT~ 0 20 40 so TIME CS•cl Figure 39. Test 23, Tfreon=100.4 F 112 eo 350--------------------------------------------~ . O 0 0 0 0 o . G: 250 o 0 o o 0 o o o 0 0 0 o o o o 0 6 I~········· 150 • • • • • • • • • 0 • • • • ... .. ... ... ... . ... .. ... .. ... . ... .. ... ... .. ... . ... ... .. .. ... . .. . •:• 0: o ·:· o 0 o o 0 0 o 0 0 o 0 o o o 0 0 o o o o o 0 o o 0 0 o o o 0 ~ . ... ... . ... . ... . ... . .. o ~ o 0 0 0 o o 0 o o o 0 0 0 I o ••••••••••••• 0 0 •••••• : •••••••••••••••• .. . ~ 0 o o o o o 0 o 0 o 0 0 o 0 0 o o 0 o 0 o o o o 0 o 0 .. .. ... .. . o ·:· .. .. .. .. .. ... . ... .. ... ... ... : .. .. ... . o 0 o o o o 0 0 o 0 0 0 0 I o .. .. .. .. .. ... . ... . .. . ... ... . .. . .. •••••••••••••• •••••••• 0 . ... . ... . ... .. ... ... .. .. . ... ... ... .. .. .. .. .. ... ~ ·: ••••••• ~ o 0 o o o •••••••••••••••• ••••• 0 •• 0 •• 0 •••• .. .. ... ... . .. 100~~~~~~~~~~rrTT·~~rrTT~,·~rrTT~~rl 0 20 Figure 40. 40 TIM£ <Sec> 60 Test 24, Tfreon=100.4 F 113 eo 350~--------------------------------------~ ~ 250- .. i 0 o o o 0 o o o o 0 0 0 - i ~~. ••• ' •••••• 150- ..... . • • • • • • • o .. .. ... ... .. ... ... .. .. o: o ·:· ... . ... . ... ... . ... . '•' 0 o o 0 •••• o 0 o o o o o o •••••• o 0 o o o ••• ~ .. .. o .. ·:· o o 0 o o 0 o o 0 0 o 0 0 o ••••••••••••••• .. ~ o o • o • • o • • • • • • • • . '' o • o o • • o • o • • • • • • ~ . ... .. . ... . 0 0 I o 0 0 : •• 0 •••••••••••• 0 • • • • . ... .. ... .. ... .. ... .. .. ... ... . 'I • o o 0 o o o o o o o o o 0 o o o o • o • • . 100~~~~~rT~.~~rT~~~~.~~~~~.~rT~~~~ 0 20 Figure 41. 40 TIME CSec> so Test 25, Tfreon=69.8 F 114 eo 350~----------------------------~---------, 300 0 O 0 0 0 0 o 0 0 0 0 o 0 o o . ·:· ... ... ... ... .. o o 0 o o o o 0 o 0 o o o o o 0 0 0 O 0 O • 0 0 O O O O 0 0 0 0 •••••••• 0 :· . ... . ... .. ... ... . ·:· . o o 0 o 0 0 o o o 0 0 o 0 0 0 0 . ... .. . .. . ... . ... . .. . .. . ... . : 0 0 o 0 0 0 o 0 o 0 o 0 o o o ••••••••••••••• ... ... .. . .. . ... . ... .. ... ... ... .. .. . ... .. ~ o o 0 0 0 o 0 0 0 o o I 0 0 0 0 .. .. ... . ... .. . o 0 0 o o o 0 I o ~ o o 0 0 0 0 o o o •••••• 0 ••••••••• ; .. ... . ... .. . ... . ... . ... .. 0 o 0 o I o 0 0 o o o o o o . ·:· ••••••••••••••• . ... .. .. ... ... ... ... . ... ... . : ... .... ... .. . . 150 .. ... .. .. ... .. .. .. .. .. .. . ... . ... ... ... .. .. ... . . ... ... ... ... ... .. 10Q~~~~~~~~~TT~~~~~TT~~~~~~ eo 0 40 so 20 • • • • • • • • • • • • • • • • : •••••••••••• 0 ••• ~ •• 0 0 •••••••••••• ; •••••••••••••••• TIME <Sec> Figure 42. Test 26, Tfreon=69.8 F 115 350~------------------------------~--------~ . 300 . ••••••••••••••••••••••••••••••••••••• 0 o 0 .. . .. o :· 0 0 0 0 o o o 0 0 0 o o o o o o ... . ... 150 .. .. . ... ... • • • • • • • • • • • • • • • ·:· o o o o o o o o o o o o o o o o . 0 o ~ . ... .. ... . ... 0 0 o o 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . o "o 0 0 0 0 0 0 0 0 o o .. .. ... ••••••••••••••• . o o o o o o o o o o o o o o o .. ... ... ... .. ... .. ·:· .. . 'lo' ••••••••••••••• • o o o • • o o o o • o o • • .. .. ... .. . ... .. ... .. ... .. .. ... . ... ... ... . ~ I : 1 o o o o o o . o 0 0 t •••• 0. 0 ••••••••• o • • • 0 o • • I • 0 • 0 • I • • o • • • 100~-r~~TT~~~~~~~~~~~~~~~~~ 0 20 40 so TIME (Sec> Figure 43. Test 27, Tfreon=109.4 F 116 eo 350~----------------------------------------~ . o o 0 o 0 o 0 0 o o o o 0 oOo . ... . ... ... . .... .. • • • • :· . o o o o 0 o o o o o 0 o o o o ••••••••••••••• ••••••••••••••••• 150 0 •• 0 •••••••••• • o ~ o o o 0 0 o I 0 o 0 0 o 0 •••••••••••••• .. ... . ... .. ... ... ... . ... . ... .. ... .. .. ... . ·:· ............. 0 o 0 • ••••••••••••••• 0 0 ••••••••••••• . .. .. ... . ... .. .. .. ... .. . ... o o 0 o o 0 o o o I o o o o 0 o ~ •••••••••••••••• : •••••••••••••••• .. ... . ... . ... .. .. •••••••••••••••• ' 100~~~~~~~~rrrr~TTTTTTTT~~~~~~ 0 20 Figure 44. 40 TIME CSec> so Test 28, Tfreon=ll4.8 F 117 80 350~------------------~--------~---------. . 300 . G: 250 0. 0 ·:· ••••••••••••• O o 0 0 :· 0 0 0 0 0 0 0 0 0 0 0 0 I II 2IJ() .. .. .. ... ... ... .. ... .. . ... .. . ... .. .. •••••••••••• ............ . 0 o 0 0 o . ... . ... ... .. .. . ... .. 0. :· .. .. . ... .. ... ... .. .. ... ... .. 0 o 0 o o I 0 0 o 0 ~ • • • • • • • • • • ·:· .. .. 0 •••• 0 ••• 0 •••••• o 0 0 0 o o 0 0 0 0 0 o 0 0 0 ••••••••••••••• .. ... ... . ... 150 . . ... .. . ... ... .. ... •••••••••••••••• : ••••••••••••••• 0 . ... .. ~ •••••••••••••••• .. ... . ... ... . . . : •• 0 ~ 0 0 0 0 : ••• 0 •••••••••••• ; •••••••••••••••• ... . ... ... ... . ... ... .. .. . ... . ... .. ... .. . ... .. . ... .. ... .. ... . .. . ... .. ... . ... ... 0 ••••••••••••• 0 o 0 o 0 0 o o 0 0 o .. ~~~~~~~·~~~~~~-~~~~TT~·~~rr~~ 0 20 Figure 45. 40 TIME <Sec> so Test 29, Tfreon=l09.4 F 118 eo 350~--------------------~--------~----------, . 300 . •••••••••••••••••••••••••• • • • • • 0 ••••••••• 0 •• 0 ................... ·> ............... ·:· ........... .. . ... .. ... ... ... . .. 150 ........................ . . ... .. .. ... .. .. • • • • • • • .. ... . ... 0 0 0 •• . ••••• . ... .. ... : 0 ••••••••••• •••••••••••••••• .. .. ... ... . • • • • • 0 0 0 •••• 0 •• . , •••••••••••••••• 100~~~~~~~~~~~~~~~~~~~~rr~ 0 20 40 80 TIME <S.c> Figure 46. Test 30, Tfreon=ll4.8 F 119 eo 350~--------------------~--------~----------, - . ~\oOoo c:: 250- .. • • • • • OiO 0 • • • • • • . ... .. . ... ... • • :- I i ~-· 150- .... - • • • o o • o • o • o • o . • o • o • o • . ... . .. . ... .. .. .. ... . ... .. .. ·:· o o 0 o ooOI 0 • • • • • • • • • • • • • •• .. ... ~ ... ,. • • • • • ••••••••••••••• .. . ... .. . .. ·:· 0 •••••••••••• o o .. .. ... .. .. . ... . .. o o o o o o o o o o o o o o o . .. , o • ... ... ... .. .. ... ... . 0.: ....... ' ....... . .. ... .. ... ... .. ... .. . ••••••••••• .. ... . o o o o o o • o o 0000 o ~ "1 • 0 • • • • • o o o o' • • •' • • • • ••• o o • 0 ' • 0 0 ' \ 100~~~~~~~,~~~~~~,~~~~~,~~~~~~ o 20 40 so TIME <Sec> Figure 47. Test 31, Tfreon=69.8 F 120 eo 350~--------------------------------------~ . . . .................................................................. . :3()() ·~: 8250 li 1 2IJ() o o o o 0 .......... . 150 • • • • • • • • • 0 o 0 o o 0 o • • 0 ·:· ••••• . ... ... .. ... .. ... .. .. •' o o 0 o o o 0°o ••• 0 •••••••••• 0 ·:· 0 o 0 o 0 o o o o ••••••••••••••• ... .. ... .. ... .. .. ... . "'' 0 o o o o o 0 0 o o 0 0 0 0 o\ ••••••••• 0 •• 0 •• .. ... . ... . : o 0 o 0 o 0 0 o 0 o 0 o o 0 o o •••••••••••••••• .. . ••••••••••••••• . ... .. .. ' •••••••••••••••• 100~~~~~~~~--~~~~~~~~~~~~~ 0 20 Figure 48. 