!"#$% &(')!$*
+,.-
/0%1&2!/'*43
5N76 M?8:O#9<IH;:;:=9A>?GP9A@4M?;C6QBE9D
@SRUF@HTVGJIWIH9<8FM?KLGJF @4IS;A9AM?XY>?8 8
TZX\[D]M?;AG^K09<=[ _a`@H9AMC8
db cfe.gUhigkjlg:hmg:nWokgApq
r?su#t]g:shmv Shmcdz,gwipihioyfx0 ,zEnWpi{7oy|WxC}~gykW~zC¡am
?g:kpm¢W~kf*£¤g:n0z|r:¥?W¥f~¦Ws§\¨ l,oyxW~
hie.YgihA© Eª Qk~|Hy~kyzgg
«,s¬\s?
® |Wfz n,¨ ¯fe¿gug:fh nWs#£±¬ ° s wmxb¤oys#xW¬ ghic?²nCgwmhAx,z?{kÀf|Wzd}#~kcfy ~/rAÁfÂÃm
?§Yk«³Áf~ÁW*r ªkzd´Ä ¶µ<rAd« Ÿ·ºÄ «,¹Erf»¤sÆ.§Ç ~nC7wmyg:hÈdwy¼En, ½³nW~*m~|WnSY£ ¾
?gkwypwmc.wmxWgUx,g:fhÈw/cjLwmx,gUe
wÈwmg:huÉC ,oy¯dÀ,ª
¦Ws¨b¤Ó,sHhmÊ n,?hygpmoyhmx0Y#z4g:Ë]hm|S{7z|S\Ôi
:gÌÖ»WkÕ×Yc?
hm|ͯ4z Î
ÃrA¥f¥?Ø,sÙl,~§®.fhi\£,yghA©Ï4Ú,~yg
ÛW7n,гwm
ÅgÑÒÀ{7|SÍ}<~fyhyf~£¤ Wmwm
fg³³~g:Üfg7z
wigkÝdwyª
Þ suÓWt]x,s #Wzcf?«Á?gYÁ?zÆ«,ß×s
§ÇÝ,àHok»¤g¸gYnC
w|4nW f³À¤~kpml,p
AcfÌ<joÑkcf
e.UÓ,{7 ¤|Wwy}~wmykcf~UnS4i
fpipm³ ,~k*g:p 7s ªz0bdá ¨¬ zHâ×x,f£¤g:¶
Ä s¨å ysWYã
hyYnC
wm|Wc?z0Wbdz¤á {k¨]|W¬ }~kzWyâÆ~Òx,³fm
f£,g³~Ó,äx,,ÏHz W«~yÁf
Á 7ÞÐs§|H#Ì.g:hmÀæ~pÈ WW¢W
:ÌpÅwyÆÑknC
wmç³
AnCÌfwm~hi4c¤/£¤ Wokmwm
cfnæ~k¸wm~c
ndÜfg:hipmguwix,gc?hmÀÃwwix,gfhyf£¤ Swmg]³g:Üfg:SwixWw/g:e¿ÓWxWfpmpmg:ppÈwiwmpÅwio:Qokc?nWokg:Ó¤wip s ª
ØWsÇèEspm³¨ ÜdpÅgwihAgzWhAÔuzÒg: (s Õ×c?cfhmhy¯4oyx,z g«hyÁ?p:Á z Ä t]ss§\¨ ã nWxd£ ,hiwi¢Hx,ggUhA/z ³å nWn,7\gh/
p Yss
ª |é|HÌ{k|W}~ky~!m
?k~k*yê
ë
ì
íLî:ï\ðñ ò
óéôEõ*öL÷/õ*öLø
ùúrfsûr ð\òCüÇ ýkÝ,ñ4î e.ûþ0Ó,ÿ g:íp fî:sð þ sUñÙsî sUþ sUýsñ SsUò sÒû sU ò ssULsUò sþSsUû ssUssUsÒsUsUssUssUssUsUssUs «
rfrfss ¦«ÊÚ]gÃÀ okt Wcf¶winW³gAopugÓ¤wynWp£ jlcfè h/g:á¸e.ndÜfg:g:£¤hipmg:g p ã xWsgsUcfhisUÀ ssUsUsssUsUsssUsUsÒsÒsUsUsUsUsssUsUsssUsUsssUsUsUsUsssUsUss Þ¦
r
«¤sr ¨ î:ò ¬ û cfwmÜ<wmð\ñLn,ò
Ç ûÝ, e.ò
Ó,û g ò sÒ ð sUþ ñssUsUssUssUssUsÒsUsUssUssUssUsUssUs
«¤«¤ss ¦« bdbCwyc?³ ¤wmwipȳwmc?nWop wmc.¨ pmwiÓSx,gAgo7bdwuÀ¤cpÈjwmg0e gAfpÈwusUb,sÉ?sU SsUhisg:p sUsssUsUsssUsUsÒsÒsUsUsUsUsssUsUsssUsUsssUsUsUsUsssUsUss
¦,sr ¬ î:ò cfûwmÜ<wm n, ð Ç ûÝ,ò?îAe.ð?Ó,ðñg sU*þsÒsUñ4î:sð\ñQsUí sUþ sí sU sýñsUSsò ûsU sÒòsU sUûþs sUï\ò
s sU ssUsUssUs
¦,¦,ss ¦« è g: WÓ,?hm£¤gAhipÈg:wmnC ,wmhigg h ¬ ¬ gkgwiwmx,x,c¤c¤£,£ p sUsUsÒsÒsUsUsssUsUsUsUsssUsUsssUsUsssUsUsÒsÒsUsUsUsUsssUsUsssUsUsssUsUsUsUsssUsUss
¦,¦,ss ÞÄ ¬v ggnWwmx,ghyc¤£³²Acj#wmcffnSoyp ¯d WsUpsUnWs£ sUv sÒsU³¢HsghmsUw sUsssUsUsssUsUsssUsUsÒsÒsUsUsUsUsssUsUsssUsUsssUsUsUsUsssUsUss
Þ sr â×î:hiò cfûÓHg#hmwmg:p,cfñjL$ wix, gòbd% ]fðÚ òdñ sÒ
sUs,ñsUÿ sUsýïsUï'& *þssUñ sÿ sUðî:sÒð þ sUñ sUðñs sUssUssUsUssUs
ÞÞ ss ¦« á¸t nWcpÈÜwifhi¢,³f³nWwÅokÀÃgcj nSv £ gè n,g:gAhipÈfc?³³ ,²wmgA£±cfná¸ndcÜ?j gwmhyx,pÈgUg bdv cfgnW ¤gwi³hyc?nW³p ²:g:£sUá¸sUnCÜ?sghysUpÈsgUsUbdc?s³ ¤sUwi³sUc?nssUss
ÞÞ ss ÞĨÚ]npiokÇ higkÝ,wifgÒe¿á¸ÓW³³YgUâc?cfjpmg: £è â×fhin,cf¯C¢,ÎgÚ]e
gkÛSp o³sUg:nCsUwsâÆsUhmc?s¢,³sUg:essUsÒsÒsUsUsUsUsssUsUsssUsUsssUsUsUsUsssUsUss
)Ä sr ã î:ò ¯Cû*xWcf)n, cEÜ ð+è $ g: fþ ,ñ þ hi ²: wi³ò
c?HníLfï,nW û£±ð-á¸e.,î:Ó,ð þ gñ e.g:n?wywi³c?nÜd
bd]Ú ssUsUssUs
.Ø,sr ã î:ò ¯Cû*xWcf)n, cEÜ ð+è $ g: fþ ,ñ þ hi ²: wi³ò
c?HníLfï,nW û£±ð-á¸e.,î:Ó,ð þ gñ e.g:n?wywi³c?nÜd
bd]Ú ssUsUssUs
1 2435 ÷7698Hõ*ö 3 ô;:<>=Æö 5 ôEõ öLô?84õA@E÷ 3 øL÷CBED÷/ô 3F
GIHJG KL7MNPORQTS#U
ë
Â
rAr?Ár
ùr Þ
rArAØØ
r"rAÂ!
ù
rA(¥
«,«?«r
«?« Þ«
/.
«fØ
0
«!
V ñL¡að Sò xWû wÒ,ïXhiWZgUYº[g\wy¯Cïò n, ±f¢Sc? ¤w^] ¨ Ìm~ykLà4m
f³~ p/wix,gpmcfhmwucjwmxW³n,±ºgwihi?£¤¶
wmcfnS³À
wix,n,¯f¢Sc? ¤w/³næe
wix,ge
wio:pq
Wg:pÈwmcfn ¨ nWpmºg:h
¨ n|W}~yk~uà4m
f³~ cdcf¯¤p³¯fgÒwmxWp:q
Wg:pÈwmcfn ¨ nWpmºg:h
ge
¨p s o7wiáÎwu Wpmx,³À?cfz Wwi£x,pºcCpmc?oy¯ÃxWge.e
cfhiwig]o £¤¯fgcdg:pmn_ wÆÉC ,¶wiguofÓ¤wm ,higwmxWg/hmgA
`S<Ü?cfhcjQnCÜ?ghypÈgÓ,hicf¢¤
,g:pÈwmcfn §¨ Ó,Ó,hic<ݤ³e
wigAª ¨ nWpÈgh
ë
«
−→
←−
←−
V ñLð Sò û ,ïXWZY[\ïò pmå gg/pÈxSàHf£¤~ curpLc§ â×jHhmgAwicC¶ªÆwÅÀUá¸nÃc?n¿wmxWgÒ£¤f³e.g?³ÀEcfhi³À*w×cfjQfwm³x,YzfgonS<£EÜ?gfjlhizCcf ,e n,gwinWx,³p×fxCewm Wg:n,pÈw#g:£±hmgAxdokcf ,nSe
pÅwihmnW Wpokow fhin±g:fcf³nW wųÀ À s
wmå xWgEÉ? WàHg:pÈ~ wm« cfn s ã x,g
Ce.g
Ó,<Àfg:£Ícfn ã pmx,c ?gc?ÓWhy£¤
À 7qÒ?³Ü?gnÍwmx,gnWpmºg:h:zLpm<À
ë
¤î W Y/\ ï\ò Y7 Ï4,~y
7Ðf·.Ï4W~ .\7 ê }~yk¸
|HÌ }<~yÎ
YlÑyÐ
ð û ò î ûþ/ ïò
fÜfgn ocfe.Ó, ¤wig
ýñ Sò û ò ûþ ï\ò fÜfg:n okcfe.Ó, ,wmg
¼ ½~ki~k|S\\
|H·µ}~|
|HÌ
ÛSnW£wmx,gUnW£¤gÛWn,³wmgUn?wig?hif s
ð û ò î ûþ/ ïò
fÜfgn
nW£
ÛSnW£
ýñ Sò û s ò ûþ/ ïò
fÜfg:n
ë
¤î W Y/\ ï\ò ® gAÆwR³
`Wacu|punÍ]Ã
:ÌpÈwmgAf£¤À pÈwiwmgEwix,hicf ,?xn!nWpm ,wmgA£ n,x,cfe.c?fgnWgcf Spuhicd£!/¶wix
~y
e.E¯dc¤n,£¤cg:/pÈw/nhmgAx,pÅg:wihmwo7pmwicf³c? ,nWhypokzdgÒwix,nWg£Ãwmg:wme.x,g]ÓSwmg:g:hie.wmÓS ,g:hihigÒjlwm , ,nWhig]o7wixW³c?gn £±w²g:cfhm¢Hc¿gÀ¤wºpwmwmx,xWggUgnS< £¤ÓSc?³nCwyp s nS£¤gh
/³wmnWx±£ ¢Hcf WnW£,£¤higkÀ.wigokhicfe.nS³£¤n,¶gAwi£±³c?nW¢dpÀ±wmx,gx,gAwpmcf ,hyokg s wmx,g:hme
fHocfnW£¤ So7wmÜd¶wÅÀ
ýkñ ð Sû òò ûfî ;ò û<ûþþ/ ïò
ïò
?f³Ü?Üfggnn ÓWhye.gnWwmg£hyp e.g:?pÈ ,hige.g:n?wÛWnWc£j ÛWnW£
GIH S S"O ![$U #%&(')* +S &/US ,- +S &.
