Supplemental Web Material: Hierarchical Bayesian Spatio-Temporal Conway-Maxwell Poisson Models with Dynamic Dispersion Guohui Wu1 , Scott H. Holan2 , and Christopher K. Wikle2 Appendix A: Markov chain Monte Carlo Algorithm We describe the full conditionals and the Markov chain Monte Carlo (MCMC) algorithm for the hierarchical Bayesian spatio-temporal CMP model with dynamic dispersion. Note that migration to other models is analogous and, therefore, not presented here. Recall that the model can be summarized using the following formulation: • Data model Y t |λt , wt ∼ CMP(Kt λt , exp(wt )). • Process model log(λt ) = µ + Ψαt + t , αt H1 αt−1 + ηt = H2 αt−1 + ηt H3 αt−1 + ηt if ct < dL if dL ≤ ct ≤ dU . (A.1) if ct > dU • Parameter model µ|β, σµ2 ∼ Gau(Xβ, σµ2 In ), wt = φ0 + φ1 wt−1 + ξt . 1 (to whom correspondence should be addressed) Department of Statistics, University of Missouri, 146 Middlebush Hall, Columbia, MO 65211-6100, [email protected] 2 Department of Statistics, University of Missouri-Columbia,146 Middlebush Hall, Columbia, MO 652116100 Using Baye’s theorem and assuming conditional independence of the log intensity function and the parameters, the joint posterior distribution of the processes and parameters given the observed data can be expressed as [λ1 , . . . , λT , H1 , H2 , H3 , α0 , . . . , αT , Ση , µ, β, w1 , . . . , wT , φ0 , φ1 , σ2 , σµ2 , σξ2 ] ∝ T Y [Y t |λt , wt ][λt |µ, αt , σ2 ][αt |αt−1 , H1 , H2 , H3 , Ση ][wt |wt−1 , φ0 , φ1 , σξ2 ] t=1 × [µ|β, σµ2 ][H1 ][H2 ][H3 ][Ση ][α0 ][β][φ0 ][φ1 ][σ2 ][σµ2 ][σξ2 ]. Let Lt = log(λt ), then the full-conditional distributions and sampling algorithms are as follows: • [Lt |·], t = 1, . . . , T . Note that we have missing data at some locations at each time t. Therefore, sampling of Lt requires two steps. – Sample LSt t |·, t = 1, . . . , T , where St is the set of indices for locations with observed data at time t. Assuming si ∈ St , the MH algorithm reads: 1. Generate a candidate L(si ; t) ∼ Gau(L(si ; t)(k−1) , θL2 ) at the k-th MCMC iteration (θL2 is a tuning parameter chosen such that the acceptance rate for the MH algorithm is between 20% and 40%), and compute the ratio R= [Y (si ; t)|exp(L(si ; t)), exp(wt )][L(si ; t)|µ(si ), αt , σ2 ] . [Y (si ; t)|exp(L(si ; t)(k−1) ), exp(wt )][L(si ; t)(k−1) |µ(si ), αt , σ2 ] 2. Accept L(si ; t)(k) = L(si ; t) with probability min(1, R); otherwise set L(si ; t)(k) = L(si ; t)(k−1) . † – Sample Lt t |·, where †t refers to the set of indices for locations with missing data at time t. For this part, we update using the predictive distribution, i.e., † Lt t |· ∼ Gau(µ†t + Ψα†t t , σ2 In†t ), where n†t = |†t | is the cardinality of the set †t . 2 • [µ|·] ∝ o 2 ] [µ|β, σµ2 ]. [L |µ, α , σ t t t=1 nQ T It then follows that µ|· ∼ Gau(µµ|· , Σµ|· ), where Σµ|· = −1 σ2 σµ2 = In , T σµ2 + σ2 ! (L − Ψα ) Xβ t t t=1 + 2 . σ2 σµ T In In + 2 2 σ σµ PT µµ|· = Σµ|· • [β|·] ∝ [µ|β, σµ2 ][β|β 0 , Σβ ]. Therefore, β|· ∼ Gau(µβ |· , Σβ |· ), where −1 X0 X −1 + Σβ , Σβ|· = σµ2 0 Xµ −1 µβ |· = Σβ |· + Σ β0 . β σµ2 • [σ2 |·] ∝ Q T 2 t=1 [Lt |µ, αt , σ ] [σ2 ]. It follows that σ2 |· ∼ IG(Aσ2 , Bσ2 ), where nT Aσ2 = q + , 2 PT (Lt − µ − Ψαt )0 (Lt − µ − Ψαt ) + r . Bσ2 = t=1 2 • [σµ2 |·] ∝ [µ|β, σµ2 ][σµ2 ]. Thus, σµ2 |· ∼ IG(Aσµ2 , Bσµ2 ), where n , 2 (µ − Xβ)0 (µ − Xβ) = + rµ . 