40 TIME <Sec> so Test 32, Tfreon=114.8 F 121 eo 350~----------------------------------------~ . • (;:250 • • • • • • . • • • • ' ••••••••••••••••••• o o o 0 o 0 o o'o o o o o o 0 o o o o o 0 o 0 0 O:o . ... . ... .. .. .. ... .. .. o 0 o 0 0 o 0 o o o o 0 0 . 0 •••••••••••••••••••••••••• 0 ••••• 0 • 0 o /'o 0 0 •:• o o o o 0 0 o o 0 0 o 0 0 0 o o o o 0 0 o 0 o o I 0 0 o , o , • o • o , o o • • • • 0' o o 0 0 0 0 I 0 o o 0 0 o o o 0 o 0 o 0 0 0 o o 0 o o 0 o 0 0 o • • • o o o o • • • • • • • • • i I~ . . . . .. o lJ5() 0 ............. , o 0 o o o , , , o , , • o , , , , o .. .. .. .. .. ... .. ... . .. 'o o: o . ... .. ... . ... .. . ... .. 1 100~~~~~~~~~~~~~~~~~~~~~~ 0 20 Figure 49. 40 TIME <Sttc> so Test 33, Tfreon=109.4 F 122 BO 350~------------------~--------~---------. I : . . :3()()- ................ ;................ ~ ................ : ............... . G: 250- . . ............ ·:· ............... ~ ................ ~ ............... . ~ I ~ ~ ... .. .. ... . . ..~ .. . ~ zoo~·············· .I .... ········ ....!.. ·········· .... ,················ 150- ..... • • • 0 •••• 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 0 •• 0 •••••• . , •• 0. 0 •• 0 ••• 0 •••• 100~~~~~~~,~.~~~~~.~~~~~.~~~~~~ o 20 Figure 50. 40 TIME <Sec> so Test 34, Tfreon=69.8 F 123 eo 350~----------------------------------------~ .. 150 0 o o o o 0 o o o I o o o o o ooo o 0 o o o 0 o o o o o 0 o o o ,., o 0 o 0 o o o 0 o o o o 0 0 0 ·:· . ... 0 0 o o 0 o 0 o o o o o o o 0 O:o 0 0 o 0 0 0 o o o o:• 0 o • • 0. 0 0. 0 •••••••••• 0 •••••••••• 0 o o 0 0 o .. ... .. ... .. ... . .. . ... .. ... . ... ... .. . 0 I 0 o 0 0 o 0 o o .. .. ... ... ... .. ... .. ... . ... .. ... ... .. ... . o o o o o o o 0 I o o 0 0 0 o 0 I o 0 o o 0 0 0 0 I 0 ° 0 '! .. .. ... ... . ... o I 0 0 0 o o o o o o 0 o o o o o o o 0 o o 0 0 0 o o 0 o o I o o o 0 o 0 I o 0 ° 0 o o I o o I .. . .. . o o o 0 0 0 . . . . . . . . . . . . . . 0 •••••• 0 0 o o 0 o o o o: 0 0 o:o I 0 0 .. ... ... . ... .. ... .. .. , •••••••••••••••• 100~~~~rr~TT~~~~~~rr~TT~~~~~rl 0 20 Figure 51. 40 TIME CSec:> Test 124 so 35, Tamb=75.2 F eo 350~--------------------------------------~ 300 l.50 • 0 •••••••••••••• • • • • • • • • • 0 •••••• •••• 0 0 ... ... ... .. . ... ... .. • ••• : •••• .. ... . .. ·:· 0 ••• 0 ••••••• ••••••••••••••• ... ... ... .. .. ••••••••• 0 .. ... . ... .. .. ... .. .. ~ • .. . ... . .. ·:· • • • • ••••••••••• ••••• . ... . ... .. .. 0 •••••• ...................... 0 0 0 •• •••••• .. .. ... .. ... . ... .. .. .. . ... .. ... .. . ... .. .. ~ • : •••• , •••••••••••••••• • • • •••••••••••• 0 •• 0 ••• 0 •••• ~~~~TT~~~~rr~~~~~rr~~~~~rr~ 0 20 Figure 52. 40 TIME <Sec> Test 125 80 36, Tamb=75.2 F 80 350~----------------------------~--------~ 300 0 o 0 o 0 0 0 0 0 0 o 0 0 0 o .. ... ... . ... o :· o 0 0 o o o o o 0 0 o o 0 o 0 .. ~ 150 • o • o • I • I • o • 0 • o • 0 • o • 0 • 0 • 0 • 0 • 0 • . ... .. ... .. .. ... .. .. .. •:• ••• I 0 o o 0 0 0 0 0 0 0 0 0 o 0 o • o • 0 • o • o • o • o • o • o • 0 • o • o • o ,• 0 0 o • .. .. . ... . .... .. .. .. ... .. . •:• ' ~ ... .. ... 0 o o 0 0 0 o I o 0 o 0 o o o 0 o 0 o o o o o o o 0 0 o 0 o o 0 ... .. .. ... . . ... . .. 0 0 .. .. ... . .. o 0 o o o o o o o o 0 o o o .. .. . o: .. .. .. ... ... •••••••••••••••• ... ... . .. ' •••••••••••••••• 100~~~~~~~~~~~~~~~~~~~~~~ 0 20 Figure 53. 40 TIME <Sec> Test 126 so 37, Tamb=75.2 F eo 350~--------------------------~--------. . 300 0 •••••••••••• c .. . ·:· . •••••• 0 •••••• ••••••••••••••• 0 ., •••••••••••• 0 c ... .. ... .. ... . ... ............... ·> ............. . ... . ... ... .. ... .. . .. 0 0 •••••••••••• ~ cc :. 150 •• . C· : 0 •••••••••••••• 0 . :·. .. Q .cc .. ... ... ... . ... ... .. .:. ... . ... ... . 0. 0. ••• 0 ••••• 0 •••••• .. ... . ... ... ... .. :. 0 ••••••• 0 ••• 0 •• . .. •••••••••••••• . ... . ... ... .. ·: .. .. ... . , 0 0 0 ' ••••• 0 •••• 0 ••••• .: . ... ... ... .. .. . .. 0. 0 •••••••••• ••••••• 0 ·: •••••••••••••••• ••• ' \ ., 100~~~~~~~~~~~~~~~~~~rrrrT1 0 20 Figure 54. 40 TIME <Sec:> so Test 38, Tfreon=100.4 F 127 eo 350--------------------------------~--------~ . c: 250 . 0 o 1 o 0 0 0 0 o 0 0 0 0 o ooo 0 0 0 I o 0 o o 0 0 0 0 0 0 0 o o 0 0 0 o o 0 0 0 o 0 o 0 0 o o o o 0 o 0 0 1 o 0 o 0 0 o I o 0 I o 0 o 0 o:o .. . ... ... o 0 o o 0 o o o o o 0 .. .. .. .. .. .. o 0 o 0 0 0 o 0 o o 0 . o o 0 0 • o o o o 0 0 o o 0 o 0 o 0 0 0 0 • o 0 0 0 o 0 o # o I 0 o 0 o 0 0 0 0 I o 0 o 0 0 • o o 0 0 o 0 o o o •:o 0 0 o o o o 0 o 0 o 0 0 0 o o o o 0 o o I 0 ... o o 0 0 0 0 0 0 0 o 0 0 0 0 o 0 0 0 o 0 0 0 0 0 0 o 0 0 0 o 0 0 0 0 o o 0 o o o 0 o • o 0 o o 0 I I~ 150 0 o o o o 0 0 0 I o 0 o 0 0 o 0 ... . ... .. .. ... .. .. ... 0 o: 100~~~~~~~~~~~~~~~~~~~~~~ 0 20 Figure 55. 40 TIME <Sec:> so Test 39, Tfreon=l00.4 F 128 eo 350~--------~--------~------~---------, .. 300 • r:;:250 • • • 0 0 •• o 0 0 ••••• 0 . ... . • • :· 0 ••••••• 0 •••• 0 0 0 0 o o o 0 :· o o o 0 • • • • • • • • ·:· •••• 0 •••••••••• 150 ......... .. . . ... ... . ~ •••••••••••••• 0 • o o .. .. . ... .. . 0 I I~······ .. ... .. . ... .. .. . .. . ... .. ... ... .. ... . .. . ... .. . ... .. .. . ... . ... ... ... .. . ... .. .. •• 1 0 o o 0 ••• : •••••••••• o o 0 0 0 o . .. .. ... .. . ... .. ... .. ~ I .. ... ... . ·:· o o o o 0 •••••••••• 0 •••• ' • 0 0 o o 0 0 o 0 . .. ... .. ... . ... .. .. .. : ••••••• 0 •••••••• . ... .. . ... ... .. ... .. ~ o o o o o o ; ••••••••••••• 0 •• o o I 0 o o o o 0 o ... ... .. .. . 0 ••• 0 • ~ .. ... .. . ... . .. •• 0 •••••••• . ... .. 0 •• .. ; •••••••••••••••• ... .. . ... .. . ... . .. 100~~~~~~r·~~~rr~~·~~rr~~,·~rr~~~~ 0 20 40 so TIME (Sec> Figure 56. Test 40, Tfreon=100.4 F 129 eo 10'T--------------.-.-.-.-.----------------~ • ••• •••• • • 0. ·••••• • ,• \ ••• \ . . . ·.·. ... ·.·. . ·.· . . ·.· ·.·. ·.·.· ·.· ... ·.·. ·.·. ·.· ·.· ·.·. ·.·.· •,• ............. •,• ·.· .·....· ... ·..•, ,•, . . • :0. ••· .· ... ·.·.. .·. .. .. .• •' •• ••• ••• 0 '•' I •' ' . ; . ; .; .... . .0. ·•· \ •.. '0 : • ~ o I , '• I 'I 0 •••• '•' •,• • • •,• '•' ·.· \. '•' \. . .. : . . ·.· . ·.. ..· •• •.· ,. .. ; \. , .. .. .. ~ • •'• '• • '•'. 0 • ,•, I .. '• . . ·.·. ·.·..... . . . . . . . ·.·. ... ·.·. ·.·.·. . ·.·. . ·.·..·.· ·.·. . ·.·. ·.·. ·.·.·. . . . . .... . . . ·.· ... ·.·. •.·. ·.· ... ·.·. ·.·.·. • '•' '• ; .· \ .. ; ..· ·.. . ·.· '·.· ... , .......... •.•.• 10 '• ~ ... ; .. '•' • • 'I ; • • • • • • •• • •• •,• ... . ·.· '• \ \ \ ; : •' •. ~ . ; : 10·~----~~r-~-rTT~----T--T~~~~ 101. 10 2 Tw- Ts, DEG F Figure 57. Heat Flux vs. Delta Temp. Test 1, Cont. Static Run, TR113=7 3. 2 F 130 101 ~--------------------------~~--~ . ·.· . ·.·. ·.·.· . 