Ax = b.
•
A n×1
A, x
•
m×1
x
b
b.
A, b,
x.
f (x) ∈ C[0, 1]
F (x) =
f (x) ∈ C[0, 1],
•
•
m×n
F (0) = 0
0
F (x)
Rx
0
f (t) dt
F (x)
F (x) ∈ C 1 [0, 1],
f (x) =
u(x)
0
− (k(x)u0 ) = f (x), 0 < x < 1
u(0) = 0 = u(1),
1
f (x)
k(x), f (x),
ë
f (x)
¦
k(x), 0 ≤ x ≤
u(x) = u(x; k).
u(x),
k(x).
òd¨ïï+& òdþ ï ï+ò & ÿ þ ò ûÿþ ï\òûþ ï\ò
poyxWhyfokwmghi²g:£Ã¢CÀÃwmx,higgUÓ,hicfÓHghmwmg:p:q
r?sã xWgUÓ,hmc?¢,ge2xW?p/.pÈc?³ ¤wi³c?n s
«,sã xWgEpÈc?³ ¤wi³c?np ,n,ÉC ,g s
¦Wshyã xWe.ggpmwmcfghy ¤pwmccfj nwmx,gUp
ÓW7hm¸fc?¢,³³~kg:ze wisxWw¿p:z¶w¿Ühi³gApokc?nCwmnC Wcf Wpm³ÀÍ/¶wixwmxWg±fÜfg:nÓW
¨hig*Ó,hijlhmcfgA¢WÉ?³g: WegnCwmwixWÀwof ¤puwmnWcfcnWwg:£gwm¶cæÎÓHe
c?pmg:¯f£g.pmp] ,ohmfg¿³wig:xW£ wEðï\ï'& Ó,þ hicf ¢,ò ÿgse á¸n pnd ,ge.#ghiÓScCo:pÈgAç£fnW¢HgkjlÀ¤c?pÈhmg¿pººgg
gk£¤oyxWÝ,gAf?pÈn,o7fwfngÒfnWpȳc?n pm³º ,pmg:wmcfhicfpº ¤nÍwmhicffgnæ³?okcfokc?c?hie¿¶ ,wiÓWx,£± ¤e
wi¢HpfgEs.¢,³£¤¨g?hyz¤nWpÈe
c ,wmÓWxWwiÓSghUcCofpÈ© Ó,g]higkcfݤ¢,ÓSgg:e hme./g¶nCwixwifS Wc?nWhºpÅwynd ,¢,e.g.g:Ó,hmhiocff¢,Wgghie
hicfp:hÆqÒc¤g:o:Üfokg: ,nÍhyp³j q
ë
ýkï\ïí bd c î û /,î:xWð þ w ñ _ p wm x,gà jlð W pmp^û ] ò?îAã ò!x,ýkgÃñ £¤Hò hmûgAo7wEòÓ, hiûcfþ/¢,gïe ò
cjuokc?e¿ÓW ¤wmn, jlhmc?e
g:?pÈÀáÍfhinWcf£nWWwm©x,gE¨ pm0cfc ¤j wi® ³c??n±£,wic*e
wifx,higU£_pnCÜ?ºgg:hy³pÈgÒÎÓSÓ,cChipÈcfgA¢,£¤n,gg:epipphmgAÉC ,³hige.g:n?wypºhmjfQxCw¢C] À±wmx,gU<À¤pÈ£¤g?p z
gpmÀdÜ?pÈgwmng:e jlc?s h¿wmx,g mpÈe.Ó,³g ±³ndÜ?ghypÈgÓ,hmc?¢,ge1cjÒpÈc?³Üdn,!jlc?h /¶wix
ͳn,gAh
GIH ZQ !TS#U M 9S#NPS TS#U
F
F = Kf
f = K −1 F,
Ax = b
ë
x
,î þ ò ûþ ñ
r?sã xWp/ n,g:fhupÈÀ¤pÈwmge
xW?pn,c
pÈc?³ ,wmcfn0q
Ax = b
0
1 1
x1
=
1
x2
1 1
«,sã xWpupmÀ¤pÅwige2xSfpn¤ÛWn,³wmg:³Àe.fndÀ±pÈc?³ ,wmcfnWp:q
1 1
1 1
x1
x2
=
0
0
¦WsãpmcfxW ¤pEwi³pmc?À¤nWpÅp/wig£¤e c.n,xScfwupÜn,fc hmÀ±pmcfocf ¤nCwmwmcfndnÍ ,cfjlcf Sh pÈÀ
/¶wixæÓWnW£Íhyn¤e.ÛWgkn,wi³gwmh g:³ÀÍq e.fndÀ jlcfh
ë
ε 6= 0
1 1
1 1
Þ
x1
x2
ε
=
0
ε
ε = 0,
pmc
þ ¡Íò gÒ Wpmòg n±ò ÿ cfðò£. wm hiW oy¯4Y0q ð ³îAgAòdfpÈñ wº?òpiÉ? Shig:p:zf/x,oyx
ÛWnW£Wp×wix,g wixWwe.³n,e.³²:g:pÆwmx,gÒpȲg
ã x,pºwm ,hinWpºcf ¤wwmc*¢SgÒg:ÉC ,ÜgnCwwmc*pmcfÜd³nW
wmcxWjQg
wix,|HgÒ
hm7gA
pÈ£¤ W~ f »W§pmYÉC
W|WfhmgA£Wª
pmÀdpÈwmg:e xW/fxWpÍoyx|WÐPpUpÈfc? S³ ¤hywi³c?nCn0wmg:zºg:wm£x,g:wmnac!xWgÜf<g:Ü?hmgÃÀP pÈc?pÈc?³ ¤³ ,wi³wmc?cfn n wis cwm Wx,hÈgwix,n,gcfhAhizLe
gÃ/og:fÉCn WpÈwmg:g.cfnWwmp.xWw*pó j
g:ÓWpmcfÉCf WhÈ ¤w/wmwmccfjcfnænW¿pwiwmc hynWpmÓHc?pmg] Se
pÈã n,x,wiÃhmpu³wiÝ x,wihmg.oyok¯cfnSgkÝdokgwmg:Ó,nWw]£,cpj wmÈcÃ?£ e.ÅcfcfhinCgw Ef¢WcfpÅÓHwighihy?o7wiwcfhy p n,g:fhcf/ÓHx,ghyoyx!wicfÓ,hyp<Àwmx,cfg j
ë
þ ¡Íò g Èhmòg:f ,òÿ hið³ò²:g wmV xWñgð Ó,Qhií cfòd¢WñL³g:ò e s ¡g-_ ³³ WpÈwmhywig³w¿¢dÀcfnWgÓWfhÈwio ,h¯dnW£cfj
hiÓWgffhi Wfe¿fhmgwm²:g:h wmcfn0z¤of³ng:£apm WÏçoyx± :EW
|4<
À*}wmhmxWg:fw ,pme
hi³²Awi³c?fn s Üfg]°] Wn,pgE³nCÓ,wmhihic¤cf£¤¢, Wgoe g:puwi.xWhiwg?p ,mfokhmc?²:pmg wm/cfwmnc
wmwmxWxWggUcfe¿hic¤f£¤³nWÛWgA £s á¸hin.g:pmwix,£¤g] Wo: fpmgucj4wmxWgn,c?hme
Wg:ÉC Wwi³c?nWp:z?c?n,gofnÃpÈxWc wixWwe¿n,e.³²:³n,
°]g:fn,£Wg/p owmfcUn*wipmx,x,g/c³n,wigAx,guhÆokpmcdÀ¤g pÅÃwigoe ³g:n?w#e
wihm³Ý
/x,<g:À¤hmg pLn,cfp#nWpmwix,n,g/f ,£¤gnCh sçwm³ã wÅÀ¿x,g:e.hmgjlwmcfhihi¶Ý gfsz
#
p
wmxWgUë Ó,hmc?¢,ge2xW?p/¿ ,n,É? WgEpÈc?³ ¤wi³c?n s
þ ð ?ò þ ü ò
Sí ï û ð,-¤îAð þ ñ9 û [òCîAò û
jln?cfwih/hm¡anWfpm WxW³³?n,xCw±dw:ªºpmz,x,Ó,pic?<hm ,c?À ¢,£Jge
g pc£¤jc³ndÜ?¢Hgcfhy ¤pÈwg]wmx,g:cfã hiÀ x,s p.çgkp
w _ cfp/n,fgænWcfj]Àd²wigx,g cfn,e.gUcfcfhijLgc?jl , WhnWpm£,³e.e.Ó,g:gEn?wypÈÀ¤ pÈwm§ g:e.nW£ p
¢Hg:g/okxWc?á¸nde.<Ü<Üfg:fg p hm¢W³À?z?c? ,hºn,Ó, ,jlwcf£,hº£,wiwyjlcf³hºnWpÈwmwmx,gAgÒf£ nCs Ü?0ghygpÈw gÓ,hmc?¢,geæz ã x,g/hixWg??pÆ ,g:fhmhihmcf²hºgA³£npm¶À¤wApÅzdwipig<e À
x
kb − Axk2 .
AT Ax = AT b,
Ax = b
Ax = b.
Kx = y
K
K∗
AT .
α>0
α
2
kb − Axk + α kxk
AT A + αI x = AT b,
AT A+αI
2
I
α?
1 1
1 1
x1
x2
2+α
2
2
2+α
/x,oyxxSfp ,n,ÉC ,gEpmcf ¤wmcfn
ë
x1
x2
=
=
1
1
(1, 1),
δ = δ 1 + δ2 .
