MATH 817 Notes JD Nir [email protected] www.math.unl.edu/∼jnir2/817.html September 14, 2015 H ≤ G. A left coset of H in G is a subset of G of the form xH = {xh | h ∈ H} for some x ∈ G. A right coset of H in G is a subset of G of the form Hx = {hx | h ∈ H} for some x ∈ G. Lemma H ≤ G. 1 For x, y ∈ G, (xH = yH or xH ∩ yH = ∅) and (Hx = Hy or Hx ∩ Hy = ∅) 2 xH = yH ⇔ y −1 x ∈ H ⇔ x−1 y ∈ H 3 Hx = Hy ⇔ xy −1 ∈ H ⇔ yx−1 ∈ H Pf 2 2nd “⇔” holds since H ≤ G If xH = yH, then x = yh, some h ∈ H, and so y −1 x = h ∈ H X If y −1 x = h ∈ H, then xh0 = yhh0 ∈ yH ∀h0 ∈ H ∴ xH ⊆ yH By symmetry, yH ⊆ xH 3 Similar 1 If xH ∩ yH 6= ∅, then xh = yh0 , some h, h0 ∈ H, and so y −1 x = h0 h−1 ∈ H. By 2 xH = yH. 2nd statement is similar. So, H ≤ G determines two equivalence relations on G: left def x ∼ y ⇔ xH = yH ⇔ y −1 x ∈ H H right def x ∼ y ⇔ Hx = Hy ⇔ xy −1 ∈ H H left right H H Do ∼ and ∼ respect multiplication? left H left ⇒ x·z ∼y·z ?? ?? x∼y m yz −1 xz ∈ H m m y −1 x ∈ H H ⇒ (z −1 (y −1 x)z ∈ H No. Unless H is normal in G. Prop H ≤ G The following are equivalent 1 xH = Hx ∀x ∈ G left right H H 2 ∼ and ∼ coincide 3 xHx−1 = H ∀x ∈ G 4 xHx−1 ⊆ H ∀x ∈ G 1 MATH 817 5 6 JD Nir [email protected] left ∼ respects multiplication H right ∼ respects multiplication H If these hold, we say H is a normal subgroup of G. Notation H E G I’ll show 4 ⇒ 3 Assume xHx−1 ⊆ H, ∀x ∈ G Pick h ∈ H. For any x, x−1 h(x−1 )−1 = x−1 hx ∈ H So x−1 hx = h0 ∈ H and h = xh0 x−1 ∈ xHx−1 ∴ ∀x H ⊆ xHx−1 Rest: Exercise Recall If ∼ respects multiplication then G/∼ is a group under [x] · [y] = [xy] left right H H So, if H E G, then ∼ = ∼ =: ∼ and G/∼ is a group H G/H := G/∼ G/H := H = Notation If H E G, H {xH | x ∈ G} = {Hx | x ∈ G} (xH)(yH) = (xy)H or is a group via (Hx)(Hy) = H(xy) The canonical map π : G → G/H is a ssurjective group homomorphism, where π(x) = xH = Hx Ex 1 Define ∼ on Z by i ∼ j ⇔ i ≡ j (mod n) ⇔ i − j ∈ hni ≤ Z ∴ ∼ is the equivalence relation associated to hni E Z Z/hni =: Z/n is a quotient group 2 {±1} E Q8 (Z(G) E G) Z/2 × Z/2 ∼ = Q8/{±1} = {{±1} , {±i} , {±j} , {±k}} {±1} · {±i} = {±i} {±i} · {±j} = {±k} etc. {±i}2 = {±1} 3 Fix n. hri E D2n k {1,r,...,rn−1 } sri s−1 = r−i ∴ s ∈ ND2n (H) := g | gHg −1 = H 2 MATH 817 JD Nir [email protected] r ∈ ND2n (H) But ND2n (H) ≤ D2n hs, ri = D2n ∴ ND2n (H) = D2n ⇒ H E G. D2n/H is a group with 2 elements: H and sH = s, sr, . . . , srn−1 D2n/H ∼ = Z/2 4 hx1 , . . . , xm | R1 , . . . , Rn i := F N := (free group on x1 , x2 , . . . , xm ) N N = unique smallest normal subgroup of G that contains R1 , . . . , Rn 5 If ϕ : G → G0 is a group homomorphism, then ker ϕ := {g ∈ G | ϕ(g) = e} is a normal subgroup of G. Pf: h ∈ ker ϕ, x ∈ G ⇒ ϕ(xhx−1 ) = ϕ(x)ϕ(h)ϕ(x)−1 = ϕ(x)ϕ(x)−1 = e ⇒ xhx−1 ∈ ker ϕ ∴ ∀x x · (ker ϕ)x−1 ⊆ ker ϕ ⇒ ker ϕ E G. := 5’ SLn (R) E GLn (R) ker(det:GLn (R)→R× ) Question If H E G what’s the kernal ofthe canonical group ker π : G → G/H ? ker π = {g ∈ G | gH = H} = H Prop Given a subgroup H of G, H is normal ⇔ H is the kernal of some group homomorphism ϕ : G → G0 Pf (⇐) Done (⇒) Use π : G → G/H . 3
© Copyright 2026 Paperzz