MATH 817 Notes JD Nir [email protected] www.math.unl.edu/∼jnir2/817.html September 4, 2015 G = group, X ⊆ G a subset • CG (X) = {g ∈ G | gx = xg , ∀x ∈ X} centralizer of X in G. | {z } m gxg −1 =x • NG (X) = g ∈ G|gXg −1 = X , where gXg −1 = gxg −1 | x ∈ X normalizer of X in G. NG (H) = G m Usually, X ≤ G. A normal subgroup is a subgroup H ≤ G s.t. ∀g ∈ G, gHg −1 = H. CG (X) ≤ G and NG (X) ≤ G Proof: 1 e · X · e−1 = X Xe ∈ NG (X) 2 a, b ∈ NG (X) (ab)X(ab)−1 = a(bXb−1 )a−1 = aXa−1 = X ∴ ab ∈ NG (X) 3 a ∈ NG (X), ∴ aXa−1 = X. NTS a−1 X(a−1 )−1 = X a−1 X(a−1 )−1 = a−1 Xa aXa−1 = X ⇒ a−1 (aXa−1 ) = a−1 X ⇒ eXa−1 = a−1 X ⇒ Xa−1 = a−1 X ⇒ Xa−1 a = a−1 Xa ⇒ X = a−1 Xa X Note In general, NG (X) 6= g ∈ G | gxg −1 ∈ X, ∀x ∈ X But we do have = if • X≤G or • #<∞ Ex • CG (G) = Z(G) = center • CG ({y}) = {g ∈ G | gy = yg} • CG (X) ≤ NG (X) • CG ({y}) = NG ({y}) 1 JD Nir [email protected] MATH 817 • NG (G) = G (H ≤ G ⇒ H ≤ NG (H) ≤ G) If G acts on a set S, for s ∈ S, Gs = {g ∈ G | g · s = s} = stabalize of s (for the given action) Then Gs ≤ G. • e · s = s ⇒ e ∈ Gs . • x, y ∈ Gs ⇒ x· (y · s) = (xy) · s Z, Y, W ⊆ G ⇒ - Z(Y W ) = (ZY )W x ∈ Gs ⇒ x · s = s ⇒ ⇒ • ⇒ ⇒ x−1 · (x · s) = x−1 · s e · s = x−1 · s s = x−1 · s x−1 ∈ Gs Let S = G and let G act on S by conjugation: g · s := gsg −1 Gs = g | gsg −1 = s Then = CG ({s}) Also, X ⊆ G ⇒\ CG (X) = CG ({x}) x∈X \ = Gx ≤ G x∈X Note: For S = G + action is conjugation, NG (X) =? NG (X) = {g ∈ G | g · X = X} Ex Recall D2n acs on {1, 2 . . . , n} 1 n 2 3 (D2n )1 = {e, s} ≤ D2n (D2n )j = e, the unique relation that fixes j th number, srn−j+1 Ex Sn acts on {1, 2, . . . , n} in the following way 2 MATH 817 JD Nir [email protected] Pick i, 1 ≤ i ≤ n. (Sn )i = {σ ∈ Sn | σ(i) = i} ≤ Sn (Sn )i ∼ = Sn−1 If ϕ : G → H is any group homomorphism, then ker ϕ := {g ∈ G | ϕ(g) = e} is a subgroup of G + im(ϕ) ≤ H ker ϕ ≤ G : • ϕ(e) = e ⇒ e ∈ ker ϕ • ϕ(x · y) = ϕ(x) · ϕ(y) ⇒ if x, y ∈ ker ϕ then x · y ∈ ker ϕ • ϕ(x−1 ) = ϕ(x)−1 (ϕ(x−1 · ϕ(x)) = ϕ(x−1 · x) = ϕ(e) = e ∴ ϕ(x−1 ) = ϕ(x)−1 ) If x ∈ ker ϕ, then x−1 ∈ ker ϕ Note: In fact, ker(ϕ) is a normal subgroup of G. Ex: f = field, e.g. F = R • SLn (F ) = {A ∈ GLn (F ) | det(A) = 1} SLn (F ) ≤ GLn (F ) because SLn (F ) = ker(det : GLn (F ) → F x ) • An = {σ ∈ Sn | σ can be written as a product of an even number of transpositions} = ker(sgn : Sn → ({±1} , ·)) ≤ Sn Def If G is a group and x ∈ G, hxi := {xn | n ∈ Z} = subgroup of G generated by x G is cyclic if G = hxi for some x ∈ G Ex 1 G = e, r, r2 , . . . , rn−1 ≤ D2n G = hri = hrj i, if gcd(j, n) = 1 2 (Z, +) = h−1i = h1i 3 Z/n = 0, 1, . . . , n − 1 i+j =r i+j =q·n+r 0≤r <n Z/n = h1i = hji if gcd(j, n) = 1 4 for n ∈ N µn = {z ∈ Cx | z n = 1} ≤ Cx n o j = e2πi· n | j = 0, 1, . . . , n − 1 2πi µn = he n i j = he2πi n i if gcd(j, n) = 1 | {z } primitive nth root of 1 3 JD Nir [email protected] MATH 817 e 2πi 7 e2πi = 1 6 e2πi· 7 4
© Copyright 2026 Paperzz