2 Aσµ2 = qµ + Bσµ2 • [αt |·], t = 0, 1, . . . , T . 3 For simplicity of notation, denote Gt,∗ H1 = H2 H 3 if ct < dL if dL ≤ ct ≤ dU , if ct > dU the sampling algorithm can then be expressed as – [α0 |·] ∝ [α1 |α0 ][α0 ]. This implies that α0 |· ∼ Gau(µα0 |· , Σα0 |· ), where −1 −1 e Σα0 |· = G01,∗ Σ−1 G + Σ , 1,∗ η α0 −1 e µα0 |· = Σα0 |· G01,∗ Σ−1 α + Σ u 1 η α0 α0 . – [αt |·] ∝ [αt |αt−1 ] [αt+1 |αt ] [Lt |αt , σ2 ] , t = 1, 2, . . . , T − 1. It follows that αt |· ∼ Gau(µαt |· , Σαt |· ) with −1 Ψ0 Ψ −1 0 −1 Σαt |· = Ση + Gt+1,∗ Ση Gt+1,∗ + 2 , σ Ψ0 (Lt − µ) −1 0 −1 µαt |· = Σαt |· Ση Gt,∗ αt−1 + Gt+1,∗ Ση αt+1 + . σ2 – [αT |·] ∝ [αT |αT −1 ] [LT |αT , σ2 ]. It then follows αT |· ∼ Gau(µαT |· , ΣαT |· ) with −1 Ψ0 Ψ , = + 2 σ Ψ0 (LT − µ) −1 = ΣαT |· Ση GT,∗ αT −1 + . σ2 ΣαT |· µαT |· Σ−1 η • [vec(Hi )|·], i = 1, 2, 3. 4 Let χH1 = {t : ∀t such that ct < dL } , χH2 = {t : ∀t such that dL ≤ ct ≤ dU } , χH3 = {t : ∀t such that dU < ct } , Ai1 = {αt : t ∈ χHi } , Ai0 = {αt−1 : t ∈ χHi } , with ni = |Ai1 | denoting the cardinality of Ai1 . Then, (A.1) can be rewritten as vec(Ai1 ) = (Ai0 )0 ⊗ Ip vec(Hi ) + vec(η t1 , . . . , η tni ), where Cov(vec(η t1 , . . . , η tni )) = Ini ⊗Ση . Therefore, [vec(Hi )|·] ∝ [Ai1 |Hi , Ση ][vec(Hi )]. It then follows that vec(Hi )|· ∼ Gau(µvec(Hi )|· , Σvec(Hi )|· ), where o−1 0 e −1 (Ai0 )0 ⊗ Ip [Ini ⊗ Ση ]−1 (Ai0 )0 ⊗ Ip + Σ , hi n o0 −1 i 0 i 0 0 e −1 e = Σvec(Hi )|· vec(A1 ) [Ini ⊗ Ση ] (A0 ) ⊗ Ip + (hi ) Σhi . Σvec(Hi )|· = µvec(Hi )|· • [Σ−1 η |·] ∝ Q T t=1 n [αt |αt−1 , Ση ] [Ση ]. ∗ ∗ Thus, Σ−1 η |· ∼ Wishart(S , vη ), where S∗ = 3 X !−1 (Ai1 − Hi Ai0 )(Ai1 − Hi Ai0 )0 + vη Sη i=1 vη∗ = T + vη . • [wt |·], t = 1, . . . , T . 1) [w1 |·] ∝ [Y 1 |λ1 , exp(w1 )][w2 |w1 ][w1 ]. 2) [wt |·] ∝ [Y t |λt , exp(wt )][wt |wt−1 ][wt+1 |wt ], t = 2, 3, . . . , T − 1. 3) [wT |·] ∝ [Y T |λT , exp(wT )][wT |wT −1 ]. 5 , Therefore updating wt , t = 1, . . . , T requires a MH algorithm and can be performed similar to LSt t |·. • [φ0 |·] ∝ QT 2 t=2 [wt |φ0 , φ1 , wt−1 , σξ ][φ0 ]. Therefore φ0 |· ∼ N (µφ0 |· , σφ2 0 |· ), where σφ2 0 |· µφ0 |· • [φ1 |·] ∝ !−1 T −1 1 , = + 2 σξ2 σφ0 ! PT (w − φ w ) µ t 1 t−1 φ 0 2 t=2 = σφ0 |· + 2 . σξ2 σ φ0 QT 2 t=2 [wt |φ0 , φ1 , wt−1 , σξ ][φ1 ]. Therefore φ1 |· ∼ N (µφ1 |· , σφ2 1 |· )I(−1,1) (φ1 ), where PT µφ1 |· σφ2 1 |· • [σξ2 |·] ∝ Q t=2 (wt − φ0 )wt−1 = σφ2 1 |· σξ2 !−1 PT 2 w t=2 t−1 . = σξ2 T 2 t=2 [wt |φ0 , φ1 , wt−1 , σξ ] ! , [σξ2 ]. Therefore σξ2 |· ∼ IG(Aξ , Bξ ), where T −1 Aξ = qξ + , 2 PT (wt − φ0 − φ1 wt )2 Bξ = t=2 + rξ . 