0 o:o 0 0 0 o:o. 0:- •• ••• •• 0 ••• •••• • . •,•. . 0 • •: : : . ·.·.·. i •, ' '•'•' ; .. ; .. .· ! '• . ·. ; ; ; .. .. ; .. ; i .· •• :. •,• ••• • , • . o,o • • • • • • • • • • ·:-. ·:· . . •'•. ,•,•, '• ! 10 ; ·.·. ·.·.· : ; .. .. i ; .. • ,o ••• •• •,• • • o,o ••• ••••• •'• ••••••• o•.• • . . ·.· .. . . •,• .. . ·.·. ·.· . 0 •,• ·.·. .... ·.·. . . . i '• ·. ! •' ~ ••• 0 i • • • • 'oo · , · . ••••• • i ,•, • • . •o•. 0 ..• .. ·. '• ~ i i •, .. ·. ·. . •. ; .. .. ; ... •' ! i : •,o ••• •••• ••••• • • . i i ,• •' i . . .... 0 OoO 10~----~--~~~~~~--~~~~~~~~ 1Qt. 1QZ 10 3 Tw- T•. DEG F Figure 58. Heat Flux vs. Delta Temp. Test 2, Cont. Static Run, TR113=72. 0 F 131 10~--------------.-.-.~.~-----~----~~~~ •• • •• 0 '• • 0 • .. • .. ·.· ... ·.·. ·.· .... • • • 0 • • • :. 0 ••• 0 • I •,• • • •,• ~ . ·.· • ,• ••• •• 0 •• •• ... .. •'• \ •• ............ ·. 10 .... . .... . .... . .. , .... •,•. •,•,•. ••• ·.· •••• ••••• 0 ~ '•,• '. . . ... '•'. •,• ·.· ·.·. •,• . ·.·. ·.·.... . . . ·.· ·.·. ·.· .. . . ·.· ... ·.·. ·.·. •,• ·.· ·.·. ·.· . ·.· ......... ,•, .. ; i .. ;' .. • • •,• • 'I • •• ••• •• ' I .. ; . ·.· ·.· \ • • 0 \. •• •••••• \·.·\. . ·.. ..· . \ ~ 0. ·.· ... ·.· \ •,• \ . ·····. '•' •,• ..· ... ·..·. .. ; . . . : . . ·.· 0. •'• I • • • I 0. ·.· •.. ·.· I \. ; ; ·.·. •,•. •,• ·.· ·.· ·.·.· '•'• • \ .... ''•' • • •• ~ . ·.. ..· . •• • ·.· ·.·. ·.·.· .• .. ,•,•, • • 0 \ • • •'• ... ,,., '· . . ............... 10L+----~--~~~~~~--~--~-T-r~~~ 1 10 10Z Tw- T•. DEG F Figure 59. Heat Flux vs. Delta Temp. Tests 3S,3C,3R=.5, Cont. Static Run, TR113=77 ,81,84 F 132 10~--------------.-.-.-.-.----------------~ . ·.·. . ·.·. . .·.·. . . ·.·. . ·.·. . ·.· ·.· ·.· ·.·. ·.·.·. . ·.·. ... •,•. •• •• • • . . ·.· ..... • • • • • • • • • 0 • •• •'• .· .. ·····. ·.· .......... •,• ·.· •,• . •,• ·.· ·.· • -~ 0 •,•. 'I ~ ••• ~ • ' :• I • ·.· ·.... ·.· ·.· ' . . : . . ·.· • •• • • '•,• \ •,•. •,• •,• '•'. .· .. ·.. ,•. 10 •• ••• ••••••• ·.· ... •,•. •,• •,•,• • ...... . •••• •.•,•. ·.· •,•,•. 0 • 0 i • ••• ••• •••• ·,·,· 0 • •' • • •• ·: • • . • • , ~ •.· • • 'I • • •,• • • •,• ... ' ..... ~ • ••• t ... \ • • .. ·: . . . . .. : . . ·.· • • 'I ... . . ·:·. ·:·. ·:· ·:· ·:·. ·:·:· • •: • • . : . . ·.· . . . ; ...: . . . ·.·. ·.· .. .. .. .. .. .. ·.· ·.·. ·.·.·. . ·.·. . . ·.· . . . . . . . .... . . . ·.·. ·.·. •,•..... ·.·. ·.·.· ~ ••• ·: . 0 ••• \ ••• ' • • ••• t ••· . ·.· ·.· ' . \ • •'• I •'• I • 10L+----~~~-T~~T---~--~~~~~ 10& 102 Tw- Ts. DEG F Figure 60. Heat Flux vs. Delta Temp. Test 4, Discont. Static Run, TR113=86.4 F 133 10~--------------.-.-.-.-.----------------~ . ·.· . ·.·. . .•,• ... •,•. ..... . ·.·. . ••• 0 •• •••• 0. ·:· ••• ·:· 10 .. .. .. .. ·. •••• .•. ••• ·.· ·.·. . . ••• ·,• ••• ·.·. ·.·.· . . ... .. ·.· .. '•' \ . . ; ..., ....... ' ... ;. • \ • •'• •· .•••• ,•,•, , \ , , ,•,, .. .. .. .. .. .. .. .. .. .. .. .. ; i ; .. .. • ' I • • ••• ................ . ·.·. . . .·.·.·. . . . . •,•. ·.·.·.·. .. ·.·. '•'. ·.· ·,· ·.·. ·.·.·. .. ·.· .... ' ... ·.· '•'. ·.·.·. 0 0 o I o 0 o o 0 o I I o 0 0 0 •• . , ,•, I ,•, I • .. ·. ' ; i i .. ; i .. ; ' . ••• ' · . · \ • . .. , .. ·.· . '•' '•,• \ . .. ·.· . , .. ... ·.·, ·.· . •,•' o • \ . ... 10"' ·.· ... .. ·.· ·.... .. , .. ·.· ... ·.· ·.· .: ...... ' • ' I • • •,• •,• .•, .·...·. •'• .· ... ·.·. \ • ,•, I ,•, 10L+----~--~~~~~----~--~~~~~ 10' 10Z Tw- Ts, DEG F Figure 61. Heat Flux vs. Delta Temp. Test 5, Reheat Static Run, TR113=84. 2 F 134 10~--------------~~...-... ~..-... ~.,-.~.~~.,~.,~.~ ............ :. . . ·.· 0 ••• '''' • • • • • . . . . . ...: .....: ... :...: .. 0 10 • • • • • • • • • 0 • • • • •: • ·: •••• ·: • • • • •: • • • • :· ·: • • • : • • •: • • :· ·: • • : • •: . ·.· • I'' :· ·: . :.:. :· . . ..... : . . .. . • • • • • • • •' ~ : • :. :· • • ••••• : 0 ••• • : • :. :. • • ••••• : • • •• ~ ~ • o • 0 .. . • • '•' . . •• -: 0 : 0 •• ·: • • : • ·: ~ • • \. \ \ \ • . • ! . :· ! . ~ • :· ~ • :: ::: : : :~: ::: ~: :·: ~: : :~: :~: :~: ~ :~: ~ : :::::: ~ : :::~ :: :j: :: : ~: ;:~: ;: ....... ·:· ... -:·. ·:·. <· ·> ·:·: .:-:· ....... : ... ·:...-~-..······: • . . . .. • • • :. • •: • • :. .: • : • :. :. • • • • • 0 : •••• ~ •• • • • . • • 0 0 : • • : : • • . . . .. • • • • : ••• 0 ~ • ••• : •••: •• • • • • : • •: • 0 • : • 0:.0 ••• ••• ••• \ ••• .. . .... ; ...: .. ·.~.,.:., . • • • • . •• : • . . • • ·: • • • • 0 0 ; •• .: • • : • •: : • :- : • •••• ~ • 0 ·: • • : • •••• : 0 • ·: • • : • ~ . • • • • \ • :. ~ • • ~ • :· ~ • 0 : • :· : • 0 •• .: • : ............... : ••••• 0 •• ~ u ~ ~ ~ ~ ~ ~ ~ ~: ~ ~ ~ ~ ;~ ~ ~ :~ ~ ~: ~ ~ :~ ;~ :n~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~i ~ ~ i~ ~ ~ ~ l 1 ..... 0. -~· ... ~-. -~·. -:· -~· ·~· ~ -~-~- ....... ~ 0 .. 0:.0 ·:·.:. :·: ·:-: . • • • • • • • • • • • • • • •• • • • • "' • • • : • • • • •: . •••••••••••••••••••••••••••••••••••• 0 ••• . : •••: • • • • • • ·: • • • • ·: • • • :· • • • • • • • • : ~ ••• •• 0 • •• : • •: . : .:.:. 0 •••••• : 0 ••• . . • ·: • • ~. : • : • :- : • •: . • : • •• : ......... : 0 • • • • • • 0 ·: • • :. : • • •: •• ·: : ••: ; • • •: . • : • :. :· ••••• : • 0 • ~ •• • : .: • : ••••••••• : ••• 0 ~ •••: • • • •• . ·: • ·: • '.:.:. ! . :· ! . ' • 10~----~~~~TT~r---~~~rT~rrrl 10~ 10 2 10~ Tw- T•. DEG F Figure 62. Heat Flux vs. Delta Temp. Test 6, Cont. Static Run, TR113=70. 0 F 135 10~----------~~~~--~--~~~~~ . ·.· . . ·.·... ·.· ... . ·.·. ·.· ·.· ·.·. . . ·.· ... ·.·. ·.·. ·.· ·.·. ·.·.·. \ 0. ·.· ... ·.· \ ; '•' ; .· ... ·:·. ·:- ..• .. ·..·. 10 • • ••• • 0 0 ., ••• 0 •,• ••••••• • • 0 0 •••• ..• .. .•. •••• •'•. • ••• ... .. •• ••• 0 •••• ; .. ! ~ ; i ·. .. ; .. ; •. .. ; .. ; ; ~ ........... •,• ·.· •,•. ·.·.· ..... .... . •,• ... ·.·. ·.·.· • . . . . . . . . 0" ..... ........ ... . ····· . . . .. . . •,•. . ·.·. . . ·.· ... ·,·. .... . . .. ; \ . .. ... •••• ; 0 •••••• .. 10 4 •,•,• i . ~ . . ... ... ·.·. ·.·. ·.· ·.· ·.· ... • •,• .. ·. ' ! \ .. ; .. .. ; ! ; ~ ·.· ·.· '. . . . : . . ·.· . ' ........ ·.· '·.· ' . •• 'I • ' '•' \ •• •••••• ·:· ·:· ·:·. -:·:· 0 ~ ; .. .. ; ~ .• .. ! • •• ~ • .. ; 10~----~~~T-~~~----~--r-T-~~~ 101. 10Z Tw- Ts, DEG F Figure 63. Heat Flux vs. Delta Temp. Test 7, Cont. Static Run, TR113=70. 0 F 136 10~--------------------------~~----~~ . ·.·. ·.· ·.·. ·.·.· '•' ••• ••• 0 00 •••• ••• 00 00 • ••• •• 0 •••• ~ . •,• ... '. \ 00 , 00 •,• 0 ......... ·.· •,•. •,•,•. ... ... ·····. ·:· • -:· 0 ·:·: , , . .. .:-:·. \,, 0 0 ••• •••• o ••• ••• •••• •• •,• • 0 • , • , ; _.• .... ·: ....·.. ·. ·:·. -:···. I ,•, ~ • I o o,o \ 'o' \ o . : ..:. i .:. \. •• ' I • ,•, • •,• \ •,• \ • . . . : . .... •,•,•. . . ·.·. ... ·.·. ·.·. ·.