MATH 817 Notes JD Nir [email protected] www.math.unl.edu/∼jnir2/817.html September 9, 2015 H≤G H is normal iff NG (H) = G k {g|gHg−1 =H } H is normal ⇔ ∀g ∈ G, gHg −1 ⊆ H. G = GL2 (R) g ∈ G, x ∈ G x0 = x, x1 = gx0 g −1 , x2 = gx1 g −1 , . . . If xi+1 ∈ / {x0 , . . . , xi } ∀i, then X := {x0 , x1 , . . .} gives an example where gXg −1 ⊂ 6=X. theorem Assume G is cyclic and G = hxi. a Every subgroup of G is cyclic (+ thus of the form hxm i, some m ∈ Z.) b Say #G = ∞ hxm i = hx` i iff ` | m. In particular, hxm i = hx` i iff |m| = |`|. c Say #G = n < ∞. (i) hxm i = hxgcd(m,n) i (ii) there is a bijection 1-1 {positive divisors of n} ←→ {subgroups of G} onto given by a 7→ hxa i Pf: a Let H ≤ G. If H = {e}, it’s clear. If not, xm ∈ H some m 6= 0. If xm ∈ H, then x−m ∈ H too. ∴ T := {m ∈ N | xm ∈ H} is not empty. Let m = min element of T . I claim H = hxm i ⊆ is clear ⊇: Say x` ∈ H. Let g = gcd(`, m) = i` + jm. Then xg = xi`+jm = (xm )j · (x` )i ∈ H. But 1 ≤ g ≤ m ∴ g = m ⇒ ` = m · k. ⇒ x` = (xm )k ∈ hxm i b (⇐)` | m ⇒ m = ` · j ⇒ xm = (x` )j ∈ hx` i ⇒ hxm i ⊆ hx` i (⇒)hxm i ⊆ hx` i ⇒ xm = (x` )j = xj` ⇒ xm−j` = e. But |x| = ∞ ∴ m − j` = 0 ⇒ ` | m. c n = #G. 1 JD Nir [email protected] MATH 817 (i) G := gcd(m, n) = im + jn xg = (xm )i · (xn )j = x(m )i , since n = #G ⇒ |x| = n ∴ xg ∈ hxm i + so hxg i ⊆ hxm i g | m ⇒ m = g · k ⇒ xm = (xg )k ∈ hxg i ⇒ hxm i ⊆ hxg i. X a (ii) Define ϕ : {pos. divisors of n} → {subgroup of G} to be ϕ(a) = hx i. e k 1-1: Say ϕ(a) = ϕ(b). So hxa i = hxb i. Observe hxa i = xa , x2a , . . . , xn + xia 6= xja if 1 ≤ i < j ≤ na by HW. ∴ #hxa i = na hxa i = hxb i ⇒ na = nb ⇒ a = b. a onto: H ⊆ G ⇒ H = hxm i, some m ∈ Z c(i) ⇒ H = hxg i, g = gcd(m, n). Note g | n. ⇒ H = ϕ(g). G = any group. THe collection of all subgroups of G is a poset via ⊆. In fact, this poset is a lattice: ∀H ≤ G + K ≤ G, ∃! smallest subgroup L with H ≤ L, K ≤ L + ∃! largest subgroup M with M ≤ H, M ≤ K Prop: If {Hα : α ∈ I} is any collection of subgroups of a fixed group G, then \ Hα is a subgroup α∈I of G. Pf: • e∈ \ α∈I • x, y ∈ Hα since e ∈ Hα ∀α \ α∈I Hα ⇒ x, y ∈ Hα ∀α ⇒ xy −1 ∈ Hα ∀α ⇒ xy −1 ∈ \ Hα . α∈I So, given H ≤ G and K ≤ G, M := H ∩ K ≤ G and if contain every subgroup of G that is contained in H + K. \ Given H ≤ G + K ≤ G, let L = Nα , where {Nα | α ∈ I} is the collection of all subgroups of G α∈I that contains H ∪ K. Then L ≤ G + L ≤ N if N is any subgroup of G that contains H ∪ K. Ex G is cyclic, #G = a. a and b ⇒ the lattice of subgroups of G is “order isomorphic” to def N ∪ {0} with the p.o.: a, b ∈ N ∪ {0}, a ≤ b ⇔ b | a 2 JD Nir [email protected] MATH 817 G = hxi {e} = hx0 i ... hx i hx i . . . 2 3 ⊆ ⊆ 2 3 5 7 11 13 17 . . . ←→ hx4 i hx6 i ⊆ ⊆ 4 6 9 10 . . . ⊆ ≥ 0 hxi = G 1 3
© Copyright 2026 Paperzz