2 Appendix B: Additional Simulation Results Section 4 of the manuscript presents simulation results for the hierarchical Bayesian spatiotemporal CMP model with dynamic dispersion. The additional results (figures) provided here correspond to the simulation studies presented in the manuscript. Recall, simulation studies 6 were presented to assess the performance of our proposed model in terms of prediction and inference, relative to the number of time replicates available. We considered two simulated examples (for T = 56 and T = 240) with model choices similar to what we expect from the analysis in the mallard duck data application. (See Section 5 of the main manuscript.) For both simulations we constructed the basis function expansion matrix Ψ for p = 8 and n = 2, 171 using kernel PCA. As described in the manuscript, redistribution matrices Hi (i = 1, 2, 3) were chosen such that the {αt } process is not explosive (i.e., the maximum eigenvalues for each Hi iid (i = 1, 2, 3) are less than one in modulus). That is, we set eigen(H1 ) ∼ Unif[−0.2, 0.3], iid iid eigen(H2 ) ∼ Unif[0.2, 0.6] and eigen(H3 ) ∼ Unif[0.1, 0.4], where eigen(Hi ) denotes the eigenvalues of the matrix Hi . Again, the dispersion parameters wt = log(νt ) were simulated according to wt = φ0 + φ1 wt−1 + ξt , t = 2, . . . , T with φ0 = 0.01, φ1 = 1.0 and w1 = −0.5. The co- iid variance matrix Ση was simulated such that eigen(Ση ) ∼ Unif(0.1, 0.3). Finally, we set β = (0.78, −0.03, −0.08, −0.007, −0.002, −0.012)0 , σ2 = 0.02, σµ2 = 0.04, and σξ2 = 0.02. For the simulation with T = 56, Figure 1 presents the posterior summary statistics for the dispersion parameters νt along with the corresponding true values. The posterior pointwise 95% CIs and true values for 50 randomly selected elements in Lt = log(λt ), t = 12, 27, 55 are presented in Figure 2. The pointwise posterior mean and true values for α series are plotted in Figure 3. In addition, plots for posterior summary statistics and true values of precision matrix Σ−1 η are presented in Figure 4. For the simulation with T = 240, Figure 5 displays the posterior mean and standard deviation, 95% CIs, as well as the corresponding true values for Hi (i = 1, 2, 3). In addition, Figure 6 presents the posterior summary statistics for dispersion parameters νt with the corresponding true values. The posterior pointwise 95% CIs and true values for 50 randomly selected elements in Lt = log(λt ), t = 12, 27, 239, are presented in Figure 7. Finally, 7 2.5 pointwise posterior mean and true values for α series are plotted in Figure 8. 1.5 1.0 νt 2.0 q.975 post. mean true q.025 0 10 20 30 40 50 Time t Figure 1: Plot of the posterior mean and pointwise 95% credible interval for νt , t = 1, . . . , T -1 in the simulation study with T = 56. 8 −2 −1 0 1 2 q.975 true q.025 0 10 20 30 40 50 (a) Plot for elements in L12 −2 −1 0 1 2 3 q.975 true q.025 0 10 20 30 40 50 (b) Plot for elements in L27 −4 −2 0 2 4 q.975 true q.025 0 10 20 30 40 50 (c) Plot for elements in L55 Figure 2: Plot of the pointwise 95% credible intervals and true values for 50 randomly chosen elements in Lt , t = 12, 27, 55 for the simulation study T = 56. 