· ·.· •,•. ·.·.·. o •,• 0 •••• ·.·. . ·.·. . ·.·. ·.·..·.·. ·.·.·. 0 . ..... ... ' . . . ·.· ..... . ·:· \ ·:· ..... • • • I ••• ,•,, \ : • • • • '•'. 0. ~ \. ••• 00 10 ... . ·.. ..· . .... '•,• : . . ·.· ... ·.·. ·.·. ·.· ·.·. ·.·.· ·.·.· 00 • . ·.. ..· . ~ \ •,• '•,• \ ; 00 00 . ! lOL+----~~r-T-~~~-----r--r-~~~~ lOt. 10 2 Tw- Ts. DEG F Figure 64. Heat Flux vs. Delta Temp. Test 8, Reheat Static Run, 'rR113=70. 0 F 137 10~------------------------------------~ . ·.·. ·.· ·.·.· ·•·. . . . ·.·.· . . .. ·.· ... ·.·. ·.·. ·.· ·.· ' •• •••• 0. ••• •, '• •' .· 10 .. ·.· ....... '•' .... '• '•' '• •' '• •' '•' .. ·.·. '•' .......... ·:· ••••• •'•'•. . ·.·. . ·.·. ·.· ·.·. ·.·.· .. ·.·. ... ·.·. 0 0. • , •••• •'•. 0 '•' ••••••••• • • • • • • • • • •• , ••• '•' •• .. ; ·:· 1-:· ; •, •, ; •' ; ; '• '• ;' •' ; ; '• •, ; ~ •' •' ! '• ! ' •• ·.·.: ; ·.. ..· . • •: . \ .:. \. \ . : . . ·.· ... •,• ·.· ' . \ .... ' ... 0 ·'·. ;' ~ ·.· ....... ·.·. ·.· ... •,•. • . ~ ·.·.· 0 •, . .. ·: . ,•, '• ..... . ·,· ; . ,•,•, \. \. •'• 10~----~_,--~-rrrrr----~-T~~~~ 10:1. 10 1 Tw- Ts. DEG F Figure 65. Heat Flux vs. Delta Temp. Test 9, Discont. Static Run, TR113=70.0 F 138 .. 10 I .. i . ... . . . •,•. ·.· .,. . .• ... ·:· .· .. ·..·...·.·. .. .. .. .. •,• ·.· .. .. .. .. .. .. .. : ' .. i i .. ; .. ; ' ; .. ; \ •,• \ •,•,• .. .. • ; .. i .. • 'I • ' •,• '•' i • •'•! ·:·,. 10 4 ·. .. .. .. .. i .. .. ·. i .. .. i I .. ..• .... ·:· .. ·..... •'• .·. : .. \ i i i ; .. ; i i .• 10~----~--T-~~~TTT---~~-r~~~rrrl 101. 1QZ Tw- Ts, DEG F Figure 66. Heat Flux vs. Delta Temp. Test 10, Cont. Static Run, TR113=80. 6 F 139 10~----------------------------------~ •,• ... ·.·.· . ·.· ·.· ....... ·.· ... ·.· ••• ••• .. .. ••• 0 •,•. •,• •••• ••• ••• ·.· '•' '•' •••• ·.· ····· .· ....· .. ·..·. ,•, .· .. 10 . ... . ·.·. .... '•' '•'. '•' ' .. i •••••• •,•,•. '' '' o' '• 0 I • o •,• ; •,• 0 •• •••• •••• ••• ••• •••• ••••• ••• 0 0. •••• •••• •,· ••• •,•. •••••• '•' •,•,• ' • ' • •,• • '•' '•' •' ! ; ! \ ••• ·:· .• ; '. . i .. -:· . :. ·:· i .;. \ . .... . .... ....... ... . ...... . .... . . . ·.·. ·.·. •,•. ·.·.·. . ·.·. ..... • '• ; . ......... , ..., ....... ·.· .. •,• .. ·.·. • '• ~ • • •,•. 0. •••• •••• •,•. '•' .. .. ; ,•,•, ... . . . . ...... .. . ............ ; ~ •' ; .. o, • ... ''•' ', •, ; ; ~ ! .. ; • ' I • • '•' • ' ' •,• \ •,• \ • 0 •• :. '• • I '• • • • • '' • • • I ..·. ·:- ·:· ·:· .• .. ·.·.. . ·.· '•,· '. • • •,• • ' • •,• \ •,· \ • • • •,• • • '•' . .. ' ...·. ,•, \ '•' \ • '·'· 10~----,-~r-~-TTT~----~-T~-T~~ 10' 101 Tw- Ts, DEG F Figure 67. Heat Flux vs. Delta Temp. Test 11, Discont. Static Run, TR113=80.6 140 F 10~--------------------------------~ ·.· ... ·.· . . .. . . . ·.·. ·.·. ·.· ·.· . \ ........ •,• ·.·. ·.· . . '•' ...., ..... ·.· ...... ·.·.· ·:·. ·:· 10 ............ •,•. . . . ·.·. . ........ •,• ..... '•' ,•, .•. .·.·.. . ....... ·.·.· . • .. .. ... .. . ~ ... .. i •• ~ ~ ~ .. ; ! .. ' .. .• ; .. ~ ·. ·. ; . . . . . '•' ·. ; ; \. ••• 1 . ' • ; ; ·:· ·:· ·:· ·:-:· .. •' . . . .: . . ·.·. •••••• 'I ·.·. ·.· '•' . •,·. ·.· ·.· ·.·. ·.·.·. ·.·. ·.·. ·.· ...·.. •. i '•' '•,• .. •'• .. : \ ; \ i \ ; .. ; ! 10~----,_~r-~-r~~----~-T~~~~ 10' 10 3 10~ Tw- Ts, DEG F Figure 68. Heat Flux vs. Delta Temp. Test 12, Reheat Static Run, TR113=82.4 F 14] 10~--------~~~~~--~--~~~~~ . ·.· .. ·.· ... ·.· .. .. 10 •, •, '• '• •' . . .: .....: ... :...: .. :..:. : .:.:.. -:·. . ..;. . ·.·. ·.·. ·.·.· . . . ....... .... •,• '•' '•' ....... ·.· •,• ' • ' . '•'•'. ·.· .. ·.· ·.· ·.· • :0. ••• ' . : . ~ . ~ . :. . • •,. l ••• • • '•' \ •,• \0 : ...:.....: ... :. ..: .. :..:. : .:.:.. ·>. ... ·> :. ·> : ·> :- . . .. .:. . ·>. ...... • 0 •• ·,· ••• . ·:· ... •,• 0 ••• •••• ••• •••• •••••• . ·:- : ·:. :· . o ; ~ • '• • 0 ~ •, ; •, ' I ; i. ...... ' ... \. ·: • :• ~ • ; ; ; ' • I • :· ~ • ... .... ...... . ·····. 10~----~~~~-TTT~----~~~-T~~ 10~ 10 2 10 3 Tw- T•. DEG F Figure 69. Heat Flux vs. Delta Temp. Test 13, Cont. Static Run, TR113=89. 6 F 142 10 .. .. .. .• •. .. .. .. .. .. ; I ·. .. ; •. . • .. ' .. ' ' .. ' \. o 10 4 , ,o, .. .•. .. .. .• .. .. - ... .. .. . .• . .. • .. .• ; .. ; ·. o ~ o ·. ·. ; ·. • .. ~ .· I \ o '• ; ; ' .. ' ~ 10~----~--~~~~~~--~~~~~~~~ 10 .. 10Z Tw- T•, DEG F Figure 70. Heat Flux vs. Delta Temp. Test 14, Discont. Static Run, TR113=89.6 F 143 10~----------------------------------~ ·. ·. .. . ... . . .,. •.·. '•' '•' •. \ \ .. \ .. ; ... •,•,• • • • 0 ••••• .· .. ·..·... •,·, 10 '•' ·:· . . . ... •,•. ·.·. 0 •• •,•. •,•. ••• •'• •'• 10"' ·.·. • 0 •,•. 0 ••• •••••••••••••••••••• .· .. 0 •'• ••• • 'I .. .. .; ; '• '• ·: .. -:-:· . •' o •,• •:' •:• i' .:. • 0 .•. 0 ~. ' •• ·. ; •, •••••• • i '• ·. ; '• '• ~ ·. ,• • ; I' '• .. ; i \ ; I ; ; \ ; • i •• ' .•. ; •'•'• 0 ''•' \ ·.·. ·.·. ........... ·.·.· ·.·. ·.·. •,•..·.·. ·.·.· •,•. •,•. ·.· ... •,•. ·.·.· ..... •• ·. ; ........... ; ·.·. ·.·.·. • ,•, , ... ' ., ••••• •,• .. i •' ; ! 10~----~~~~-r~~----~-T~~~~ 10t. 10 2 Tw- Ts, DEG F Figure 71. Heat Flux vs. Delta Temp. Test 15, Reheat Static Run, TR113=89.6 F 144 10~----~~~~~~--------------~ ·.·. •,•. ·.· ·.· .... •, ••• ••••• 0 0 •• •••• ••• •••• ••• 0 o '•'. . .................... '•' • ''I •••••• o • • •,• '•' • '•' •,• •'•. • . ••• • 0 0 •• •.·.·. • \ .·. 0:. ·:·! •'• t. \' • 'I • • '•' 0 0. •,• •' • "o' \ •,• . : . . ·.· . . ·.· .. ·.· ... ......... ' ... '. . ., • • • 'I • • •,• •: • ....... .:i •• . . . ·.· : ..:. ; .:. '. ... ·.· . ·. . ..· . \ \' ~ \ . . . . . . : . ... i .. .: .. : ..:. '.:. \ . . . . . . . . . . . . . . . .. . . . . -....... . . . •,• \ ·:··· . . . ·.·.· .. . . . . . . . ·.· ... ·.·. ·.·. .... ·.·. •,•. ....... ·.· ....: ... :...:. ·> -:·: -:·:·. . . . . . . . .: .....: ... :...; .. :..:. : .:.:.. • o '•' \ ' • ' . '•'•' •,• 0 • •,• \ ..... . , ........... ... . •,• ., ..... •,• ... ·.·. ·.·. ·.·. ·.·. ·.·. ·.·.· . . •,•,• .. ... .... . ·.· ·.·. ·.· ·.· .. ·:· ....... -:· ·:· ·:· o I • • •••••• ,•,•, 10 \ ~ . . ..... ...., .. ····· .· .. . ·:· ... ·: •••• ·.·:. . ·.. ..· . ·.·. ·.·. ·.· ·.· . .. ...: . ~ •••• ·:· ....· .......·. ·:· ·:·: -:··· .... ! ·:· 10Z Tw- T•, DEG F Figure 72. Heat Flux vs. Delta Temp. Test 16, Reheat Static Run, TR113=89.6 F 145 10~----------------------~--~~~~~ . ·.· ·.· ... ·.·. •,•. ·.· \ .. ·.·. ·.· • •. 10 .. .. 0. 0 ,•, •. ·. .. •• • •••• ·.·.· •,• .. ·.· ... •,· .. ,.. •,• ... •• : •,• • • •• ·. ; ; ; ·····. o\ • • • • • •• • .. .. .. .. ... .. .. .. .. ; o o o0 o . •'• ,, .. : . .. ; ; •. •. ; : ; .. ; .. ; \ .. .. .. .. ; 10 4 ·. •. .. .• .· .. .. ... .. .. ... .. ... .. .. : .. .. ... .. ·. ' \ ; ·.· .. ; . .. . . .. • . ... .. .