MATH 817 Notes JD Nir [email protected] www.math.unl.edu/∼jnir2/817.html September 23, 2015 Lattice Theorem [4th Isomorphism Theorem] G group N E G. Let π : G → G/N be the canonical map. There is a bijection 1-1 {subgroups of G/N } ←→ {subgroups of G that contain N } onto S L ≤ G/N , L 7→ π −1 (L) = gH π(H) = G/N gH∈L N EH≤G ←[ H Moreover, this bijection 1 preserves containment T 2 preserves ’s 3 preserves joins: Given L, L0 , hπ −1 L ∪ π −1 L0 i = π −1 hL ∪ L0 i hπ(H) ∪ π(H 0 )i = πhH ∪ H 0 i N ≤ H ≤ G ⇒ [G : H] = [G/N : H/N ] L ≤ G/N ⇒ [G/N : L] = [G : π −1 (L)] N ≤ H E H ⇒ H/N E G/N 5 preserves normality: L E G/N ⇒ π −1 (L) E G 6 If N ≤ H ≤ H 0 ≤ G corresponds to 4 preserves indicies: L ≤ L0 ≤ G/N then if H E H 0 then L E L0 and H 0/H ∼ = L0/L Pf of just the bijection assertion: If ϕ : G → K is any group homomorphism, then H ≤ G ⇒ ϕ(H) ≤ K and L ≤ K ⇒ ϕ−1 (L) ≤ G. k {g|ϕ(g)∈L} So, both functions, L 7→ π −1 (L) and H 7→ π(H) ≤ π −1 (L) ⊇ π −1 (eG/N ) = N .) H/N , are well defined. (Also, L ≤ G/N ⇒ Given H ≤ G, N ≤ H, I claim π −1 π(H) = H :⊇ is clear ⊆: g ∈ π −1 π(H) ⇒ π(g) ∈ π(H) ⇒ g · N = h · N, some h ∈ H ⇒ h−1 g ∈ N ⊆ H ⇒ h−1 g = g 0 , h0 ∈ H ⇒ g = hh0 ∈ H 1 JD Nir [email protected] MATH 817 ∀L ≤ G/N , π(π −1 (L)) = L, since π is onto. N = Z(D12 ) = hr3 i Ex G = D12 , G = hr, s | r6 , s2 , srsri G/N = hr, s | r6 , s2 , srsr, r3 i = hr, s | s2 , srsr, r3 i ∼ = D6 D6 2 E 33 3 hri hsi D12 2 D E hsri sr2 hri 3 E EE E 2 2 2 3 E 3 3 3 hs, r3 i E 2 E E 2 hsr, r3 i E 2 hsr3 , r3 i = hs, r3 i hr3 i hei hsr2 , r3 i Def A group is simple if G is not {e} and the only normal subgroups of G are {e} and G. Ex 1 Z/p, p prime, is simple. 2 An , n ≥ 5, is simple. [We will prove] 3 A4 is not simple: V := {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} V ≤ A4 by brute force. (e.g. (1 2)(3 4) · (1 3)(2 4) = (1 4)(3 2) V E A4 : HW: ∀σ ∈ Sn σ · (a1 a2 · · · am )σ −1 = (σ(a1 ) σ(s2 ) · · · σ(am )) HW ∴ ∀σ ∈ S4 σ(1 2)(3 4)σ −1 = σ(1 2)σ −1 σ(3 4)σ −1 = (σ(1) σ(2))(σ(3) σ(4)) ∈ V ↑ σ is 1-1 ∴ V E S4 (⇒ V E A4 ) Def A finite composition series of a group G is a chain {e} = N0 ≤ N1 ≤ N2 ≤ · · · ≤ N` = G such that Ni−1 E Ni ∀i = 1, . . . , ` and 2 Ni/Ni−1 is simple.
© Copyright 2026 Paperzz