A hands-on approach to tensor product surfaces Alexandra Seceleanu joint with H. Schenck, J. Validashti April 1st 2012 AMS Sectional Meeting, Lawrence KS Surface modeling Spline surfaces closely following a control grid embedded in R3 are standard tools of today’s CAD systems. Figure: A surface following a control point grid Tensor product surface Definition A tensor product surface of bidegree (d1 , d2 ) is a piecewise polynomial parametric surface surface that is built by connecting several polynomial patches in a smooth manner: f : [0, 1] × [0, 1] −→ A3 (u, s) 7→ t X Pij Bi (u)Bj0 (s) i,j=1 The control points Pij ∈ A3 define the control grid of the spline surface. The polynomials Bi (u), Bj0 (s) are called blending functions. Tensor product surface - homogeneous version I Instead of thinking about tensor product surfaces as affine maps: I we homogenize to get a regular map defined by four polynomials with no common zeros on P1 × P1 : φ : P1 × P1 −→ P3 ((s, t), (u, v )) 7→ (p0 (s, t, u, v ) : p1 (s, t, u, v ) : p2 (s, t, u, v ) : p3 (s, t, u, v )) Main problems in geometric modeling 1. Implicitize: We assume the parametrization φ known but the implicit equation F of the surface not known! 2. Find singular locus: In general one does not want singular points in the interior of the patch, but singular points on the surface decrease the degree of the implicit equation. Main idea: I study these problem using the information contained in the resolution of the ideal I = (p0 : p1 : p2 : p3 ). Example φ : P1 × P1 −→ P3 , ((s, t), (u, v )) 7→ (s 2 u, s 2 v , t 2 u, t 2 v + stv ) I = (s 2 u, s 2 v , t 2 u, t 2 v + stv ) I the bigraded resolution R(−2, −2) ⊕ 0 ← I ← R(−2, −1)4 ← R(−3, −2)2 ← R(−4, −2)2 ← 0 ⊕ R(−4, −1)2 I the implicit equation: X = V(x0 x12 x2 − x12 x22 + 2x0 x1 x2 x3 − x02 x32 ). I the reduced codimension one singular locus of X is: V(x0 , x2 ) ∪ V(x1 , x3 ) ∪ V(x0 , x1 ). The surface in the example The Segre-Veronese variety From now on I = four-generated bigraded ideal of bidegree (2,1). Main idea: I study the resolution of I by inspecting how the plane Span(p0 , p1 , p2 , p3 ) ⊂ Span(s 2 u, s 2 v , stu, stv , t 2 u, t 2 v ) = P5 meets the image Σ2,1 of the Segre map P(H 0 (OP1 (2))) × P(H 0 (OP1 (1)))−→P(H 0 (OP1 ×P1 (2, 1))) The Segre-Veronese variety Main idea: I study the resolution of I by inspecting how the plane P(U) = Span(p0 , p1 , p2 , p3 ) meets the image Σ2,1 of the Segre map σ2,1 P2 × P1 −→ P5 . Recall at each point of Σ2,1 there are 2 types of fibers: I lines P1 I planes P2 Linear syzygies and lines on Σ2,1 P(U) = Span(p0 , p1 , p2 , p3 ). Proposition The ideal I = (p0 , p1 , p2 , p3 ) 1. has a unique linear syzygy of bidegree (0, 1) iff F ⊆ P(U) ∩ Σ2,1 , where F is a P1 fiber of Σ2,1 . 2. has a pair of linear syzygies of bidegree (0, 1) iff P(U) ∩ Σ2,1 = Σ1,1 . 3. has a unique linear syzygy of bidegree (1, 0) iff F ⊆ P(U) ∩ Q, where F is a P1 fiber of Q. Degree (0,2) syzygies and quadrics on Σ2,1 Proposition There is a minimal first syzygy on I of bidegree (0, 2) iff there exists P(W ) ' P2 ⊆ P(U) such that P(W ) ∩ Σ2,1 is a smooth conic. Degree (0,2) syzygies and quadrics on Σ2,1 Proposition There is a minimal first syzygy on I of bidegree (0, 2) iff there exists P(W ) ' P2 ⊆ P(U) such that P(W ) ∩ Σ2,1 is a smooth conic. Proposition Only minimal first syzygies of bidegrees (1, 0) and (0, 2) are compatible. Main result Theorem There are exactly 6 resolutions for ideals generated by four bidegree (2,1) forms without basepoints : The six Betti types Type 6 5 4 Bigraded Minimal Free Resolution of I R(−2, −2)2 ⊕ 0 ← I ← R(−2, −1)4 ← ← R(−4, −2) ← 0 R(−4, −1)2 R(−2, −2) ⊕ 0 ← I ← R(−2, −1)4 ← R(−3, −2)2 ← R(−4, −2)2 ← 0 ⊕ R(−4, −1)2 R(−2, −3) ⊕ R(−3, −1) R(−3, −3) ⊕ ⊕ 0 ← I ← R(−2, −1)4 ← R(−3, −2)2 ← R(−4, −3) ← R(−5, −3) ← 0 ⊕ ⊕ R(−4, −2) R(−5, −2)2 ⊕ R(−5, −1) The six Betti types - continued Type 3 2 1 Bigraded Minimal Free Resolution of I R(−2, −4) ⊕ R(−3, −1) ⊕ R(−3, −4)2 2 ⊕ R(−4, −4) R(−3, −2) ⊕ ⊕ 0 ← I ← R(−2, −1)4 ← ← R(−4, −3)2 ← ←0 R(−5, −3) R(−3, −3) ⊕ ⊕ R(−5, −2)2 R(−4, −2) ⊕ R(−5, −1) R(−2, −3) ⊕ R(−3, −3)2 ⊕ 0 ← I ← R(−2, −1)4 ← R(−3, −2)4 ← ← R(−4, −3) ← 0 ⊕ R(−4, −2)3 R(−4, −1)2 R(−2, −4) ⊕ R(−3, −4)2 ⊕ 0 ← I ← R(−2, −1)4 ← R(−3, −2)4 ← ← R(−4, −4) ← 0 ⊕ R(−4, −2)3 R(−4, −1)2 Table: The six Betti types for bidegree (2,1) four-generated ideals Relations between syzygies and singularity types Type 1 2 3 4 5a 5b 6 Lin. Syz. Emb. Pri. Sing. Loc. Example none m T (s 2 u+stv , t 2 u, s 2 v +stu, t 2 v +stv) none m, P1 C ∪ L1 (s 2 u, t 2 u, s 2 v + stu, t 2 v + stv ) 1 type (1, 0) m L1 (s 2 u + stv , t 2 u, s 2 v , t 2 v + stu) 1 type (1, 0) m, P1 L1 (stv , t 2 v , s 2 v − t 2 u, s 2 u) 1 type (0, 1) P1 , P2 L1 ∪ L2 ∪ L3 (s 2 u, s 2 v , t 2 u, t 2 v + stv ) 1 type (0, 1) P1 L1 ∪ L2 (s 2 u, s 2 v , t 2 u, t 2 v + stu) 2 type (0, 1) none ∅ (s 2 u, s 2 v , t 2 u, t 2 v ) Table: The primary decomposition and singularities for the six Betti types I T = twisted cubic curve, C = smooth plane conic Li = lines I m = hs, t, u, v i, Pi = hli , s, ti, li = linear form of bidegree (0, 1)
© Copyright 2026 Paperzz