• ; ' . ' ... i \. . 10~----~--~~~~~~----~--r-~~~~ 101. 10Z Tw- Ts. DEG F Figure 73. Heat Flux vs. Delta Temp. Test 17, Cont. Static Run, TR113=100.4 F 146 10'T----~~~~~~~--------------~ .. ·,• ... ·.·. • ·,· •••• ••• • 0 •••• 'I ••••• • . . . . . 0. '•' ....... •,•. ·.· •.· ·.·. ·.·.·. • 0 10 • .. . • ••• • • ... .·. .·. 0 '•' :. 0 ••• . ·.· '·.· ' . •••• • • • I • • •,• ·.·. ····· .·. o . . ... I o ... ...·. ,•,•, \ ... \ 'o' •:• I ,•, I . \0 . .. , ........... '. .. ·.·. ... . . . ....... ·.·. . ... : . . -:·.:. -:· \ ·:· i. . . ·.·. ... ·.· ·:·. <· ·> ·:·: :: . . . ... . . . ... . . .............. ...... . • '•'. •,•. •,• •,• •,•. '•'•' •,• • • • • 'I • o '•' ... i .. .: . •,•. •,•. ·.· •,• ·.·. •,·.· .. ·.· . . ·.·. ·.·. ·.· ·.· ·.· . •.·. ·.·. '•' ·.· ·.·. ·.·.·. '• • 0 0 I • 0 •• 0 •' 'I . . . .. ••• ·:·. o 0 o 0 ,•, '•' \' •• • •• \ •,• . . . ·,· '·.· ~ o ~ ' :• \. I ' ... i .. .; .... ·.· \ ·.· \. ... i. · o 0 • 'o' •••• •,•,o ·:· 0 ''•' • 0. • • • •,•,•. • -:· • •,• .. ...... '·.· ' . ~ • • • 1 • • •,• , ·:• I·:· • • • •••• • 1QZ Tw- Ts, DEG F Figure 74. Heat Flux vs. Delta Temp. Test 18, Cont. Static Run, TR113=109.4 F 147 10~----------------------------------~ i ·.· ·.· ·.· ·.·. ·.·.·. ..... ·.·. ·.· .. ·.· ....... ·.· ·.· ... ·.·. ·.·.·. ·. i .. .. . ....... .. .. .. ····· 10 ' i ' ... ' . '•' .• .. ' i . .. ·: . ·:. -:· ·: .. ·:. :· ~ ·:·, ,•, .. •, .... '• ....· . '• .... ·. . . .. . .. . . . . . . . . . . .. ' . . .. . . .. •, . ' ... ~ . . : . . ·.· . ·.. ..· ·.·. ·.·.... ·.·. . . ·.·. ........ . . .., ........ ·.·. ····· . ~ . . ·.· .. ·.· ... , . ·.· ·,· ... '•,· '. .... : . . ... ·:·: ·:·:· ~ ~ .. . .... .... .... .. ·····. ·.· •.·. ·.·. . . ·.·.· ... . ·.· ·.·..... ·.·. ·.·:. ... ·.·. ·.·.· . . ·.· . .. i .. .: .... ·.· '·.· \. . . ·.·. . ·.. ..· . . ... ,.: .. ........ •, . . .. •, . ..· . ~ \ . . . , ........... . .•. ·:·. ·:· ·:· .... ·····. '•,• ~ '. •'• t .•. 10-+----~~~-T~~T---~--~;-~~~ 10 1 102 Tw- T•. DEG F 10 3 Figure 75. Heat Flux vs. Delta Temp. Test 19, Cont. Static Run, TR113=114. 8 F 10~----~~~~~~~------~------~ o' .. ·.· ·.· .... ·.·.· ·.· ... ·.· ·.· ·.· ·.·. ·.·.·. ........:.....; ... :...: .. :. ·.·. ·.·.·. ·.· ..... ·.· .•, 10 .... •,• ' • ' . ,•, .: . : . . ·.· •' • I • • '•' o, • ~ ~ • ..· 0: . .;. '.:. \. . '• . ' . •' ~ . ····· .· .. ·.·. o', 1 , ' , ...: .....: ... :...: .. :..:. : .:.:.. . . .:.... -:·. -:·. -:·: -:·:-. . <·. ·>..... .......... . '.• ' .. ····· .. ; I ; .. ~ ; .. ; .. : .. ; .. ; .. ; .. ; •: • ~ • :• I . . .. . ; . ·.·. ·.·...... ·.· ·.·. ·.·.· .·.· ·.·. ·,·. . . .. . . . ·.·.·. .. .. : . . ·.· o • • I I• \ -.. o .:. '.:. \ . • ••• ~ 0 •• • • o,• • • • ••• \ o,• ~ • \ • ... . ........... ····· •,• .·.. •'• .• ..• ... ·.·. • • o•. : • ·: • ~ • :· I • 10 2 Tw- T•. DEG F Figure 76. Heat Flux vs. Delta Temp. Test 20, Discont. Static Run, TR113=114.8 F 149 10'T----~~~~~~~--------------~ ·.· ... ·.· ·.·. ·.·' ·.·.· ·.· ... ·.·. •,•. ·.· ·.·. ·.·.· ...:.....: ... :. ·.· .: . .;. : .:.:. . . '•' 0 •••••• . ·. '•' ., ••••• •••••• . ·:· .·. ·:·. ·:·:· 10 • • 0\ • • • •• ... •,• .... ·.· ... . . . . . . . .... . . . ... . . .... . ... ... ... . ·····. • • • • '•' ·.·. 0 ; • • • • • • • • .. .. ; 0 '•'•'. . -:· ·> -:·: .:-:·. • ... ' . . .·. ,, .. . ..... • •••• \ \ '.. 0 \ ; .. ; ' .. ; ; . .. ·.· ·.· . ... 10 4 ·.·. ·.· •.· ·.·. ·.·.· ...... . ·.· ·.· ·.·. ·.·.· ...... . . . .:.....: ... :...:.. :..: ... :.:....... . •,• .. ·:· ••••• •,• 0 •,• '•' ••• 0 .·.. ·:· ·:· ·:·. ~ .. 0 •• ~. \ ! ... f 0 ' I ' • •,• • • • •,• \ '•' \ • . • • 'I ... . . . ·.· .... \ • • ••• ••• ·.·'·.·\. .... ••••• \ ' ••• \0 ·: . ~ .:· •'•'• 10Z Tw- Ts. DEG F Figure 77. Heat Flux vs. Delta Temp. Test 21, Discont. Static Run, TR113=109.4 F 150 ·. • 0 ••• ••• •••• •••• ........ ·.·. '•'. .,. ' • ' . •,• . ·:· 10 .• ... 0 •••••• ·····. •, i ., •, ; ,• •' I '• ... ·...... ·..· ..·.·· . ......... , ...... ·.· . •,•. . ·.·. ... ·.·. • '•' •,• •,• ••••• ••• '•' •,• •,• •••• ' I ' ' '•' ... : . . ·.· • . ••• . 0 •• •••• •••• ••• ••• •••• •••••• • '•' 0 •• •••• •••• •,• ••• ·,·. •••••• \ '•' ~ \ 0 • •• • • •,• \. ':. i .. ·:· ... ·:· .. ·. ••• ' I • ' ·,• ..... • . 0 ... '·.· . . . : . . ·.· . ·.· •,• ·.. . .. ; . ,·.: .... •,• ' ... '. •.· ·.·. ·.·.·. . ·.·. ·.·. ·.·..... . ' o ' .. , ; •,•,•. • 'I . ; i •, .· ..·.. ,•,•, '• '• •' •' ; ,• ; ! '• ! 10L+----~--r-~~~~-----r--~~~-n~ 101. 1QZ Tw- T•. DEG F Figure 78. Heat Flux vs. Delta Temp. Test 22, Discont. Static Run, TR113=100.4 F 151 10~----~~~~~.~.~.~ ..--------------~ t •, • •. . . . . .• • •• • •• • •, • • • • • •• 0 •• 0 •• ~ • . . . ·.·. ·.·. ·.· ·.·. ·.·.·. . . ·.· . •,•. •,•. ·.· ·.· •,•. ·.·.·. • •• : •• . .. , .. ..·....· .. ·...·.. ·..·.. ·.·. •, • • • 0 ••• \ ••• ~ • •,• . .. ' .. •'• 10 . ·:· ,, .. ...... ''•' ' . • • • t '' 0 •••• . . . .· .. ••• ••• ••• ••• •• ' I ••••• 0 ••• 0 0 ••• •• •••• 0 • •••• • • • •: • •,• •• ••• ••• 0 •• ••• \ •,• ••• ' · . · \ • ·: . ~ . :· •••• •,• •••• ... i .. .:. ... : . . ·.· •••••• ·>. ·.·..... ·.· ·.·. ·.·.·. . ·.·. . ·.· .. ·.· .. •.·. ·.· ·.·. ·.·.·. ·:· •• • •'• 10 4 ••• • I •• • • 'I' • '•' ·. ·. i •' \ ; . ... ' ... i i ; ' . .·. :.·. ,, . . .· .. ·:·. ·:· •' 10Z Tw- T•. DEG F Figure 79. Heat Flux vs. Delta Temp. Test 23, 3437 RPM, TR113=100.4 F 152 I 10'T----~~--~~--~--------------~ \ ·.· ....... •,•. '•' ·.· ·.·. ·.·.· ...... . ... . . . . . ... . . . ... . ... . ... ... ... . ..... • • ••• • • ••• . ·:· ... ·: 10 • 0 ••• • 0 ••• • 0 ••• '•' ••• ·.·.• \ ·. i ; ; 0 ·:· .·. ·:·. -:·:·. ,• 0 . '•'. . . ·.•. . . •,•. ....... .. ·.· ... ·.· '•' • : • ·: • ~ • •• ... : . . ·:· . ·.. ..· . . . . , .. ...... '·.· '. \ ~ •,• ·,· ·.· '•' .... ·,•,• • • 'I . ·:·: ·:·:· 10"' .. ·.· .. ·.· ·.·. ·.· ·,· ·.·. ·.·.· . . ·.·. ... ·.·. ·.·. ·.· ·.·. ·.·.· . ·.·. . ·.· ·.· ... ·.·. ·.·. ·.·..... ·.·. ·.·.· .............. . . ' ·····. .. ..... .. ·: ... >. ·:· ·:- ·: .. •'• •.. 0 . . •' 0 I 0 0 0 o 0 0 I 0 0 ~ ·.· '·.· • • •,• .. ·: . ... :. ••• o ' •• o ~ o I • '• . ·.· ·.· 0 ••• \ ••• • \ • •'• o ... . ·.· ' ... '. . ...... , ........... '•.· o I \ . .. i .. .:. o '. • 0 • •'• lo'o \ . I • 10Z Tw- T•. DEG F Figure 80. Heat Flux vs. Delta Temp. Test 24, 3437 RPM, TR113=100.4 F 153 • 101'!----~--~~~~~--------------~ ·.· . ·.·. . . ·.·. .. .. .. . . ........... ·.·. ·.·.· . ·.· ·.·..... ·.·. ·.·.·. .•,• ·.· ·.·. ·.·.· . • ••• 0 •••• ••• 0 • ••• '•' 0 •,• • ••• • • ..· . . .. : . . ·.· ·.· ·. ·.· ... . .. ; ...: .. : ..;. \ .:. ' . '•' •,• • •••••• •• , 10 I :· ·> : -: <·. . . ..... . ·.·. ....... ' • ' . ·····. ~ • • •,• ••• •,•. . . ·.· ... ·.