(1 + δ1 , 1 + δ2 )
2+α
2
x1
x2
2
2+α
=
−1
Ä
2+δ
2+δ
(2 + δ)
1
1
2+δ
=
4+α
1
1
= (2 + δ)
1
1
þ ð ?ò þ ü ò
Sí ï û ð,-¤îAð þ ñ9 û [òCîAò û
x1
x2
2+α
2
2
2+α
−1
1
1
2+δ
=
4+α
1
1
n, nScfwÆ£°]²g:¢Whmg.pmcSgºzhiÜfwic?fg ,¯Cwm£ÍxWn,fwÆgwi³wUx,jHgwmwix,x,³g.gue.ܳn,wºÓ,f ¤£p wºpmgcfhihm ¤c?wih ³c?fn ÜfggAhip#g Wpºf³º,ºc? ,hig/wEpmgufcfÜfÓ, ,gÓWnÍ£¿hmc<wmxWݤxS<Üfe.wgwmwmwmx,c*g
cf£¤ncUn,wmÓ,cp× ,E³wgpmw gcfhihm ¤c?wih]³c?n p
wmxSnæºgUzQpÈcfc± Wwmc£pmcwiwmx,gpÅjlhiÀ /pmgfgwu¢CÀoyx,cdc?gpm³nWnWgg:£ § °] WhupÈc?³cf ¤hwi³fc?pÒnWp/okc?pmg*<fÀdpp/ºpig¿wiopÈfjlnÀ
fgwã wmc
x,g³whisg
ª hig*e
fnCÀ!ÉC ,gApÅwi³c?nWpx,g:hmg?z0g s s zQx,c £,cg¿¯CnWcénÍ?gn,g:hif /xSwwmx,g
¢Hpm ,g:¢pÈwÅg:oyokx,w/c?e.ogwÈcfwijçghuhmg:cffj ,.okhic?²: ,hiwipm³gc?n
³næÓWndhyÜfge.hypmggwmgwihºx,gp:c?zdhm¶À js ndÀ[] ã x,pfnW£Ãcfwmx,g:hºpmpm ,gApfhmgwmx,g
ë
0î Ḡnæðï\wmðlx,î ppmÓHg:ok o?pÈg?z,ºgU?gkw]pÈwif¢,³ wÅÀÃjlc?h/jlhmg:g jlcfhg:foyxm~εf»¤³7 ~yÌæÓ,hicf¢W³g:e s
pmnWokg
¡g¿o:£¤n,cdg:n,pmcfnw]_ wx,c?g:ÜfÓSg:gnwmcgݤxWpÈ<w Üfs g*pÅwy¢,³ wÅÀjlcfh]wmx,g¿ ,n,hig? ,hi³²:g:£æÓ,hicf¢,ge
gpÈwi¢WÜ?³g ¤¶nwÅwºÀ ¶wij x,xSn,Ó,?ÓHpgnWhip/pÒgug:ngÜfg0pmn±cf£¤e.ge¿ÛWg¿c?n,hmog:gÒf£pmokg:wic?pyx,e¿ª gUs*ÓW³®nd³Ü?ocghywmgpÈg:gÒÜf£0g:qÓ,h:hizHcfcf¢,hºg*gwmx,e2xWgÒ<Ü?e
fgEg:<n,wiÀÃcghynWccdSwucf³¯æ¢Hn,gEg:wmcfpÅhºwyn¤ÓW¢,ÛWhmc?n,g ¢,³wm§³g
g:fe¶wi£¤x,e.cf ,g?n¤x
g/pm³Ü?c?x,gnWg:nhmgE,wmx,g³wÒc?Ý, ,o:fe.x n!Ó,¢Hg:g*pÆpmpmp Wx,s oycxÃ/?næp×wicfxW Whºw £¤ Hg:hmg:§nC£¤wm 4gwmhicfgn
nCwmgÝ,wi³e.c?nSÓ,ª/g gÝd§ c?pÈÓSwig:p]hi¢,wm ¤cfw]h p]n,cpÆw³nCokwicfgnCfwihy³ndwi ,³c?c? WnSpª7zz
ë
*þ0gw ñ4îAðñQí þ í ýkñ Sò û ò ûþ/ÜC .ïò
wi x,ghi ,g
ã x,ppÃcfn,g\wic
cfnWg]jl WnWo7wi³c?n s׬ g:?pÈ WhmgUpm³²:gÒ¢dÀ
wix,gEpm ,Óæn,cfhieæq
=
δ
0,
α→0
1
2 (1, 1).
α→0
x1 = x 2
(2 + δ)
α ≈ 2δ.
x 1 = x2 =
x1 + x 2 = 1
1
2
Ax = b
A−1
y,
Kx =
K −1
K −1
K
K
K : C[0, 1] → C[0, 1]
Kf (x) =
Rx
0
f (y) dy
kf k = sup |f (x)|
pmã c.x,wmg:xWnc?w/n,wmgEx,g ofmnokc?pmx,pmgcnW g:piwmp xW]cfw/j wmx,gEc?ÓSfg:nWhi£wmc?h ppu£¤ogcfwmnCg:wmhme.nd ,n,cfg: W£p¢dnæÀÃwmwix,x,gEgEpmndg ,nSepÈg¢HwigxWh wu³j
nS£ 0gw fhmgUo³cCpÈg?zdwmx,g:næwmpmx,c
gUhyhig n,?g]cfj fnWã £ x,gn
pufpmc¿cfn,g\wic
cfnWg ës ¤wu¶wupn,cfwokcfnCwi³nd ,c? Wp s
Wðït í cfû nWò pmþ £¤üghQîwix, g jlð\ ,ïðnWî ok
wmcfn
0≤x≤1
f (x)
g(x)
R = K(C[0, 1]),
g(x)
K
Kf (x)
K.
kf − gk .
f (x)
Kg(x).
K −1 : R → C[0, 1]
gε (x) = ε sin
Ø
x
ε2
,
/²g:x,hmg:c*hmjlg ,nWokwmcfn s¡Õ×gUgkw:xWz <Ü?g
ε > 0.
kgε k = kgε − 0k ≤ ε
K −1 gε (x) = gε (x)0 =
s b¤c.jlcfhupme.f³
ε, gε (x)
puo³cCpÈgÒwic.wmx,g
x 1
x
ε
=
cos
cos
ε2
ε2
ε
ε2
pmc±wixWpw n,cfw.okcfnCwi³nd ,c? Wzçppmc±cfÓHwixWghyw wicfh s ¢Hg:ocfe.g:p]jfh]jlhicfe ²:ghic?p ® g:nWokg
ë
òdñLò û ,ï û [ò þSû $
okLc?
nW pmÆpÈwiipÌ*cj m
?k~k
¨ e.c¤£¤g:Qjl ,³ÀpÈÓHg:o¶ÛWgA£¢CÀ § Ó,xdÀ¤pÈofªºÓWfhife.gkwmg:hip s
¨ ¯dn,c/njl ,nWokwmcfn wixWwAz0Ìf~y ÐzSe
fÓWpÓWhye.gwmghypºwmc
£,wi ¢dÀ±<À
cj
K
−1 K gε =
−1
1
ε
K −1 gε
ε → 0.
•
m
•
G
d
d = G (m) .
pwm»¤c.¡Ím~ ÛWg*UnW{kx,£ |Wcf}ÓH~kg y?§ ³~©Ü?ªgnwimxW
?cfk¢Ww]³~pmwmg x,hiÜp]wme¿cfgAnSp nWpus wmcook Wwmg
zH¢, ¤wÒ/xWwÒºgEhig:f³À
fgwupÅwi Woy¯Ã/³wmxæp
pwmmc.?kÛWYnWy£ *{k?|W³}Ü?~kgyn~]cf¢Wpmmg
fhiܳ~wmcfnSp
pÈc¿wixWwugAÉ? Swmcfn±wmc
¢HgU³ndÜ?ghmwmg:£p
m
d
m = G−1 (d)
m
d = dtrue + η
d = G (mtrue ) + η.
a¡ xWwugUhigÒwmge.Ó¤wig:£wmcã,c¿pnCÜ?ghmwwmx,gUgAÉ? Swmcfn
wmnScf£
në ¢Swmcg]xWÓWÓCÀ.s×/ã ³xWwmx p/e
f¯fg:pc?s , h n¤Åcfjlcf¢ hmwm¿ ,nS/x,wmcfg:³gÀ?z ³cfwwmcf Wfx,g:e
h <À.f¢HnWg]£E³nCÓHwicdgcfhihg:pÈwmÓ,n,Ó,Whi©c<ݤ³e
d = G (mapprox )
mapprox
mtrue
mapprox
!
þ ï°]î:ò ,û<hû oÍcfnCýkñ4wmîAndò
, cfû W,puïX³WndÜfQg:íhipm¤gîAðÓ,þ hiñ cf¢, ge gkÝ,e.Ó,gUp
pÈÓHg:ofço?pÈgUcfj wix,p/³e.ÓHcfhmwifn?w
okfpipcjÓ,hicf¢,ge
p:q
ò %ñ ðlî:ð þ ñ ¨ ngAÉC Wwi³c?ncfjLwix,gjlcfhie
d (s) =
Z
s
g (s, x, m(x)) dx
p/o g:£S
¸~7m.|W¸~εiL~ »WY
|
ÈÑUl,~Æy7 |HÌ § Ê ª s áÎwupU |H~y³j
n /Ê.x,s oyx!o:fpmg p/wix,g ?~k7|4~k#cfjwmx,gEgAÉC Wwi³c?n s °wmx,g:hm/pÈgU³w]p!|H
|S |H~y
zHpÈc
z s
ëá¸næcf ,h/gݤfe.Ó,³g
û ò ¨ ÿ n, cfþ wmïx, g:huýñ4e¿î:ÓHò
cf hmû wi,fïXnCw/W oQí?pm,pî:ðcfþ j ñ Ó,¿hicfþ ¢Wü/³g:î e.Lp:ò q ð û î ðñ ÿ ý ò %ñ ðlî:ð þ ñ ¨ ngAÉC Wwi³c?ncfjLwix,gjlcfhie
a
g (s, x, m(x)) = g (s, x) · m(x)
g (s, x)
d (s) =
Rs
a
m (x) dx
g (s, x) = 1 a = 0
Z
b
p/o g:£ Qm~yÌA,
¶ |SÎ~εfmL~ »WY
|
ÅÑl,~×y7 |HÌ § á Ê ª s áÎwupE |H~y*¶j
n/xWoyxæo?pÈg pwmx,g ?~7|H~LcfjçwmxWgUg:ÉC Wwi³c?n s áÎjÅz¤jl ,hmwmx,g:h:z
wmxWgUg:ÉC Wwi³c?np/of³g:£ y
|W}
¶»¤\
|g:ÉC Wwmcfn s
WZY[t \cfnWpmïò £¤gh#c? ,h×gkÝ,fe¿ÓW³g
wmcfn wmc
¢Hg ¶j p/nWcfn,n,g:?wmÜfgnW£ czdwmxWCghi/n s pmg Ú]s#gkã ÛSn,x,g/g:n wmxWg ® gA<ÜCpm£¤gjl ,nSo7
d (s) =
g (s, x, m(x)) dx
a
g (s, x, m(x)) = g (s, x) · m(x)
g (s, x)
g (s, x) = g(s − x)
d (s) =
H (w)
Rs
m (x) dx
0
Z s
Z ∞
d (s) =
m (x) dx =
H (s − x) m (x) dx.
