MATH 817 Notes JD Nir [email protected] www.math.unl.edu/∼jnir2/817.html November 4, 2015 Recall: If H and K are groups and ρ : K → Aut(H) is a group homomorphism, then H oρ K denotes the set H × K equipped with the operation mult. in H ↓ mult. in K ↓ (h1 , k1 ) · (h2 , k2 ) = (h1 · hk21 , k1 · k2 ) where hk21 := ρ(k1 )(h2 ). Theorem 1 Given H, K, ρ, H oρ K is a group. 2 If G is a group, H E G, K ≤ G such that H ∩ K = {e} and HK = G then H oρ K ∼ =G (h,k)7→h·k where ρ is given by the action of K on H via conjugation. (i.e., hk := khk −1 ) Note 1 If ρ is trivial, H oρ K = H × K | {z } product of groups 2 If 2 of the Theorem, if K E G too, then K acts trivially on H and we get H × K ∼ = G. Ex D2n = G H = hri E G K = hsi ≤ G H ∩ K = {e} HK = G ∼ H oρ K. ∴ G= ∼ =Z/2 where ρ : K −→ Aut(H) ∼ = (Z/n)× ρ(s) = (r 7→ r−1 ) ρ(s)(r) = r−1 rs = r−1 Why? srs−1 = srs = r−1 So, D2n ∼ = Z/n ×ρ Z/2, ρ : Z/2 → Aut(Z/n) = (Z/n)× 17→−1 Pf 1 • Associative axiom: exercise • eHoρ K = (eH , eK ) (eH , eK ) · (h, k) = (eH · heK , eK · k) = (h, k) (h, k) · (e, e) = (h · ekH , k · eK ) = (h, k) 1 MATH 817 JD Nir [email protected] −1 • Claim: (h, k)−1 = ((h−1 )k , k −1 ) −1 −1 −1 −1 ((h−1 )k , k −1 ) · (h, k) = ((h−1 )k · hk , k −1 k) = ((h−1 h)k , e) = (e, e) −1 −1 (h, k)((h−1 )k , k −1 ) = (h · ((h−1 )k )k , e) = (h · (h−1 )e , e) = (e, e) 2 follows the from the calculations done on Monday. Ex Say G is a group of order 30. Recall: • ∃H E G, H = hxi, |x| = 15 • ∃K ≤ G, k = hyi, |y| = 2 • G∼ = hx, y | x15 , y 2 , yxy −1 x−j i with j ∈ {1, 4, 11, 14} We didn’t show that all four possibilities occur. Let H = hx | x1 5i ∼ = Z/15 K = hy | y 2 i ∼ = Z/2 Aut(H) ∼ = (Z/15)× has 4 elements of order 1 or 2: 1, 4, 11, 14 ∈ (Z/15)× and these correspond to α1 , α2 , α3 , α4 ∈ Aut(H), α1 (x) = x, α2 (x) = x4 , α3 (x) = x11 , α4 (x) = x14 = x−1 Define a group homomorphism ρi : K → Aut(H) bu ρi (y) = αi , i = 1, 2, 3, 4. (Such ρi ’s exist by the Universal Mapping Property of presentations) This gives me 4 groups H oρi K i = 1, 2, 3, 4 Also, H oρi K = hx, y | x15 , y 2 , yxy −1 x−j i j = 1 if i = 1 j = 4 if i = 2 j = 11 if i = 3 j = 14 if i = 4 Each has order 30. In fact, thse four groups are not isomorphic to each other H = hy | y 2 i ∼ = Z/2 H = hx | ∅i ∼ =Z Aut(H) = {±1} ρ : K → Aut(H) ρ(y) = (x 7→ x−1 ) ρ(y)(x) = x−1 H oρ K = hx, y | y 2 , yxyxi = D∞ #G = 75 = 52 · 3 n5 = 1 ∴ ∃H E G, #H = 25 ∃K ≤ G, #K = 3 2 MATH 817 H ∩ K = {e} #HK = 75 ∴ HK = G. ∴ G∼ = H oρ K, for some ρ : K → Aut(H). Ex ∃ at least two non-abelian groups of order p3 , p = prime. 1 H = Z/p2 K = Z/p # Aut(G) = p2 − p = p(p − 1) ∴ ∃α ∈ Aut(H), |α| = p ⇒ ∃ρ : K → Aut(H), ρ(1) = α 2 H oρ K = hx, y | xp , y, yxy −1 = xj i j 6= 1, 1 < j < p2 , j 2 ≡ 1(p2 ) 2 H = Z/p × Z/p Aut(H) ∼ = GL2 (Z/p) # Aut(H) = (p2 − 1)(p2 − p) ∴ p | # Aut(H) ⇒ ∃α ∈ Aut(H), |α| = p 1 1 α↔ ∈ GL2 (Z/p) 0 1 ... hx, y, z | xp , y p , z p , xyx−1 x−1 , xzx−1 , z −1 , zyz −1 = xyi 3 JD Nir [email protected]
© Copyright 2026 Paperzz