· • • ••• 0 •• •,• ,•, ,•, •' •' .. '• '•' I 0 ! •••• •,•,• 0 •••• ••••• 0 •••• • •,• •,• 0 ••• •' ' • • . t .• ·•· •• ' I .. ·...·.. · ·:- . ·:· :· . • • ••• . . ...·. \ ! ••• ' • ' • ,• ; ! .. ; ~ ' .... i .. .: . ••••• : ; ·' • • • • •,•. ••• • • • • • • • • · . · ' '•' ; • •,• • \. •'• ••••••• • 0 . . . . '.: .. -:·.:. -:· \ -:· . .. , ........... '.:. \ . •••• ; •' •••••• ~ ... . .· ... •...·. ·:· ·:· . •'•'• '• ~ 'I ••• •,· \ •,• \ ... ' . . ·.· . •,• ·.· . ·.· \. . .·. ,, .. '· 10:1 Tw- Ts. DEG F Figure 81. Heat Flux vs. Delta Temp. Test 25, 3437 RPM, TR113=69.8 F 154 10'!----~~--~~~~--------------~ . • • ••• •, 0 •• ·.· . . ..... . •••• : ,• •••• ••• ••• ••• •' '• •' '• '• •' .• 0 • :. \ 0 \ ... ••• ... ·.· '·.· '. •' : ..·.! •'• . • . <· . ·> <· ·> : -: <· . • • • • . . . . ...·... ...·. . , • 0 •,• ••• '•' : •.. 0:0. -:· o' '• • I 0 0 • 0 • •, • "o' ,.,. ' ~ ~ \ •,• ... ' ...... : ..:. \ .:. ·.· ·.· ·.· ·.·.· •'•. ..... . ·,·. 10 4 • . .. i .. .: . ••••• 10 •'•. • •'• • , , ~ o • o' o • : • ~ , ! , :• \ • • \. I , •,•. ·.·. ·.· •,· ·.· . •,• .... 00.: .... i .. .:. 0: ..:. '.:. \ . . . ·.· ... : . . ·.· . ·.· ·.· ... .. ·.· .. ·.·. ·.·. ·.· ·.·. ·.·.· . ·.· . . ·.· ... ·.·. ·.·. . .. , .. ·.· ... ·.· '·.· ·.·. '•'..... ·.·. ·.·.·. \ \. ... . . . ... ' ... ' . • • 0 •• . .. ...• .. : . ·: . .:· ' . . . ·:· .. ·:· .. ·...... ·. ·:·: ·:·:·. ~ ~ 102 Tw- T•, DEG F Figure 82. Heat Flux vs. Delta Temp. Test 26, 3437 RPM, TR113=69.8 F 155 10'T----~~~~~~~--------------~ ·. '• ·. . . •, .. •' .· 10 : : : ; •' '• i '• '• ; •' ; ,• . ! '• I ; '• ~ ; •' ; ; •, ' ; •' ; \ •,· ; '• ~ . . . '•' ............ •,• i : ... ; ...:. 0 .. ·.· .. ·.·. .... ·.· ·.·.·. . ·.·. ·.· ·.· ·.·. ·.·.·. ....... ., ....... ,. •,• .... ·.·.·. '•' 0 ; '•'. 0 0 0 o 0 ~ . ·.· •••• 0 ., ·. i ·. ; '• \ ; •' : ; I '. : i .... ; ,•, ........ ·...·.. ·..·... ·.·.. . .·., .·. /, . . ... . .... . .... ....... ... . ·····. 1QZ Tw- Ts. DEG F Figure 83. Heat Flux vs. Delta Temp. Test 27, 3437 RPM, TR113=109.4 F 156 10~----------------------~~~~~~ . ·.· . ·.· . ·.· . . ·.· ... •,•. '•'. • • • • • • •• •• ·.·. '•' •'• ..... . .• • • •• ,•, 0. 0 • • • • •• • : ·. ' ; ·. t •• ••• ... ... '. .... 0 .. ·;. ; \ ..· . •'• .. .. .. .. .. 10 .. ; . . ·.· .. ·.·. ·.· ·.· .... : .. I .. ; ~ . .. .. ·. .. .. ~ .. .• ; .. ~ ; ·. ·. .. : ; •. • •,• ...·.... ·:· ,•, 0 ••• • • • • •.• 0 '•'•' • • 0 . ••••••• ..·. ,• ..· ...·.·.. o o o . .. ; .. ; . ; 10 4 .. ; ; " ; ; : .. ; ; i ;' I . , • 0 ••• \ o o o 0 o o o •'• I o 0 o lo 10~----~--r-~~~~----~--~~~~rrl 10& 10Z Tw- Ts. DEG F Figure 84. Heat Flux vs. Delta Temp. Test 28, 3437 RPM, TR113=114.8 F 157 10~----~--~~~--~----------------~ ·.· ·.·. ·.·.· . ·.·. . ·.·. ·.· ... ·.·. ·.·. ·.·.· ·.·. • • • • • • 0 ••• • • • : • •,• 0 •,· • • •: • • • : • • •: •• : • ..., ......... .: • : .: • :. • • ••••• : • • •• 0 • i ...: .. ; ..; . ~ . :. \ . \ • • 0\ • • • • • : . ·: . ~ . ·. ' . 0 10 o o 'I o' •,• •:' .:. ; .:, ; • ... : . . ·.· . . ....· . . . . . ·.· . •,• o ~ .. ·.· . ·.·.·. ·.·. ·.·. ·.· . . . . ..... . . . . . . . ·.· ... ·.·. '•' .... ·.· •,• ·.·.·. • 0 ••• 0 • •: • • • • •: •• ·:. • ·: • • • • • 0 •• • • • : • • •: :· • ·: •• : • •: . : '• 'I : ••• ~ ••••••••••••••••••••• 0 • , ,o • •' •,• • 'I' ••••••••••••••••• 0 ~ \ \ \ • •• :0. ·•· -:·:·. ~ ....... ·.·. . ·.·. . • • I 10 4 ~ ~ ... '•,• . . . ·:· .. ·:·. ·:·. ·:· ·:- ·:·. -:··· .. .. .. .. .. ...., .. ····· • ~ •,•.•. '•' '•' • ·, . ..· . ·.. ..· ' . ... : . . ·.· ' o ~ , I \. , '• I , •,• '·.· ' . . ·.. ..· . \ ~ • •,• • ' • •,• \ •,• \ ' •••• . . . . . . . . . . . . . . . . . . . ... . . . ... . ... ... ... '•'. ... ·:· ... ·:· .. •.. ·:· :· •'•. ·:·:·. . '•'•' . .. ' .. 00I·:·' o'o '' 102 Tw- Ts. DEG F Figure 85. Heat Flux vs. Delta Temp. Test 29, 7830 RPM, TR113=109.4 F 158 10~----------------------------------~ . '•' ... ••• '•' • 10 • ••• • • • • • 0 . . ·.· ·.· •,•. •,• ·.· ·.·. ·.·.· ••• ........... ·.• •• •. 0 .. •,• ... •,• .... •'• •,• •• • •• •• i .. ; '•'•'. •••••• • •• .. ·.· ... ·.· •,· •,· . ·.·.· . . . ·.· ... . . . ·.·..·.· ·.·. . ·.·.·. . . '•' . . . ·,•. ·.·. •,• ·.· .. . . ·.·.·. ,• ••• •,• ' ; .. ; .• ! .. : •• •, , •• ........ 'I 0 i ' ! ·.· ... ·····. 0 •••••••• ·. i' ••• '•' ....· ... ·.. ,• .. •..·. 0 • ·: • \ • :· ~ • '•,• '. ' ' • ' ' , ' ' • ' \ •,• \' ' I • • '•' • : • .:. \ .:. \ • .... : . . ·.· . ·.. ..· ~ '' •••••• ,•,•, • • • I • • •,• • • • •,• \ •,• \' • o \ • 'I o •,• 0 •'• • o • .. , \ '•' • • ,•, I ,•, I • 10L+----~--~T-~~~-----r--~~~~~ lQA 1QZ 10 3 Tw- T•, DEG F Figure 86. Heat Flux vs. Delta Temp. Test 30, 7830 RPM, TR113=114.8 F 159 10'T----------------------------------~ ..: ·.· ·.·. . ·.·. . ·.· ·> .:. : .:.:. . . . .. '•' ... ·.·. •,• '•' ·.· ·.· . • • ••• ••• ••• 0 •,•. ••• ... . ... . '•' ••• '•' ••• ..... .. 10" .. o o,o • I o o o,o o '•' • : 'o' 0 o,o o,o o,o 0 'o'o' 0 ••• ••• •••• ••••• • • •• 0 •,• •'• •••••• 0 ,•, . ·:· ·:· ·:·. ..· . ~ • •• • •,•,•. I ,•, ' ·. ; .. ~ ! .. .. ~ : .. ; ... ; ...:. ... : . . ·.· •• • ; . •,• '.:. . ·.· ·.· \ • 0 \. \. • • • ' ' ' I • • •,• • ' • '•' \ •,• \ ' • •• ~ . .; .... ; .. ;' .. '; .. .. ,•. •. ••• 0 •'• ; . . ... . . . . . . . ... ·.· ..... ·.· ·.·. o • • •••• 0. ·•• .. •'• ; .. .. .. ~ \ ; .. .. ·. •• ..: . ~ . :. ' . ·.· ·····. .. .. .. .. .. .. .. .. .. .. .. ·. .. • • ' I ' • • , • ' : ' •:• \ .:. \ • .. 10 ~ .. : . . ·.· ••••• ' o I • ' •, o : • ~ • ~ • :. \ o . ·:·! ·:·,. :: 10~----~~--~-r~rr----~~~~~~ 101. 10Z Tw- Ts. DEG F Figure 87. Heat Flux vs. Delta Temp. Test 31, 7830 RPM, TR113=69.8 F 160 10~--------------0-o_O_o_o_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _~ 'o' • . . ·.·. • 0 o,• •,o ' o,o. •••••• ••• 000. ••• ' o ' . •••••• •••••• ; 0 • • ••• • • • • • • • •,• ..... ••• 0 •,o 0 ••• • , • . ' o ' . •,o o,o o,o. ; '•'•'. •• ·:· • • • •• ••• ••••••• • ••• •• . •.•o 00 ·:· ! 0 10 ·.· ... ' 00 I ; ; 00 I ; 00 00 ; 00 . ••••• 10 4 • • ••• 0 ••• ••• ••• ·:·. ·:· ••• 'o'o' ••••••• • ~ • • •: ' •••••• . ·.·. ·.·. •,•...... ·.· •,•. ·.·.·. ...... '•'. ·.· . ·.· ·.· ·.·. ·.·.· ••• o,o. ; ; oo - 0 • • • • •, : • ~ ' ; ••••••• I •• ~ •• ; ~ • :· I • 00 00 ; 00 00 I ·:. ~ ·: • • : • ;' - ; ; : • ••· •,o •••• 'o'o' .. ·:. . . . . .. >. ·: .... •' 00 ~ 00 ; ; ; 0 ; 000 . • ••• ;' 00 • 00 ;' :· I 0 102 Tw- Ts. DEG F Figure 88. Heat Flux vs. Delta Temp. Test 32, 9509 RPM, TR113=114.8 F ] h1 101~------------.-.-.-.-.-.----------------•• o o o 0 o o o 0 o o Oo 0 0 o I o I o 0 o o .......... •,• .... . ... . . . .·. 10 .·. '•' ' • ' . ,•, ,•, ····· . o o o : o0 o o o0 o o •, o 0 o o .. ·.·. o 1 • o o o0 o ' . 