1
w
0
g:ã ÉCxd W Wëp:wmzfcfwix,næpfp#c?¶gwigQhi/hiU¶wix nCwmokg:cffndhyÜ?cfWgA ¤ÉCwm Wcfnwi³c?¯fn±ghion,fg:nà ¢SgÒÜd³g:ºgA£ÃfpºEá Ê s nS£±ocfndÜfc?³ ,wmcfn
0
0
Â
g (s, x) = H (s − x)
ò YQî;WZY[\ïò
/x,mg:}Ahmg¸Y
|H |H
¶Ð#µi
»¤|HÌó~}<~LÌ»W~¸
±»¤7~iÌ #m~.i
v hicf WnW£±gÜ?gQpwmxWg Îݤp s
qwmxWgE£¤gÓ¤wixæcj wmx,gU/hmgUw s
q#pwmx,gE£¤g:nWpm¶wÅÀcjçwix,gU/hmgUw s
q#e.g:?pÈ Whmg:e¿g:nCwcfjLwix,gEn,c?e
ÀÃwuÓHc?pm¶wi³c?n z,?hmc? ,nW£ÃgÜ?g s
ã x,p/Ó,hicf¢,ge2g:?£,pwmc.³nWg:hufnW£ § x,fx,À,ªn,cfnW³n,g:fh/³ndÜ?ghypÈgÒÓ,hicf¢,ge
p
D öL÷ 3 5 õ÷ 3 ÷ 3 ÷/øLø 5 ôEõ
ó4
XHJG ! *M ! 4KL7MINPOZQTS
•
x
• h (x)
x
• ρ (x)
x
ë
• d (s)
s
ò WZY[\ïò
°]ÏS
¿¢Wpm~kg7hihi\cfÜfe
g¿wm¸x,Ó,~ÒhmpUlc ,Å~Òg:g¿ok
wmxW<³cfgÒyÓHÒwmg.xW
ÅÑÒhmwmcc /àHg:n±pȳwmjlhm|He
c?~e Æwi
Åg.pmÑ cfwme.x,|4gÃg
#?ÓS|æoc?ok³mnCg:f³wug:Ìhi»dnWwm £cfLe.n ¤g:³?~EpÈ£¤ W
,hm|æg.gÒlwi¶,wyc ~pufhy³wm<³7ÜCwm³³ S~kwÅy£¤À! g s nS7»¤£lÑkwifx,yg~An ·
WpmgUÔugwicfn_ p/<upcjfhy<ÜC³wiwmcfn±fnW£e.cwmcfnwmc.c?¢¤wif³njlhicfe
a
GM m
= ma
R2
wmxSw
M=
aR2
.
G
W Qí¤îAð þ ñ .þ ü þ î:ð þ ñ
¡aË xWß×wuk»¤p wi»dx,gU{ÜfàHg:mhÈ
?wiko:³~
4ÓS· cCpȳwmcfn cj wmx,gUÓWhmc Åg:o7wi³gUfp/*jl ,nWokwmcfnæcjLwme.g ]
f SpÅwunCwmg?hiwmg]wmx,gEocfnWpÈwifnCw/?oogghywmcfn±wÅ/ogÒwmc.cf¢¤wyn
y (t)
1
y (t) = m1 + m2 t − at2 .
2
¡gjlcf³cawix,gwmgÝdwnW£/hi¶wigw/wme.g z,ºgxW<Ü?gcf¢WpmghiÜfgA£ÃÜ ,g fnW£
tk
/x,g:hmg
dk
1
dk = y (tk ) = m1 + t m2 − t2 m3
2
k = 1, 2, . . . , m
s×ã xWppu.pÈÀ¤pÈwmg:e2cj g:ÉC WwmcfnWpn ,nW¯CnWc/nWp s#® ghig
¥
m
3
p/³nW¶wif ¸£¤pÈÓW?okge.g:n?w
p/³nW¶wifQÜfgc¤ok³wÅÀ
pufo:okgghywi³c?n±£¤ ,gwic
fhy<Üd¶wÅÀ s
¤î û ð+Y þWû Y7 ç
7
ÈÑW~UHÐ<§ çy¸³nW~.g:· h/á¸ndÜ?ghypÈgÒâ×hicf¢,geê7q
• m1
y
• m2
• m3
Gm = d.
d1
d2
d=
dm
nW£
® g:hmg ss ss ss z
ss zQ¢, ¤wUg
pÈxWf³
gkÝ,nSf£ e¿n,g]p wmx,gUÓWhmc?s ¢,³g:e2n±wix,gUe.cfhig]?gn,g:hif4pmgkwmwmn,./x,ghig p z p
ºò ?ð+% > ûþ ï\ò
Ï4,~¿~ ?kº
»¤Y
|4·
gkݤnSÓH£±bdgn,hiÓW³c??e.hmoke
g:n?fWw ³ WsÀ±n,¡Í¶£¤wyg¿pºpÅwif/hmhmg/¢,³× ¤e.£¤wigg:cwm£gpÈhycæ/pƶffwipixænWpm£. ,e¿e.wigA³e.³n,n g Wn,nͶwygpºhihmfc?hmnWh]gu££¤pmg:pÈpÅowiwicfhmnSnW¢,£,£W ¤p wishy³£áÎc?w n!£,_ p×gwiÜdgAxWfpmwwmÀcfwipÒn cnWpÈ£¤eg: WÓSg:nWwms £¤ggfnCn w
hie fnW £¤n r:§ Á _ pÈwiwmg _³z Á ª
eEpÈv fwie
hm ,g c?n,g:rAp rAا eæÁ z r:z r ÁfªkÁ z z ¥W§År s  q eÃë _ ª _z¤ Á,s Ä §Èr q eê _ s ¤« ë
£,£,wywy wihm ,g£, wiv wihm< WeEg wihm WpÈg fe
<hynW£¤n § eæz r ª XH Q ! U !. !.- S U !S#N
1
1
G=
t1
t2
1 tm
d
t2
− 21
t22
2
t2m
2
m1
m = m2
m3
G
m×1
m×n m
n×1
T
m = [10, 100, 9.8] = (10, 100, 9.8) .
ë
µ=0
σ = 16
þ ï\¡ÍíçîAgEð þ oñ cf , £òCwmî hiÀ þ0ÿ wiÓWã x,³xWcfggw/e wme.x,wicÃc?gUpÈhipÈw*g:c?pmnS³Ü? ,g³wiÜfpjlg±cfjlh/cfe
hwix,wigUx,?gU³wmnWxWgkfhmÝ,¢,g:?gEgfo7Üwuq
£,hig±fwy¢,.cf³gAnWpnW³Às £±0n,wmgx,g:w g:gE_ £p/pmhmwiegAx, ,hig³À±gæwiwmg:£,hi£æÀ±wy£,!³w]ÓHwy/ cf³s wmn?x wyp ¬ s çwmgkw ¢_ p* WnSpÈ£ g
•
r:Á
•
/nW¨ cf¢Shi×e g¢SwÈwmg
cg:jÆhÆnWwiox,£¤cfg¿g:nWWhmpmqçgApÈ¡pÈwm£¤g:gnC Ww:fzLhig/p pmscæã e.ºx,g.c?pÒpÈwiwÆhmhmÀÍokgAgÉ?hm Wwi³fohi³g:n¿pÒokwi W£¤cU³g WxWÜ?pg<Üfcf£¤g/Ó,gAg:e.,hmqUhig:cfn?e.h w sç³snW® ã³e.g:x,nWg¿²okg.g?¢WzfwmwixWpmx,gÃog/pÈjlÓ, , ,hie cfS¢Wpm³cÀ¤g:jpÅe wiwmgx,e gp
wic.ÛWnW£wmxWg ïò
î Qí û ò Aþ ï\íçîAð þ ñ
pÈ Soyx±wixWw
§ 0g:?pÅw]b,É? Shig:pâ×hicf¢,geê7q
ë
m = m L2
2
2
kd − GmL2 k2 = min kd − Gmk2
m
ò ò íLïî ü þWû> ò
î Qí û ò .\7
ò þWû ò
) Ï4W~U³~y<7# »Wm~k×à4m
f³~W<E*k
»¤Y
|Ñk
U|WÐ
|4̱Ì?¸ êÆ|H.~ б|SÐ.