9 4 20 −6 −2 0 α2 2 10 0 −20 α1 0 10 20 30 40 50 0 10 20 40 50 40 50 40 50 40 50 Time t −10 −2 −5 0 α4 0 −1 α3 1 5 2 Time t 30 0 10 20 30 40 50 0 10 20 30 Time t 1 0 −2 −3 −1 α6 −1 0 α5 1 2 2 Time t 0 10 20 30 40 50 0 10 20 Time t −4 −5 0 α8 0 −2 α7 2 5 Time t 30 0 10 20 30 40 50 0 Time t 10 20 30 Time t Figure 3: Plot of the posterior mean and true values for the α series in the simulation study with T = 56 (purple dashed line: posterior mean; red dotted line: truth). 10 1 1 8 8 2 2 3 3 6 4 6 4 4 4 5 5 2 6 2 6 7 7 0 0 8 8 1 2 3 4 5 6 7 8 1 2 3 (a) posterior mean q.975 true 4 5 6 7 8 (b) true q.025 15 1 3.0 2 10 2.8 3 2.6 5 4 2.4 5 2.2 0 6 2.0 −5 7 1.8 8 0 10 20 30 40 50 1 60 (c) 95% CIs 2 3 4 5 6 7 8 (d) SD Figure 4: Plot of the posterior statistics and true values for the precision matrix Σ−1 η in the simulation study with T = 56. This figure contains the posterior mean (a), true values (b), 95% pointwise credible intervals (c), and posterior standard deviation (d). 11 3 q.975 true post. mean q.025 1 1 1.5 1.5 2 2 2 3 3 1.0 1 4 1.0 4 0.5 0.5 5 0 5 6 0.0 −1 7 6 0.0 7 −0.5 8 0 10 20 30 40 50 1 60 (a) H1 : 95% C.I. 2 3 4 5 6 7 8 1 2 (b) H1 : Posterior Mean q.975 true post. mean q.025 4 −0.5 8 4 5 6 7 8 (c) H1 : True 1 1 1.5 2 3 3 3 3 1.0 2 1.0 1.5 2 4 4 1 0.5 5 0.5 5 0 0.0 −1 6 −0.5 7 −2 8 0 10 20 30 40 50 (d) H2 : 95% C.I. 2 3 4 5 6 7 8 1 2 (e) H2 : Posterior Mean q.975 true post. mean q.025 4 −0.5 7 8 1 60 0.0 6 3 4 5 6 7 8 (f) H2 : True 1 1 1.5 0 2 2 1.5 2 3 1.0 3 1.0 4 0.5 4 0.5 5 5 0.0 6 0.0 6 −0.5 −2 −0.5 7 7 −1.0 8 0 10 20 30 40 50 (g) H3 : 95% C.I. 60 −1.0 8 1 2 3 4 5 6 7 8 (h) H3 : Posterior Mean 1 2 3 4 5 6 7 8 (i) H3 : True Figure 5: Plot of the posterior summary statistics for redistribution matrix Hi , (i = 1, 2, 3) for simulation with T = 240. 12 1 2 3 νt 4 5 6 q.975 post. mean true q.025 0 50 100 150 200 Time t Figure 6: Plot of the posterior mean and pointwise 95% credible interval for νt , t = 1, . . . , T -1 in the simulation study with T = 240. 13 −2 −1 0 1 2 q.975 true q.025 0 10 20 30 40 50 (a) Plot for elements in L12 −2 −1 0 1 2 q.975 true q.025 0 10 20 30 40 50 (b) Plot for elements in L27 −2 −1 0 1 2 q.975 true q.025 0 10 20 30 40 50 (c) Plot for elements in L239 Figure 7: Plot of the pointwise 95% credible intervals and true values of 50 randomly chosen elements in Lt , t = 12, 27, 239 for the simulation study T = 240. 14 6 4 −4 −20 −10 0 α2 2 0 5 α1 0 50 100 150 200 250 0 50 100 250 150 200 250 150 200 250 150 200 250 −2 2 4 6 8 α4 1 0 −2 −6 −1 α3 200 Time t 2 Time t 150 0 50 100 150 200 250 0 50 100 Time t α6 −2 −2 −1 −1 0 α5 0 1 1 2 Time t 0 50 100 150 200 250 0 50 100 2 α8 1 −2 −4 0 α7 0 2 4 6 8 Time t 3 Time t 0 50 100 150 200 250 0 Time t 50 100 Time t Figure 8: Plot of the posterior mean and true values of the α series in the simulation study with T = 240 (purple dashed line: posterior mean; red dotted line: truth). 15 1 1 12 12 2 2 10 3 10 3 8 8 4 6 4 6 5 4 5 4 6 2 6 2 7 0 7 0 −2 8 1 2 3 4 5 6 7 −2 8 8 1 2 3 20 (a) posterior mean q.975 true 4 5 6 7 8 (b) true q.025 15 1 2 3.0 10 3 4 5 2.5 5 0 6 2.0 −5 7 8 0 10 20 30 40 50 1 60 (c) 95% CIs 2 3 4 5 6 7 8 (d) SD Figure 9: Plot of the pointwise posterior statistics and true values for the precision matrix Σ−1 η in the simulation study with T = 240. 16
© Copyright 2026 Paperzz