0 ••• o 0 • • • , 0 ••••••• ••• •,• . ·.·. ·.· •,· ·.· 0 • • 0 . ••• ·.·. ·.· ... ·.·. •,•,• . . . .. •••• 0. I •• •••• • • • • • ·: • • • 0 : o o 0 0 0 o o o ••• •••• ••• •,•. ••••• •••••••• '•' •••• •••••• ·: 0 • :0 :. o0 o o o0 o • • • :· 0 • • • ·:· . 0. o,o 0 0. 0: . ... : ••• o 0 0 • o 0 o : o ~ o 0 o • ....... ·:·. . o,o ''•' ' • ~. ! . :· I 0 o:• o 0 o 0 o 0 • • • • 0 • ,'o 0 •• • • 0 •••••••••• 0 o \ I • • '•' • • • 0 •,o ~ \000\ • . . . . . . .. o • . ... :. ·:·! ,•, 0 o ' .:. \ .:. . . ·.. ..· . ••••• . . ·.· o:• :- .................. 0 • •• ' I •,•. • • 0. \ . . . .." .... " . . .............. . . ••• o '•,• . : . •'•'•. . . . . . . . .. . . ·.· ... ~ . : ..:. \ .:. ' . . ..i •,•,• ·:·. ·:· .• ..... . o 0o ......... . . .... . 0.:. •. ·•·. ... . ·:· i ·:· . . . , .. ...... . ' . .. ·.· ... ••• ~ . : . . ·.· . ·.· ·. ·.· ... . .. ; ...; .... ·.· '·.· '. .. .; .....: .. -:· ..:. ·> ·:·: -:·:·. . . . . . . . .:.....; ... :.. .: .. ;..: .. .:.:....... . o. •••••• 10Z Tw- Ts. DEG F Figure 89. Heat Flux vs. Delta Temp. Test 33, 9509 RPM, TR113=109.4 F Jfi2 10~----------------------------------- ...... • • ••• ••• •••• ••• 0 • 0 '•' ••• •••• ••• 0 ••• ••• ••• ...... . . . .., .... •,•. .............. '•'•'. • ••• • • • •'• ·:· 0 ·:· ••• ·:·. . .. , .. '•' ...... ' ... ' . . . ~ ,•,•,. : ' ~' I ''• I • • ••• ~ •• • ! • ~ ~ , :. ......... •,• .... •,•,•. 10 ......... ·.·..·.· . ·.·. .......... - . . . ·.· . ·.· • 0 ••• . ·.·. . . ·.·.·. .. ·.·. ·.·. ..... ·.·.. . ·.·. ·.· ·.· ·.· . ·.·. ·.· ·.· '•' . ·.·.·. • ••• 0 • •• : • • •• • • • • • • 1 : • • i '• '• ; ~ •' ~ ! \ , ; '• ! \ \ \'." \. ; ,•, • '•' •• ........ .· .. •, • . .. '. . . ·.· . ... : . ... . ·.· . ....... •,• '·.·. ••• '·:· ... ·:· • ~ •'•'• '•' ~ ; •' ; •' ! '• ! 10-+----~--r-~~~~----~--~~~~~ 10' 10 1 Tw- T•, DEG F Figure 90. Heat Flux vs. Delta Temp. Test 34, 9509 RPM, TR113=69.8 F 1()\ 10~------------~~~--~~~~~~ . ·.·... . ·.· ·.· ·.· .. . . ·.·. ... . . .... . . ·.· . ·.·.· . . '•' ....... ·.·. ·.· ·.· ·.· ·.·.· . • • •• • • • • .. • • 0 :· ' ·: • • :· ~. \' • • • ••• 0 •••• ••• ••• ...... '• • • 'I • .. . ... . ·.· ..... ·.·.· . ••• '•' •,•. ... . . . • ,•, • 0 •• ••• ~ ' ... '. • ••• ' ••• \ • ·.·: ·,· ·.· \ ... \ . . .... : . . . .. ·:· \ •'•. • • .. ; .:. \ .:. \0 . ·, . ..· . ~ • • 0 ••• \ ~ ••• \0 ... •,• .... •,•,• ' • ' . •,• .• 0 ... ... , .. ·.· . . . : . . ·.· . . . , ..... . ·.·. ·.· '•' .... ·.·.· . . <· . ·> <· -:. : ·> :- . 0 '•'. . 0.; ..... '•' ...... • \ .. ' ..·....·. :.·. .·.·. . ..... . ·.·. .: ..:. : .:.:. . . •,• . ·.·. . ·.·. •,· ·.· ·.·.· . . . ·.·. . ·.·. ••• ·. i •,•,• •,• ,•, 10 \ : : .. '•' ... . . .• .....· ...... .. . • : 0 :- ·:- 0 ·:· :· .. .... . . .. . . . .. ,•, , ... ••••••••• 10~----r--r-r~rr~----;-~~~~-Mrl 10& 10 2 Tw- T•, DEG F Figure 91. Heat Flux vs. Delta Temp. Test 38, Cont. Static Run, TR113=100 .4 F 164 10'T----------------------------------~ ' l • • ••• • •, ·. '• .. ,• .· •. .. 10 '• '• 0 ••• •,• •• \. ·.· ... ·.·. '•'. • ·.· . ·.· ... . ·.· ·.· ... ·.· ... \ \. \ •'• •,• '•'. • 0: •• ••• ••• ·.· . ·.·.·. ·.· •,•. ·.·.·. . ·.·. ·.·. ·,· ·.· ·.·. ·.·.·. • ••• •.• .• ... i • 0 • • •,• .. ........... '•' •,• ·.· ... . . . ... . . . •,• •,•. ••• .• 0 •' •••• :. • I • '•' 0 • • • • . ·.· . ·.· ... . ·.· i ·. i '• ' ;' ; . .. ... ..... ... ·····. .· .... •'• ......•, .·. .. •.•.. •,• •,• '•' '•'. i •'• ! '• ' .· ; ! •' •, ; ! 10~----~~--~-r~Tr----~~~~~~ 10• 10 2 Tw- Ts, DEG F Figure 92. Heat Flux vs. Delta Temp. Test 39, Discont. Static Run, TR113=100.4 F 165 10~--------------------~--~~~~~ ·.·. ·.·.· .. ·.· ... ·.·. ·.·. ·.· ·.· ·.·. ·.·.· . . ·.· ... ·.· .... ·.· •.· ·.·. ·.·.· o I • • ••• • • o ••• • •• o ••• •'•. o ••• • ,•, 0 ,. o o •,• •• o •• , ••• ·. ' .. ;' i i o 'I. 0 0 •••••• '•' ' ; ••• \ • ..·. ,,., • • • •••• 10 'I . . . : . . ·.· • • • I 0 •••••••••• • • 0 •• • '•' • • • '•' . i .. .:. ... '•,• \. : ••• ~ • \ '•' \ • \ •,• \. \ ••• '. . .... . .... ........ . ····· . . . . . . . . ·.· ... ·.·. ·.·. •,• ·.· •,•. ·.·.· . . . -:·. ... ·:· .:. : .:-:·. . .. :... -:· . ·>..... • 0 • • 0 ••• • • • •,• ••• • • •••• ... • 0 ·,· ••• ••• 0 • • • • • ••••••• ••••• ••••••• •,•. ••• •'•. •'• 0 ••• ·:· ·:· i. 0 .:. 0 •• ••• • · . · : ••• t • . ., . '. •,• ...... ''•' ' . • . . ... . . . ... . ... . ... .... .... .. ............. . .. ..... .................,. ... ····· ,•, 0 • • 0: •• ••• . ·····. ; ! .. ~ ; . ~ .. ; .. I 10~----~--r-T-~~~-----r--r-~~~~ 101. 10 2 Tw- T•. DEG F Figure 93. Heat Flux vs. Delta Temp. Test 40, 3437 RPM, TR113=100.4 F 166 5~----------------------------------~ 3 . 2 .( o+.-r~~~~~~~~~~~~ 0 20 40 60 II) 100 120 140 160 111) 200 r... - Tt, D19 F D lfXP + hll£0 Figure 94. Film Coefficient vs. Delta Temp. Witte and Orozco (Reference No. 8) Test 27; 3437 RPM, TR113=109 F 167 5~----------------------------------- 4 J . !. 0 ~ ~ 60 D 100 I~ I~ 160 I~ Tw- Ts, Dig F tOP + hll£0 Figure 95. Film Coefficient vs. Delta'Temp. Witte and Orozco (Reference No. 9) Test 29; 7830 RPM, TR113=109 F 168 26 24 22 20 rI 18 16 t~ Ic 14 ,. 12 (I I I vl ~t . 10 ! 8 6 4 2 0 10 50 10 90 110 Ill 150 110 190 Tw- T1, [119 F D I£XP + Figure 96. hll£0 Film Coefficient vs. Delta Temp. Witte (Reference No. 9) Test 30; 7830 RPM, TR113=115 F 169 26 24 22 20 rI t1I c (I I I vl 18 16 14 \~ 12 . !. 10 ~v 8 6 4 2 0 0 20 40 60 c II) 100 120 140 160 111) 3J) ft -Ta, Dig F I£XP + hll£0 Figure 97. Film Coefficient vs. Delta Temp. Witte (Reference No. 10) Test 32; 9509 RPM, TR113=115 F 170 ! . 0 20 40 fJ II) 100 120 140 lfJ Ill) 200 Tw- l•, Dig F D lOP + hn£0 Figure 98. Film Coefficient vs. Delta Temp. Witte and Orozco (Reference No. 9) Test 33; 9509 RPM, TR113=109 F 171 5~==~------------------------------- 4 . .c. 0 40 60 II) 100 120 140 160 18) 3)) Tw- Tt, Dig F D lOP + hll£0 Figure 99. Film Coefficient vs. Delta Temp. Witte and Orozco (Reference No. 9) Test 34; 9509 RPM, TR113=70 F 17'1 APPENDIX D PROGRAM LISTING 10 'SPLINE CURVE-FIT COMPUTER PROGRAM 20 ' 30 'WRITTEN BY GINA GIORGI-O'SHAUGHNESSY DATED 11/23/87 40 'BASIC COMPUTER LANGUAGE 50 ' 60 ' 70 DIM X(lOO),Y(100),S(100),A(100,4) 80 PRINT " CURVE-FIT USING SPLINE TECHNIQUE" 90 PRINT 100 PRINT 110 , 120 ' 130 ' DATA INPUT 140 , 150 , 160 INPUT "PLEASE INPUT THE FILE NAME DATA" ;F$ 170 PRINT 180 PRINT 190 INPUT "PLEASE INPUT THE FILE NAME 200 PRINT 210 PRINT 220 OPEN F$ FOR INPUT AS #1 230 OPEN G$ FOR OUTPUT AS #2 240 N=O 250 N=N+1 260 INPUT #1,X(N),Y(N) 270 IF EOF(1) THEN GOTO 280 ELSE GOTO 280 ' N= # OF POINTS IN DATA 290 PRINT "X", "Y" 300 FOR I=1 TO N 310 PRINT X(I),Y(I) 320 NEXT I 330 , 340 ' 350 PRINT 