»¤Y
|ÍÎ
ÃW~
m
A
ÅÑ ?~k¸y,·
b¤x,c Ó,hic¤£¤ Wokwuhm ,gx,cf£,pjlc?h/Ó,hmc¤£¤ So7wipcfj e
wmhi¶ÝÃjl WnWo7wi³c?nWp s
e*Ôc WwipÈg wuxW<Üfg¿e¿n,e ,e pænWcfn,n,g:?wmÜfg
ÉC Wf£¤hywio¿jl WnWo7wi³c?n³n zpmc
nW£wmx,gEohm³wmofQÓSc?³nCwyp/cj ¢dÀ±pmgkwÈwi³nW
s
ò ò íLïî ò þWû ò
. {lÑ
»¤Y
|ÍU»¤|W »W~7êÆ|4ÌÃ.µf\}<7~ |Ð ,Ñy»¤ºy
»¤¿|m| ê]l,~|W~Ã~i7 »Wm~k
m×n
d
G
GT Gm = GT d
•
•
•
f (m) = kd − Gmk
2
m
f
m×n
∇f (m) = 0
G
â×hicCcfjpm¯fgwioyx0q
b¤x,c xSfp²g:hmc¿¯fg:hmnWgYz¤x,gnWogUpndÜfg:hÈwi³¢,g s
âÆ³ ,
nCwmc.n,c?hme
QgAÉC Wwi³c?nWp/nW£pmcfÜfg s
0gAfpÈwpmgb¤ÉC¬ Whiwig:fp ¢Ç wiݤcæÓHgpmhicf³e.Üfg¿gnCcfwy Wphq pmÓHg:ok³ÛSo¿Ó,hicf¢,ge /¶wixÍgÝdÓHghie¿g:nCwi×£WwinS£Ó,cw
pmcf ¤wmcfnWp s#ã x,gnægkw _ p/pmgg/xdÀÃwix,gwmx,g:cfhige
phigÒwmhi ,g s×ã x,g:hmghige
nWp:q
®mc
?k~kf
cdc¤· £p.cf ,h.g:fpÈw
pmÉC WfhmgAp¿pmcf ¤wi³c?n] t fn gwmhi WpÅw
³w^] áÅp¿wmxWghig¢HgkwÈwigh
pmcf ¤wmcfn]
XH !M !J
U ! MIQ UO S !(# S#M
U ! M &[S#U
m L2 = G T G
•
GT G
•
ë
−1
rfr
GT d
í,ï\ðlgî Pwiþ x,ü g. â×ò
hi cf ¢Sî bCwyQw^í0g:okû wmò , hig:p]n,cfwmg:p]hig?fhi£,³n,±ÓSc?³nCwg:pÈwme.wmcfn sEã xWgng*pmgg
/xdÀ
wmxWpj?o7wupwmhi ,gfq
ò þWû ò
0 S»Aà?à,
k~l,LW~]~7m
ÅÑ Ãi
A
iÌ|HÎ~
ÈÑW~/m~k7Ì»WS/|H
7
¶Ð
Ì|47Ì Y7k»¤¸~y"Ì #l.ê ~y| ~m
|HÌ 7Ï4¸,|H~|Ì?lm,ÌÒ~.Ìf³~~y}AyuY
| »Wi~7 ¿´L~k
»¤Y
|¸
W~¿y³~yÌæ|S¾
}~ky~/àHm
?k³~
±¸
l,~/à,m
~Î~U}<~yÎ
±ñ 0WZgw Y_ p/[\fg:n,ïgò hywigÒ¿Ó,hicf¢,ge fpjlcf cup
i
GW = W G d W = W d
σi
W = diag (1/σ1 , . . . , 1/σm )
GW m = d W
!#"$
%$&'()+*-,
.-%'&/102
345-67"82
3459:;2
3<=;(
?>)A@"$7"$B/CD0?E/
FGA@IH
9JK"9L$"6MNO6QP'/CDR26$"9MSO6CT
:?E
>UGF-2V->W
+X>UYZ%$&'(2
JK"
9W
FGA@IH
9JK"9L$"6MNO6QP'/CDR26$"9MSO6CT
:?E
>UGF-2V->W
+X>UYZ%$&'(2
JK"
9W
[Z\ H$]?>U?^G,??Z'_>
)
H,'>(%'H'+`a%$?^H'>
[ ?b
\ cHZ%$&'(d^
XH+?^e \ ,?G,?$f'_>
[ \ H$]CC?CCD,'HgHZ
H()&
]^h
í¨,ï\ðlÜfî g:
PhmÀÃþ ünWcf nCò
wm hi³ Üdî 4Qhiíg:pm ,û ¶òw/ /x,oyxæºgU?pmpm ,e.gfq
l,~E³~y<7× »Wm~k]
»¤\
|Ñk
ò þWû ò
´ç~ ,}<~Ñy»¤çy
¶»¤*|!i| Ã|HÌ
l,~Eky³~yÌ
|W}~yk~/àHi
f³~k Ï4,~7Î\7Y
G
kdW −
GW mk22
=
m
X
m
(di − (GmL2 )i )2 /σi2
Å|Ñ#ÑyiW~i~¿~yÌ?m
|4Ìf
}7?k~ ,¿æi¤¾Î »Wi~
Ì7\7»¤Y
| #
Ì?~Yµfm~y~k
ÉcCj Wcf㢤³wÅwyx,Àpcn,jQÓ,n,c?hi
c ,Üdhº*£,£,g:£hiwif Wg:s h/pE¡oy/x,gu³¶wmn,¸xPpig:É?g: S!£.pÅwihiwyx,g]guwiÜpÈ£¤wm ,g:oUgÒfcfwmÆxSj4fwmpix,npÈggAwmpmx,pm&gUe.[c?g,n,nCï\íLwgUò f§ wiokcx,wmj4 Wgwifx,oy³xWguÀöwi¸g:cfpmÉCpÈ¢,w: Wwiz?fwmhmx,n,g.gugAwi£QÓWg:q hmpÈc?wyª¢Wcf¢,j/wm¶x,wÅÀg
i=1
d
ν = m−n
p
p=
Z
∞
χ2obs
fχ2 (x) dx.
rA«
ký ñ4îAò¨ û p Uû ò?hyî¤nWî:£¤ð c?þ eéñ Üþ ü7hi ¢,gfzfwmx,g ÎÜ<f³ WgupÆ ,n,³jlcfhie.³À.£¤pÅwihm¢, ¤wig:£
¢HgkwÅgg:n
²ghicEnS£
cfnWg s#ã x,puofn¢HgUÜfg:hmÀ
n¤jlcfhie
wi³Ü?gfq
r?s mÔuc?hme
f0pȲgA)£ q gÓ,hicf¢Wf¢,³À±xW<Üfgnæfo:okgÓ,wi¢W³gÒÛ,w
e
<À¢Hg//hicfn,
«,sc?Ç huÝCwi£,hmg:wye.¿ge.À¿<À±pme
xW<ÜfgÒqf£,hm?wygÒhgpÆhihiÜfcfghyhip×ÀEwi ,xWnW³næ¯fg:g:pȳÀ?wmz?e
pmcUwie¿g:£ c¤s£¤g:
¦WsÇe
ÝC<wiÀÃhmg:¢He.ggwmcdÀEc.ffhmcd?c¤g £±wm§ c
s g ¢Hs gzfÜfwmghihi ,ÀUg s okc?pmgÆwic ª7qQÛ,wwicÒe.c¤£¤g:Cpe.c?pÈw gݤ?o7wAz/x,oyx
ë
V ñLèð\ü þSg:?û pÈ c?n± jlc?ð h/ î ,û n,ð ³jlíçcfhiîAeð þ ñ £¤pÅwihm¢, ¤wi³c?n0q
ò þWû ò
( ´L~
|H|Ím~yW<~U7|d|Sµ Î~L7}<,~ m~ ,}~ iÏ4
,|W~Y||W»WW
~¿»dà } Ì Ñ 7»Wy»¤|Wl, Ñk
7* ÐæÌ
7Y77\7k»¤¸\~y¶ÌÐ
m
A
ÅÑ ?~k¸y,·
Wpmn,¿jfo7w/wixWw xWfp/fnæ³ndÜfg:hipmg]jl ,nWo7wi³c?n s
t fo ,wmg
wic
Ó,hmcÜ?guwixWw
pÈgwix,gjfokwwmxWw
s
¨ ÓWÓ,ë ³owmcfn0qº°]nWgo:n Wpmg]wix,pwmc
?gn,g:hiwmgÒhifnW£¤cfe pmfe¿ÓW³gApÆjlc?h s
±ñ 0WZgw Y_ p][\hig:pm ,ïòe.g¿cf ,hgkݤÓHghi³e.g:n?wÒjlhicfe ¢HcÜfg s °]ÓSg:n!wmxWg.piokhiÓ¤wçg:okwm ,hig ÂWs e nS£
xW<Ü?gÒ¿cCn,c?c¯ (sã pmgkxWwg ,næÓÃhm Wjlc?n h¬ o:okwm ,¢wicf³n,n³wwmx,gÒnWÓ¤£ÎÜhmgApÈ , Wge¿cfgUj0o:wmx,g]ok ,wmgApÅwiw³c? ,nWnWp £,s gh¢Scfwmxpiokg:nWhic?p s
p
p
p
Gm = d
p
1
X
0<x<1
(0, 1)
F (x)
Y = F (X)
F (x)
•
P (Y ≤ y)
•
F −1
F
P (X ≤ x) = F (x)
P (Y ≤ y) = y
X
\ a
^ %'H
*(" GH
' GPUF-2V(
]?]H 9"
?T
:
\ ^a%'H
*(':UGH
' (29+PLF-2V(
]?]H :?T
:
'^,'] \ ^a%? ']b
']9"c#" P \ ^a% \ b4 \ ^a%'H'*("( 6Pa
']:G#" P \ ^a% \ b4 \ ^a%'H'*(
:4 6Pa
[ H
`eHU`Z%])^
U$>-,
h
[ H
`G]> ?^U*e$(%(LH+?^),U
ë® cV£¤c
ºgnCwmghiÓ,higkwwmxWg:pmgÒhig:pm ,³wip^]
r:¦
Sþ Ç û òÝ,þe.n,ñ gÃfòLnWîA£í WWpmï g. wmþ0xWþg ï ¬ ]Ô wix,gc?hmg:e.pcfjâÆhmc?¢SbCwiw çg:o7wi ,hig:pÒwmc!ocfe.Ó, ¤wig.wmx,g
gkpmcfݤÓH ¤g:wmokcfwin0wiz ³c?n!xW?nWp£æjl ,ܳfLhmokcfnW ,oe.gEnæcjhiwifx,n,g¯Ãh s Ü nSs £ zHpu/¿x,gÜfhigAg o7wmc?hcpjwm³xWnWg£,ge.ÓHc¤g£¤nW¶£¤ÛSg:g:nC£ wuh g:s ?Ü pÅs w]_ p spiÉC Whig:p
wiÇ hmf¢,oyx( ¤wig:g:£n?wiÜhmÀJhicfj ¢,g:p:z,pÈp±nWokg ³nWg:hokc?e¢,nWwi³c?nacjEnW£¤g:ÓSg:nW£¤gnCwn,cfhie
³ÀJ£¤pÈ
m
d
G
•
m
m
−1
xSfp/okcÜfhmnWoge
wihm³Ý s
ã xWgUºg:³?x?wig:££,wy
Ú]g:£, WokgwixWw
s
ÔcwigEpÈe.Ó,³ ÛSo:wmcfn³j ÜhinWog:phigUokcfnSpÅwynCw:q
s
*þ ñ ÔufògÝC wuî:gíÝ,,ïe. ³nWþçg]þ wiï x, gUe.g:fncfj nW£æ£¤gA£¤ WokgÒjlhicfewmx,gj?o7wipwixWw
fnW£
nS£ ¬ ÒÔVjfokwipwixWw
® gnWogfsz¿e.cd£,¶ÛWgA£ g:fpÈwÍpiÉC Whig:p!pmcf ¤wi³c?npÍn í ñ ð ò ÿ ò î:ð, ¤î þSû cfj
® gnWogUºgUo:næokcfnSpÅwihm Wokwu
okcfn,ÛS£¤gnSokg³nCwighiÜ<f4jlcfh/c? ,hgkݤÓSg:hme.gnCw:q
m = GTW GW
•
GTW dW .
