MATH 817 Notes JD Nir [email protected] www.math.unl.edu/∼jnir2/817.html September 30, 2015 Recall: Sn acts on R[x1 , x2 , . . . , xn ] ∗ σ · (f g) = (σ · f )(σ · g) ∗ σ · (rf ) = rσ · f Note: If σ · f = f ∀σ ∈ Sn , f is a symmetric polynomial: e.g • 1 X • x1 + x2 + . . . + xn = xi 1≤i≤n X • xi xj 1≤i<j≤n elementary symmetric polynomials X • xi xj x` 1≤i<j<`≤n .. . • x1 · · · xn X i < jxi xj x21 + . . . + x2n = (x1 + . . . + xn )2 − 2 Y Define ∆ = (xi − xj ) 1≤i<j≤n Lemma σ · ∆ = ±∆ ∀σ ∈ Sn Y Pf σ · ∆ = (xσ(i) − xσ(j) ) i<j xσ(i) −xσ(j) is either a factor of ∆ or the negative of a factor. Moreover, each term of ∆ corresponds to only one term of σ · ∆ or a negative of such a term. ∆ = ±1. So, σ·∆ Def If σ ∈ Sn , ( +1 if σ · ∆ = ∆ sgn(σ) := −1 if σ · ∆ = −∆ ∆ = σ·∆ 1 JD Nir [email protected] MATH 817 Prop: 1 sgn : Sn → {±1} is a group homomorphism. 2 It’s onto 3 If σ is a product of ` transpositions, then sgn(σ) = (−1)` Pf 1 (σ ◦ τ ) · ∆ = σ · (τ · ∆) = σ · (sgn(τ )∆) = sgn(τ )(σ · ∆) = sgn(τ ) sgn(σ)∆ = sgn(σ) sgn(τ )∆ (σ ◦ τ ) · ∆ = sgn(σ ◦ τ )∆ ∴ sgn(σ ◦ τ ) = sgn(σ) sgn(τ ) X If σ = (1 2), σ · ∆ = (x2 − x1 )(x2 − x3 )(x2 − x4 ) . . . (x2 − xn ) · (x1 − x3 )(x1 − x4 ) . . . (x1 − xn ) Y · (xi − xj ) 3≤i<j≤n = −∆ ∴ sgn(1 2) = −1 ∴ 2 holds. If (a b), a 6= b, is any transposition, then (a b) = σ(a b)σ −1 , some σ ∈ Sn (By HW) ∴ sgn((a b)) = sgn(σ) sgn((1 2)) sgn(σ)−1 = sgn((1 2)) = −1, since {±1} is abelian. If σ = τ1 · · · τ` with τi = a transposition ∀i, sgn(σ) = ` Y sgn(τi ) = (−1)` i=1 j P Cor: If σ is a product of cycles of length `1 , `2 , . . . , `j then sgn(σ) = (−1)i=1 `i −1 = Q ((−1)`i −1 ) Pf Since sgn is a homomorphism, it suffices to show sgn(τ ) = (−1)`−1 if τ = (a1 a2 · · · a` ). But τ = (a1 a2 )(a2 a3 ) · · · (a`−1 a` ) ⇒ sgn(τ ) = (−1)`−1 . Note sgn(σ) = 1 ⇔ in the unique disjoint cycle expression for σ, there are an even number of cycles of even length. 2 MATH 817 JD Nir [email protected] Group Actions, Again G = group, X = set, assume G acts on X (⇔ ∃ homomorphism ρ : G → Perm(X)) Def Write x ∼ y, x, y ∈ X if y = g · x, some g ∈ G. Fact ∼ is an equivalence relation • For x ∈ X, the orbit of x (under the given action) is G · x = {g · x | g ∈ G} I.e., the orbits are the equivalence classes. • The action is transitive if there is only one orbit • The stabilizer of x ∈ X is Gx := {g ∈ G | g · x = x} Ex 3 G = group of rotational symmetries of G acts on the X of all faces of this cube. If f is a face, Gf = {g ∈ G | g fixes f } #Gf = 4 Theorem[LOIS] “Length of an Orbit is the Index of the Stabilizer” If G acts on a set of X and x ∈ X, then G : Gx ] = #G · x (Note: Gx ≤ G) Pf: Let L = {left cosets of Gx in G} = {gGx | g ∈ G} If gGx = g 0 Gx , then g = g 0 h, some h ∈ Gx and thus g · x = (g 0 h) · x = g 0 · (h · x) = g 0 · x. It follows that α : L → G · x given by α(gGx ) = g · x is well-defined. It’s obviously onto. If α(gGx ) = α(g 0 Gx ), then g · x = g 0 · x ⇒ (g −1 g 0 ) · x = x ⇒ g −1 g 0 ∈ Gx ⇒ gGx = g 0 Gx . ∴ α is 1-1. 3
© Copyright 2026 Paperzz