360 PRINT 370 PRINT "INPUT THE FOLLOWING OUTPUT AXIS" 380 PRINT 390 INPUT " START=" ;START 400 INPUT " STOP=";STOPP 410 INPUT "INCREMENT="; INCREMENT 420 IF START< X(1) THEN GOTO 790 430 IF STOPP > X(N) THEN GOTO 790 440 PRINT 450 PRINT 460 PRINT "1 LINEAR ENDS" 4 70 PRINT "2 PARABOLIC ENDS" 480 PRINT "3 CUBIC ENDS" 490 PRINT 173 WHICH CONTAINS THE TO PRINT RESULTS" ;G$ 250 PARAMETERS FOR THE X p ' 500 INPUT "INPUT NUMBER OF DESIRED END-FIT"; lEND 510 PRINT 520 PRINT 530 , 540 , 550 GOSUB 860 'SUBROUTINE WHICH FINDS SPLINE COEFICIENTS 560 , 570 , 580 FOR X=START TO STOPP STEP INCREMENT 590 JJ=1 600 JJ=JJ+1 610 IF JJ > N THEN GOTO 810 620 IF X <= X(JJ) THEN GOTO 640 630 GOTO 600 640 S1=S(JJ-1) 650 S2=S(JJ) 660 X1=X(JJ-1) 670 X2=X(JJ) 680 FX1=Y(JJ-1) 690 FX2=Y(JJ) 700 A=(S2-Sl)/(6*(X2-X1)) 710 B=S1/2 720 C=(FX2-FX1)/(X2-X1)-(2*(X2-X1)*S1+(X2-X1)*S2)/6 730 D=FX1 740 FX=A*(X-X1)A3+B*(X-X1)A2+C*(X-X1)+D 750 PRINT X,FX 760 PRINT #2,X,FX 770 NEXT X 780 GOTO 830 790 PRINT "ERROR IN SELECTING OUTPUT PARAMETERS" 800 GOTO 830 810 PRINT "ERROR IN DETERMINING SPLINE" 820 GOTO 830 830 END 840 , 850 , 860 'SUBROUTINE WHICH FINDS SPLINE COEFICIENTS 870 , 880 , 890 NM2=N-2 900 NM1=N-1 910 DX1=X(2)-X(1) 920 DY1=(Y(2)-Y(1))/DX1*6 930 , 940 , 950 FOR I=l TO NM2 960 DX2=X(I+2)-X(I+l) 970 DY2=(Y(I+2)-Y(I+1))/DX2*6 980 A(I,1)=DX1 990 A(I,2)=2*(DX1+DX2) 1000 A(I,3)=DX2 1010 A(I,4)=DY2-DY1 1020 DX1=DX2 1030 DY1=DY2 1040 NEXT I 174 1050 1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1.310 1320 1330 1340 1350 1360 1370 1380 1390 1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1500 1510 1520 1530 1540 1550 1560 1570 1580 1590 , , IF IEND = 1 THEN G0T0 1110 IF IEND = 2 THEN GOTO 1130 IF IEND = 3 THEN GOTO 1180 , GOTO 1290 , A(1,2)=A(1,2)+X(2)-X(1) A(NM2,2)=A(NM2,2)+X(N)-X(NM1) GOTO 1290 , , DX1=X(2)-X(1) DX2=X(3)-X(2) A(1,2)=(DX1+DX2)*(DX1+2*DX2)/DX2 A(1,3)=(DX2*DX2-DX1*DX1)/DX2 DXN2=X(NM1)-X(NM2) DXN1=X(N)-X(NM1) A(NM2,1)=(DXN2*DXN2-DXN1*DXN1)/DXN2 A(NM2,2)=(DXN1+DXN2)*(DXN1+2*DXN2)/DXN2 GOTO 1290 , , FOR I=2 TO NM2 A(I,2)=A(I,2)-A(I,1)/A(I-1,2)*A(I-1,3) A(I,4)=A(I,4)-A(I,1)/A(I-1,2)*A(I-1,4) NEXT I . , , A(NM2,4)=A(NM2,4)/A(NM2,2) , , FOR I=2 TO NM2 J=NM1-I A(J,4)=(A(J,4)-A(J,3)*A(J+1,4))/A(J,2) NEXT I , , FOR I=1 TO NM2 S(I+1)=A(I,4) NEXT I , , IF IEND = 1 THEN GOTO 1540 IF lEND = 2 THEN GOTO 1590 IF lEND = 3 THEN GOTO 1640 , , 5(1)=0 S(N)=O RETURN , , S(1)=S(2) 175 1600 1610 1620 1630 1640 1650 1660 1670 S(N)=S(N-1) RETURN ' ' S(1)=((DX1+DX2)*S(2)+DX1*S(3))/DX2 S(N)=((DXN2+DXN1)S(NM1)-DXN1*S(NM2))/DXN2 RETURN END 176 APPENDIX E SAMPLE RUN TEST 27 DISCONTINUOUS RUN, BALL ROTATING AT 3437 RPM. TIME SURFACE CENTER R=. 5 (SEC) TEMPERATURE (DEGREES 0 303.08 305.6 305.6 7 283.46 286.16 284.18 14.4 239.72 242.6 239.54 21.4 173.84 174.74 174.92 27.9 133.16 133.7 133.52 34.1 114.62 115.34 115.7 AMB. TEMP & SHAFT TEMP BEFORE= SHAFT TEMP AFTER = 94 . 1 F TIME 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 TEMP 304.1434 301.7376 299.2691 296.6754 293.8938 290.8617 287.5165 283.7955 279.6391 274.9996 269.8323 264.0925 257.7355 250.7166 242.9911 234.5235 225.4179 215.8854 206.1399 196.3954 186.8658 177.7651 169.2988 161.5472 154.4943 148.1215 142.4102 137.3419 132.898 129.0423 125.6864 122.7324 120.0823 117.638 0/A 24887.67 25303.00 26348.98 28005.98 30251.86 33065.57 36427.04 40285.34 44507.54 49052.76 53911.88 59077.70 64544.19 70305.16 76269.37 81182.77 84135.55 85167.02 84334.48 81695.30 77305.43 71291.90 64747.73 58478.54 52487.92 46758.67 41274.00 36020.02 31125.36 26995.94 23691.12 21197.69 19505.48 18604.96 h FREON WEIGHTED AVG FAHRENHEIT) 109.4 304.1434 109.4 283.7955 109.4 239.693 109.4 174.2928 109.4 133.3148 109.4 115.07 87.8 F 131.5810 135.5003 142.9918 154.1539 169.1051 188.0203 211.1510 238.6636 270.3340 306.5805 348.1953 396.2486 452.1944 518.0292 595.8959 679.2201 761.9739 844.1957 925.3300 1003.684 1075.691 1135.852 1192.433 1256.327 1328.999 1411.731 1505.790 1612.218 1739.041 1922.473 2216.941 2741.411 3837.923 7052.677 177 CPyT 0.206223 0.204338 0.202514 0.200709 0.198893 0.197045 0.195153 0.193215 0.191238 0.189239 0.187240 0.185260 0.183316 0.181414 0.179556 0.177732 0.175948 0.174212 0.172527 0.170897 0.169335 0.167864 0.166512 0.165287 0.164187 0.163207 0.162340 0.161581 0.160924 0.160362 0.159877 0.159455 0.159079 0.158735 98.32 0.523 0.000457 MtN= 0.000006 0.161 CpV= 0.218 CpL= NtN= 0.000012 KV= 0.005 KL= 0.038 63.33 HFG= 9.44 PrL= 0.87 PrV= 3437 ROT SPEED RHOL= RHOV= MUL= 77 F 117.6 F 89 F 89 F 140 F 77 F 112 F 112 F 77F 115 F RHOV/RHOL0.140345 MUV/MUL= 0.071557 VEL TANG 29.99355 REv= 389053.2 THEQREI:ICAL CALCUIAIIQNS I Wsll 304.1434 301.7376 299.2691 296.6754 293.8938 290.8617 287.5165 283.7955 279.6391 274.9996 269.8323 264.0925 257.7355 250.7166 242.9911 234.5235 225.4179 215.8854 206.1399 196.3954 186.8658 177.7651 169.2988 161.5472 154.4943 148.1215 142.4102 137.3419 132.898 129.0423 125.6864 122.7324 120.0823 117.638 115.3015 Tw-T§ I RU;3 109.4 189.1434 109.4 186.7376 109.4 184.2691 109.4 181.6754 109.4 178.8938 109.4 175.8617 109.4 172.5165 109.4 168.7955 109.4 164.6391 109.4 159.9996 109.4 154.8323 109.4 149.0925 109.4 142.7355 109.4 135.7166 109.4 127.9911 109.4 119.5235 109.4 110.4179 109.4 100.8854 109.4 91.1399 109.4 81.3954 109.4 71.8658 109.4 62.7651 109.4 54.2988 109.4 46.5472 109.4 39.4943 109.4 33.1215 109.4 27.4102 109.4 22.3419 109.4 17.898 109.4 14.0423 109.4 10.6864 109.4 7.7324 109.4 5.0823 109.4 2.638 109.4 0.3015 Tb-Ts Hfg' 5.6 78.55604 5.6 78.36237 5.6 78.16366 5.6 77.95486 5.6 77.73095 5.6 77.48686 5.6 77.21757 5.6 76.91803 5.6 76.58344 5.6 76.20996 5.6 75.79400 5.6 75.33194 5.6 74.82020 5.6 74.25518 5.6 73.63328 5.6 72.95164 5.6 72.21864 5.6 71.45127 5.6 70.66676 5.6 69.88232 5.6 69.11519 5.6 68.38259 5.6 67.70105 5.6 67.07704 5.6 66.50929 5.6 65.99628 5.6 65.53652 5.6 65.12852 5.6 64.77078 5.6 64.46040 5.6 64.19025 5.6 63.95245 5.6 63.73912 5.6 63.54235 5.6 63.35427 178 NUv 594.0114 604.2211 615.0351 626.7842 639.8471 654.6619 671.7460 691.7239 715.3490 743.5007 777.2980 818.2246 868.2963 930.3276 1008.369 1108.345 1237.252 1403.510 1618.825 1899.420 2267.477 2752.323 3390.666 4237.515 5381.704 6960.075 9188.700 12418.49 17236.51 24698.66 37067.02 60027.88 112321.8 299548.8 7732543. ll 17.82034 18.12663 18.45105 18.80352 19.19541 19.63985 20.15238 20.75171 21.46047 22.30502 23.31894 24.54673 26.04889 27.90982 30.25108 33.25036 37.11757 42.10531 48.56475 56.98261 68.02431 82.56970 101.7199 127.1254 161.4511 208.8022 275.6610 372.5549 517.0954 740.9599 1112.010 1800.836 3369.656 8986.465 231976.3
© Copyright 2026 Paperzz