dW = W d
Cov (m) = GTW GW
•
•
I
−1
Cov (m) = σ 2 GT G
−1
m
E [dW ] = W dtrue
GW mtrue = dtrue
• E [m] = mtrue
•
mtrue
•
a¡ xSwu³jLwix,g § ocfnWpÈwifn?w7ªÜhifnWokgÒp Wn,¯dn,c/n]!bCwi W£¤g:n?w _ p/w/wmc¿wmx,gUhig:piok Wgf©
® cVë £¤c.ºgnCwmghiÓ,higkwwmxWg:pmgUhmgApÈ ,³wip^]
ì
íLãî:ï\x,ðò g:û pmg.hig¿£¤piokcfhy£,fn?w£,wy,zQÓHc?pipÈ¢,À!£¤ ,g*wmcæcwix,ghg:hmhicfh]cfhUpÈe.Ó,À ¢Wf£³ Woy¯ s
¡axWw/wmc
£¤c]
pÈgEpÈwiwmpÅwio:QgApÅwi³e
wi³c?n±wicã¤pmo:hy£
wmxWgUcf ¤wi³ghyp s
e
gepÈfg¯fg:pu£¤e. 4wÈgwihigghynCp/wen, Wc?hmoyex e.jlhic?cfhme gEocfe.Ó,sÍ o:ã x,wmggA£Q© Yn,t c?cfhmnWe pm£,pgh/winPx,gE³cfwmgÓ,hiwmnWe¿wm²:Üfgfwmz cf¢,næ ¤w¿Ó,hiwmcfxW¢¤p
® cV£¤c.ºgnCwmghiÓ,higkwwmxWg:pmgUhmgApÈ ,³wip^]
rÞ
m ± 1.96 · diag (Cov (m))
1/2
•
•
•
k·k2
1
kd − GmL2 k1 = min kd − Gmk1
m
4ó DöL÷ 3 5 ø#= 3 ÷ö 5 5 õ óéôõö 5 õ <ô <ø 84õA@E÷ 3 øL÷ 3 ô
÷ ø
XHJG ! *M ! 4KL7MNPORQTS
ë
þ î:ð [,î:ðñ W Y[ ï\ò ýkñ4îAò û ,ïXW Qí¤îAð þ ñ wm0ß×ge.
w |Sg Î|Wz¤/
x,g|Whi¢SgEg.Ï,wimx,|WgÃ\àWokc?
nW7okg:nCwmnWhy£wmcfnÍcj/ÓSs#c?³ã ¤x,wigUfnC£¤wgÛWn,wEn,ÓH
cfe.n?w c¤£¤g næ³n,gAhEpÈwmhig:eæz
C (x, t)
t
x
0≤x<∞
þ ï\íçîAð þ ñ
á¸4n
wm»¤x,YgE
o:|Hf· pmg]wixWw
/x,g:hmg
0≤t≤T
∂2C
∂C
−v
2
∂x
∂x
Cin (t)
∂C
∂t
C (0, t)
=
C (x, t)
C (x, 0)
→ 0, x → ∞
= C0 (x)
C0 (x) ≡ 0
=
D
zdwix,gUgkݤÓ, o¶wpmcf ¤wi³c?np
C (x, T ) =
Z
T
0
Cin (t) f (x, T − t) dt,
2
x
f (x, τ ) = √
e−(x−vτ ) /(4Dτ )
3
2 πDτ
!ò ýkñHò û ò ûþ/ ïò
vx,mpÅÜf
?wigcfknEhi~kÀ
pms#e·ã ,xW³wiwfn,p:gz,c?f WpQÜfe.g:ng:?£,pÈ ,wihi ge.g:n?wyp0wçwme¿g zwicug:pÈwme
wig#wmx,gºokcfnCwye.³nSnCwçn`Wc
wmc.gApÅwi³e
wig
T
di = C (xi , T ) , i = 1, 2, . . . , m,
Cin (t) , 0 ≤ t ≤ T.
rÄ
þ ¬ ò cfhi gfòCg:î n, gþ0hyÿ ³À
vmÜf
?gkn~k
wmxW· gUá Ê
Z
b
nS£*]ÛWn,³wmgupie.Ó,gcj4Ü<f³ Wg:p z
¬ gkwix,c¤£,p/gU£¤piok Spmp/w/wmx,gU¢Hc?fhi£Qq
r?s Sf£¤hywi ,hmg
«,sè gÓ,hig:pmgnCwmg:hip
¦Ws °wix,gh t xWcfokg:pcfj ã hif ,nWokwmcfnWp
d (s) =
zwmcgApÅwi³e
wigÓWhye.gkwigh
g (x, s) m (x) dx
a
d (si ) i = 1, 2, . . . , m
m (x)
s
ë
XH
M " &/M !
[S S ! -" U
&
í<7 ÿLû{¤Ìf~yî:í kû · ò
¨ ÓWÓ,hmc<ݤe
wmg]wmxWgU³nCwmg:fhyp
di ≈ d(si ) =
Z
b
g (si , x) m (x) dx ≡
Z
b
gi (x) m (x) dx, i = 1, 2, . . . , m
ª¢dÀ
§ /xWghig]wix,gUhigÓ,hig:pmgnCwmg:hipºcfhu£Wwi¿¯?ghin,gp
s§ áÎw]e.³?xCw¢Sg*/pmg
wib¤c
ggg:nWo7wipm³ ,nWhig ÃpmgkwcfjÆs ª okc?³c¤owi³c?næÓSc?³nCwip
b¤gg:o7w n³nCwigfhywi³c?nÒfÓ,Ó,hic<ݤ³e
wi³c?ne.gkwix,c¤£¢Wfpmg:£Òc?n]wix,gÆocf³c¤owmcfnÒÓSc?³nCwyp s
³n
wi gpÈhige
wip/x,cgEjLwmnCx,wmggU? ,hinWwm¯CnWcfcn/nWÓ,p Ó,hic<ݤ³e
wmcfnWpºwmz c
c?¢¤wif³næ.³n,gAshupmÀ¤pÅwige
a
a
gi (x) = gi (si , x)
•
xj , j = 1, 2, . . . , n
n<m
•
ë
•
XH 9SO
Gm = d
mj ≡ m (xj ) j = 1, 2, . . . , n
/S#US !
S & +S !.- &
r:Ø
ò è û ò wix,òdgñ4hÒî:wiò xWû njlcdo Wpm³n,cfnwmx,g¿Ü ,g¿cj wÒnW£¤Üd£¤ SÓSc?³nCwypz4wy¯fg.Ã?³c?¢W
jlÜd ,³g:nW(okwmwicfxWnWp w ³Ü?g:pn*jl ,nWokwmcfn pmÓWfog]/x,oyxp/pmÓWnWn,g:£¢dÀ
wmx,g û ò û ò òdñ4î:ò û
<7{Ìf~yk·
wmcEfÓ,Ó,hic<ÝC
¬ e
¯fwig/g pmgg:o7z,wipi³c?<n.À cjWwix,gu¢W?pÈp jl ,nWokwmcfnWp
m
m (x)
g1 (x) , g2 (x) , . . . , gn (x) , . . .
•
•
g1 (x) , g2 (x) , . . . , gn (x)
m (x)
Ú]ghiÜfgU.pÈÀ¤pÈwmge
m (x) ≈
Γm = d
n
X
αj gj (x)
/³wmx v hife¿nokcdg Ão³g:n?wue
wmhi¶Ý
j=1
Γi,j = hgi , gj i =
Z
b
gi (x) gj (x) dx
a
WZY[\ïò
Ï4,~E
<7L
»dm*|
ÈѱÏHW~kË]³·
c?b¤n ,Ó,wmÓHx,c?gUpmgUnCwmwmgx,hig*Ü¢W fpmpjl ,s nWokwmcfnWpwm ,hin cf ,wuwmcâHg
Ç ÝdxW³¢,³wuwix,gU³n,je.cf Wp ® ³¢Hghmwue.wmhi¶Ý s
•
z
gi (x) = xi−1 i = 1, 2, . . . , m
[0, 1]
•
XH
S S+&/MQ M ! ZU
ë
ì.î Lã ò fû>¯fg
æ þpÅwið ³fò×.e.þ cfühig. fû ðcf,¢Wï fíLÜCñgîéAð wmþ xWñ w ³Ü?g:pnjl ,nSo7wmcfnpmÓWfog¿pmÓWfn,n,g:£
¢dÀ±.pÈÓSn,n,n,
pmgkwu/x,oyxe
<À!|4
¢Sgwix,gUhigÓ,hig:pmgnCwmg:hip:©
<7{Ìf~yk·
pm¬fÓWÓ,fÓ,¯fn hig×c<ݤ/³e
pmg§ g:wiookgwmcfg:n£ cÅjCwmzWwmhixWpi<g׺À ¢Wjlf ,pmnWo7p4wijl³ ,c?nWnWokp wmcf³nWnPp wmxWggfxCwig:£hig:pm£, W³ wmg:/hi³wmwmxU ,hi³gAn,ªEgAwmc h
m (x)
•
h1 (x) , h2 (x) , . . . , hn (x)
Hn
m (x)
•
Ú]ghiÜfgU.pÈÀ¤pÈwmge
m (x) ≈
Gα = d
n
X
αj hj (x)
/³wmx .okcdg o³g:nCwe
wmhi¶Ý
j=1
Gi,j = hgi , hj i =
r!
Z
b
gi (x) hj (x) dx
a
z
û ð,,ï í ñ fî:ð þ ñ ¨ÜfgAnJ7o7wiWcf
mÓ,hyµCp ÓH
s g:|4áÎfj ³Sn,{:gUÌf~y£¤oyfxWc
· cfpÈcSokg±q cfju¢WfpmpÜ?g:o7wicfhypEp*fncfhmwmxWcfn,c?hme
§ c s n s ª pÈgw*cjunWcfn,²:ghic
• km (x)k =
n
X
α2j
Pn
¬ g:nW³n,.cfj mw xg:ÉC Wwmcfn0q
XH S ! - # M U M JQ S &.!
• ProjHn (gi (x)) =
•
ë
z
j=1
i
j=1
hgi , hj i hj (x) i = 1, . . . , m
ProjHn (gi ) , m = di
s
ú $0ûí þ/ & ïò
ð\ï ò û îgu ò?nCî wÆ wiþçcÿ gApÅwi³e
wig w*pÈn,?³g]ÓSc?³nCw Wpm³n,wmx,gÒ<Ü f¢,³g
£,wi,z,fnW££¤c
¶wug s® c(wic
Ó,hmc¤ogg:£]
<7{Ìf~yk·
¡hi¶wig
nW£
s
/³wmx
è g:£¤ Wog wmxWgn?s wig?hifokc?nW£¤³wmcfnWp.wic
áÅ£,g: À
s ¡axWw _ pwmx,gUnWgkÝdw/¢SgApÅw/wix,³nW]
m (x)
x
b
•
• P
m
m (b
x) ≈ m
b =
j=1 cj gj
•
Pm
j=1 cj dj
dj =
Rb
m
b =
(x)
a
gj (x) m (x) dx
Rb
a
A (x) =
A (x) m (x) dx
A (x) = δ (x − x
b)
ú $0í & ð\ï ò û îAW Qí¤î:ð þ ñ ß×
|WyYm|W\U
|l,~¿}~km:µ|dµ f~7|H~ ·
s bdgw
fnWhi£pÈw:fz,gfw nfhmgAocfnWs pÈwmhynCw:qLwmcwyQhig:
b¤g:okc?nW£¤Àfz,e.n,e¿²gEpmg:ocfnW£e.cfe.gnCw
s
ãfnWxW£æpçok¢Sc?gAnWokpÅcfwie.hifgA³nCp0wypºÉ? S n,fg:£¤fhyh s wioÓ,hicf?hife.e¿n,Ó,hicf¢,geæq4cf¢ ÅgAo7wi³Ü?gjl ,nWo7wi³c?nEÉC Wf£¤hywio
á¸xSnÃ<ÜfjfgUo7*wAz?wm³cdwºcf4pÆjloc?cfhundpÈÜfc?g³ÝQÜdzfn, s¿g s wmzCx,cf¢pqÅgAo7wi³Ü?g/ jl ,nWokwmcfnÃs e
wihm³Ý.pÆÓScCpȳwmÜfg£,gkÛWn,³wmg s ¡Íg
•
A (x)
Rb
a
qT c = 1
Rb
•
a
•
•
A (x) dx = 1
A (x)2 (x − x
b)2 dx
_>? ]H& CN
r:Â
qj =
Rb
a
gj (x) dx
•
]° nWgæocf ,£JokcfnSpÅwihif³n wmx,gæÜhifnWokgcj]wmx,gægApÅwi³e
wig zpm<À
z
/e.xW²:ghiwmg cfnæÓ,pUhicfwi¢,x,gÃge ¯dn,s c/nÜhifnWokg
cfj sæã xWpUpæe.c?hmgÃocfe.Ó, o:wmgA£cfÓ¤wi¶
σi
m
X
m
b
di
i=1
c2i σi2 ≤ ∆
ë
ò 0î:í ÿ
ü þSû î ò*WZ
¨hiÏ4³Ü?,jg~fh¿o7wi/cfm
?¶hiwiÀækxJ³~cf
WnÍnW· fo:hiok³gÜ?ÓSgh¢,¢Sgn,g¯ Ü?xWg?p¿pÒchmj]gAokÓHgcfnCwiÀ¤³oyÀæx,¢Hcfghig³nnWÓHwmgAcf£³ ¤¢,wi³Ó,nWx,gndÀdÓ,phigÜd§ â ³c?t Wpm³pyÀª s ,n,¡ÍÓHcfgæ³xW ,<wmg:Ü?£ g
ÛWc£¤/n,pmgAn,opczn,Üf*g:fhmp¿wmgAx,£Ãgg.j?uÓ,o7fwm ,p
c?e.hmoÀ gUcfs n¤cÛWjLhiâ e t c?h.£,nSg£ndÀoknCwwme
c.p
gApÅwi¢H³e
cf ¤w.wigUwix,¶wyg!pupme.³²:g]cf Wwin?cÃwyfp¿pi¢CpÈgAÀ pmpwmx,£,gfe
ocfe.fgÓWnSnd£À
¡pie.gÓ,ocfg:nCpwmhicfgU/oe.fng:?xSpÈ WhmnWg:£¤e¿gfg:zdnCwiwixWp.¢,wu ¤p:wÃz,xS<wuÜfe.g c?pÈnÙw ,Ó,ÓHs gh±¢Sc? ,nW£ÙcfnJwix,g nd ,e¢HghÃcfj
¬ wg:£¤f pmH ,g:hihmgg:e.n?w/gnCc¤wypoe
g:<p À s ¢Hgwy¯fg:nÍw£¤ 4ghignCw]wi³e.gApzQ¢, ,wUwÒe.cCpÅw ÓSg:h]wi³e.g
®f¢,céÀg:pÈcfwm ,e.£wmºgApg
wi£¤x,gApÈp.fÓSnc?³ ¤wmwmgApÅcfwinJ³n,£¤ ,ÓWe.hmÓ,c¤okn,gA£¤ , WhipÈgn,wiÍxWwmwx,g?ooocfcfnC ,winCfwie¿pÒjlnWc?fhEn?w*nWwm£ÍhyhinWg:fpmÓHpmcfcfn,hmw
gAÉC Wwi³c?n?pcf ,h/e.c¤£¤g']
•
•
100
20
•
ë
ó4DöL÷ 3 Eõ ÷= 5 ÷/õ>= F E õ: 8 QóéôEõ: 5 ö 5 ôEõ 5 õ JH G & O +S &.!TSU # ! - S ú ò ð þWû ò
Lò ùþSû Ù þ Sü |dµ»¤ S »W~¼*~yy
à,
7\
| *´ç~ y~E| m~yQ
Y7 Ï4,~|WÌ~ki~õC~
|47E
Y7
7l#,
iµC
|HÌ#µC.
|4\7 ~|WY7ê ~7
7W
mµC
|4#
Y7 #|4Ì
m~
m~y
}~kyêU|W»¤
y~ky
»¤|W »W~ бÌf~Î~7¿êu|H7»W~y̱iÐ W ok c?nSònW£¿%pmoñ pÈcfwmðlî: ,n,ð e.þ±ñ nWcfp#j×ùScfwmù xWj g¡azfÛW/hy³wmpÈx,x¿w g:n,hmgcfokwic?³wi ,³c?e.p#n*wmnWxW?pÒgupLcfjn*?pÅwmw×x,z nWgucfbdn,zQÒ²:higÚ g:hipmcãÓSpmgAx,o7n,gwic?f³Ü?hm ,g:geÀfh#zQzÜffnWnW³£ ,£ g?zwix,z wmgxWn
g*wiwiÛSx,x,higgpÈe
w þ0wmhihiþScû okuòg:p&p
òdñ ûþ ò òdí ÿ þ ðñ Sò û ò cj p
s
r:¥
m×m
m×n
q = min{m, n}
S
U T GV = S
G
m×n
U n×n
V
σ 1 ≥ σ2 ≥ . . . ≥ σ q ,
σ 1 , σ2 , . . . , σ q
G
p
S
U V
σp
G
G† = Vp Sp−1 UpT ≡
U p Vp
Sp
p
X
1
Vj UTj
σ
j
j=1
p
¤t îAï hi hmÀ
c? ¤ñ w/þ wmxW g:pmý7gî o:ok ,wi³c?nWpn ¬ wm¢çq
UZX8
+Fe+^a%
,'*/Da6W
e =Fh
@ E) Fh6W
2'F-2 Z
P @ E) F/= \ H
6W
[ ?3e
&-%+`a%?^ a"$8 +?^
XFF$"9MD0-
[ `^G+?^UH
HX%7&?>-,?
,'>LH?bGF
ë
ïpmð g¤n,î:cð wyþ ñ wm.cfnþ ü¢Hî LcÜfò g]fnW£Ã hig:o:HwmxWwºwix,gnC W³QpmÓWfogÒfnW£±ocf ,e.npmÓWfog § hifn,fg<ª
cj e
wmhi³Ý fhmg
fnW£
N (G) = {x ∈ Rn | Gx = 0}
G
R (G) = {y ∈ Rm | y = Gx, x ∈ Rn } = span {G1 , G2 , . . . , Gn }
ò þWû ò
ù |4Ì
Ul,~³~y<7º »Wi~7
»¤Y
|ÍÎ
ÅÑU¿|W¿»¤ê ¾¸|H
7 ò
û pmî gþ wmx,ü/gUî LÓWòhmg:ÜC cfð Spº?ínWLcïwiî:ð\òwm cfn0 z,ðlpmî c¿ wmxWò
w î p Qí û ò /³wmþ xæïíLhyî:ð n,þ ¯ ñ nS£æb¤]Ú*z,gkwyoUfp
e.¢Hg:cfÜfn g s Às ÿ ¤î ?ò g]e.g:fnÃwix,gÜfg:okwmc?hpmÓWfog fnW£Ã¢dÀ þçÿ òdï ?ò ºg
ã¹x,
pe.| g:EnS¼¿p~ wmºxWw~k|4kÐf· sºt c?e.e¿g:nCwip:q
ã xWp/e.gAnWpwixWwund ,0pÈÓSfokgcfj ¢Hcwix nW£ fhmgÒwmhiÜC § ¢Scfwmx ª s
e.ã xWc¤g£¤nÃg:çwix,pÈÓSgfhigokg?qpEÓHghmjlg:o7wokc?hmhig:pmÓSc?nW£¤g:nWokgu¢HgkwÅgg:nÃÜfgAo7wicfhyp×n±£,wypmÓWfognS£
ã xWp/pwmxWgU£¤gA s ¤whig]gcf ¤wucfjçwix,gUºcdc¤£,p^]
Ôo³g:cWnCz¤wue.gÒpÈwmwmhi ¶HÝ xS§<hiÜfggue.wigc¿e*£,¢Sg:g:h 4®/³³wm¢Hxæghm£,w^]<wyª s g:hmhicfhnW£±³³ÎocfnW£¤³wmcfnW³n,¿cjçwmx,gUokcdg ¿
rank (G) = p
span
{V1 , V†2 , . . . , Vp }
m† = G d
G=
σj Uj VjT
ê
N (G) = span {Vp+1 , Vp+2 , . . . , Vn } R (G) =
j=1
N GT = span {Up+1 , Up+2 , . . . , Um } R (G) = span {U1 , U2 , . . . , Up }
Gm = d
2
p
X
G
m×n
Rn
p
Rm
p=m=n
•
G
GT
•
Gm = d, m = G−1 d = G† d.
•
•
«Á
{0}
ò û pmî gþ wmx,ü/gUî LnWòcwiwmðcfn ?íLïî:ð\ò ðlî s ò
î Qí û ò þ ïíLî:ð þ ñ ãx,
pe.g:| nSp¼¿wm~ xWºw ~k|4kÐf· sÆt cfe.e.gnCwip:q
ã xWp/e.gAnWpwixWwund ,0pÈÓSfokgcfj pwihmÜdf\z¤¢, ,w/wmxWwucj pnWcw s
® ghig pwmx,gU Wn,ÉC ,gg:?pÅwpiÉC Whig:ppmcf ¤wmcfn s
gkÝ,fokwmÀ*³j pº³n
wix,gÒhifn,fgucfj s
¨ nW£ p×wix,gÒgkÝ,fokwºpÈc?³ ,wmcfn
wic
¤w p/nWpmgnWpm³wmÜfgÒwmc
ndÀ
wihifnWpmwmcfn /³wmx
m† = G † d
d=n<m
•
GT
G
•
m†
•
m†
•
m
Gm = d
G
d
d + d0
d0 ∈ N G
†
ò û î þ ü/î Lò ð ?íLïî:ð\ò ðlî ò
î Qí û ò þ ïíLî:ð þ ñ ã ß×x,
»¤p¿e.| g:]nSp | E¼¿~ k~|HsºÐft · c?e.e¿g:nCwip:q
ã xWp/e.gAnWpwixWwund ,0pÈÓSfokgcfj pwmhi³ÜdYz¤¢, ¤wuwixWw/cfj pnWcw s
® ghig pu.pÈc?³ ¤wi³c?ncfj e.n,e ,e În,cfhie s
p/pÈc.
pÈc?³ ,wmcfnwmc
jlcfhufnCÀ
¨ nW£
s
b¤c p/nWpmgnWpm¶wi³Ü?gÒwmc
ndÀ
wihifnWpÈwi³c?n
/³wmx
s
p=m<n
GT
•
G
•
m†
2
•
m† + m0
Gm = d
•
m† + m0
d
m0 ∈ N (G)
m0 ∈ N (G)
ò û î þ ü/î Lò ð ?íLïî:ð\ò ðlî ò
î Qí û ò þ ïíLî:ð þ ñ ãx,
(pe.|Hg:ÌnSß×p
»¤¿| ]| *¼¿~ sºkt ~cf|He.Ðfe.· gnCwip:q
ã xWp/e.gAnWpwixWwund ,0pÈÓSfokgcfj ¢Hcwix nW£ f hmgn,c?n?wihmÜdf s
® ghig pu¿³gAfpÈw/piÉC Whig:ppmcf ¤wmcfn s
¡gUxW<Ü?g]wihmc? ,¢,g³næ¢Hcwmx £¤hig:o7wi³c?nWp s
p < min {m, n}
•
•
G
m†
•
«¤r
GT
H *M & JM S9M 9S#U) Q ! # ! - S 9S S+&[MIQ S '
* S &/US
Q !
*þ [ û ð,ñ fò ,ñ ÿ ò :þ ïíLî:ð þ ñ
p
ò %ñ ðlî:ð þ ñ s ù ã xWg þ0ÿ òCï û ò Aþ ï\íçîAð þ ñ ¤î û ðY jlcfhwix,g
Ó,hicf¢,ge
ß×
|Wk~ »W~k|4y~7·
z¤/x,oyxp Å WpÈw ¶j xWfpjl ,çocf ,e.nhynW¯ s
áÎj
zdwmx,g:n
ã xd Wp:zwmxWg!¢,fpÃnÙwmxWg!fg:hmg:hif³²gA/£ ³wmndx Üfghypmg!pÈc?³ ¤wi³c?s nÙp
ob¤c³e.Ühi ffhmnWÀfokz¤gÒn±e
wix,wmgEhi³Ý±o?pÈp gÒcj £,gnCwmof³À±£¤pÅwihm¢, ¤wig:££,wy/³wmxæÜhinWog z¤wmx,g
fhmhmgÒc?e okc?gpmÝdguÓHwig:c okwmgAzd£Ü<g]fo³ Wfg:³pUeÖ?g
cCc¤cf£
¢¤wyhig:pmncf ¤wiû ³c?ò n
Aþ cï\j0íçwiîAxWð þ ñw/okî:cdò cf hyî £¤qEnW³j/wigfz?£,cwmfxWfgcfhinS/#pmggnCn,wicfhmw À s
Gm = d
Rm = G † G
• Rm = Vp VpT
•
•
Gmtrue = d
G
E [m† ] = Rm mtrue
(Rm − I) mtrue = −V0 V0T mtrue
•
E [m† ] − mtrue =
V = [Vp V0 ]
2
Cov (m† ) = σ G
•
ë
In
†
G
† T
=σ
2
σ2
Pp
Vi ViT
i=1 σi2
.
1
H '
ZU
!
M J Q ! #
S S &[MIQ S S /US Q ! ZU
') * +&
ýkñ î ðïðî þ ü òCñ ò û ,ïð,fò ÿ ýkñSò û ò þ ïíLî:ð þ ñ
Ï4,~ f~ÐÃm~k7»¤ \k·
cfh pmÉC WfhmgÒe
wihm³Ý
s
ã p xWp³nWpmÓ,/hmx,gAgphiwmg xWg£¤gkÛSn,¶wi³c?n0qºwmx,s gocfnW£,¶wi³c?nnd ,e*¢Sg:hcfjfn e
wmhi¶Ý
Ôcwigfq#³j zdwix,gEokc?nW£¤³wmcfnænd ,e¢Hgh/pn¤ÛWn,³wÅÀ s áÅpwix,p/n,cwi³c?n SpÈgjl , ]
áÎj £,wy Üfg:okwmc?hÆpÆÓHghmwm ,hi¢Hg:£
wic zChig:pm ,³wmn,nÓSg:hÈwi ,hi¢Wwi³c?nÃcjQwix,g]?gn¤
g:hif³²gA£±ndÜfg:hipmgÒpmcf ¤wi³c?n wmc z¤wmx,g:n
•
•
•
•
n×n
σ1 /σq
G cond2 (G) = kGk2 G−1 2 = σ1 /σn
m×n
q = min {m, n}
G
σq = 0
d0
d
m†
m0†
«f«
km0† −m† k2
km† k2
≤ cond (G)
kd0 −dk2
kdk2
.
ë
0î ðï\ðlî ý íLò
aW~7~ºÑkfȽ~ykº7Î?k YÐf·
áΣWj wi s pºnWcwÆwicdchifgfzfwmx,g:n
wmxWgÒpmcf ¤wmcfn±ppÅwy¢,guwicÓHghmwm ,hi¢WwmcfnWpƳn
áγwij pmg³jSxSfp pÈe
zdwmx,¤g:hmokgc?e¿pÓHcfnWÓHgcnCwiwigpLnCwm³nwm4x,jlg/c?h£¤nWhig:pÈo7wiwif³¢,c?³nE³wÅcÀ jHs pÈáÎn,w/f Wp£¤fhLe.Ü?³g:nWo7wipmcfx,hyg:pç£ocf³jLhihmwigAx,pÈgUÓHcf£,nWwy£¤
n,.wic.pme
0pÈn,? ,fh/Ü ,g:p s
áÎfj nW£wix,ghmgAz?pÅwAfz#nW£Eºgwix,pÈghie.gÓ,p#³g棤okpmg:o:fh#hy£¤£gwm³x,nWgæg:pmwie.³c?fn*³/¢Hpmgk³wÅnWfg ,g:n h*mpmÜ<e.ff³ W³g:p¿pm³nWnWf£ ,wmhihg:Üw*wm ,x,g:gp
ÓWhmc?¢,³g:efpc?n,gcj#pÈe
f³gh/hyn,¯
/³wmx Èfcdc¤)£ Òpm³nWf ,h/Ü ,gAp s
áÎÜj f³ ,gApfnW£wmz/xWg±nWhi£Pg:pÈwiw:x,zgºhigæg±xWp
<nWÜfg.cwiokcÍg:£¤hÃpmo:£,ghy£³n,gApÈc?wie¿³c?g±nJc¢Hj/gkwmwÅxWggeæg:nz#¢,È ¤pme
w¿/x,oypmx n,cffn, ,gAp ]h
ãpme
xWp0g:pÈfn,£W?p# ,wmc¿fh/higÜf W ,fg:hmp²:Ó,hiwmc¤£¤cfn. Wog:pip/pm , g:p î sû íá¸nñ¤ndî:À.ò oÿ fpmgfzd ndÀ.§\e.ã bdgkwi]x,Úc¤£
ª/pmwmcfxS ¤wwm£,cfn pios fhi£,p
•
cond (G)
•
σ1 σp
•
σ1 σp
•
σ1 σp
H
KLXMINPOZQJS # M 9 M S JS !
& ZQTSN
ð\ñLò
û þ þ û !"#þ0$&ÿ %òdï ')(*,+.-/0(+.132
(454 67## 89:%
<;
¨£¤g<wmhi7g:<okÀ¿wifg{¢,e
Ìf~y³g?nS· Ó,hmwmc?gAÓSp#g:jlhÈhiwÅcfÀ±eÖ/c?x,n,oygx ¯dn,pucc?/¢Wn
pmgÓHhicfÜ<fnC¢,wºgEwic¿£,fn,wy cswix,ã gx,hg:pmgcfn,£,wi
¯dn,hicgU/ WnÃpmg:ÓW£wmwix cÃg:zCpÈwm/e
³wmxwmg
*pmc*wmhywixW<Üfg:wAQq Ó,hmc?ÓSg:hÈwÅÀ
cfjLwix,gUe.g:£¤ ,e s cfh/gݤfe.Ó,³g?z,gkw/wmxWgUÓ,hmc?ÓSg:hÈwÅÀ±¢Sgwihi<Ü?g4wme.gfz
ã hy<ÜfgHwi³e.gUp/fÜfg:n±¢dÀ
¡gEofn n,g:fhm²g¢dÀÃe
¯dn,.ÓWwixWpupÈwmhyfxCw n,g:p s
cfÚ]nCjLwmpmwicUox,hmhigUggwm?Ó, ,²hicfgf¢,¢Ch#ÀgpÈeà ,g:¢Seªºpm¢HÉCpug: W£,okfc?£¤hmnWgAn,ppÅ]wy§ okwmnC ,x,w ¢Hgs g:e.pyª g:£,n¿³ ,/e xWoyn*x.ÒpigÉ? S?pmpmhi ,g e.§ og ,È¢Spmg<cª /nWn,£*g:pipÈp , ¢4§ ÓW£¤Üdhy£¤e.n,gÒwmg¶wh
Sã pÈhygA£nWpme.næ¶g:w*pÈwmwmx,e
ghiwm<n,À mpÈcfn,c/!n,pmg:ÓHpig:p ok ³s ÛWgA£ÓWwmxWp*nW£ocf³gAo7w*wmge.ÓHcfhy£,wy wmcÍ¢Sg
ë
`
•
t=
Z
`
dt
dx =
dx
•
•
•
«¦
Z
`
1
dx
v (x)
ZW Y[ã \x,guÛSïò f ,ù hi g/. jlcf,hÆñ wmÿ x,pºgkù ݤÓSg:hme.gnCw § fpipÈ We¿gg:foyxÃpm ,¢WpiÉC Whig/xW?pºpm£,g:p×cfj0³g:n,wix z
pmc*wix,gEpm³²:gÒcfjçwix,gUfhm?gÒpiÉC Whigp ªkq
1
3×3
11
12
13
t4
21
22
23
t5
t8
31
32
33
t6
t2
t1
t7
t3
ZW Y[t \cfhihmgAïò pÈÓHù cfnS. £¤³,nWñ ÿ e
wiù hm³Ýcfj£¤pÅwynWog:p § hicupcj higÓ,hig:pmgnCwU£¤pÈwifnWokgApUcfn,
okn,c?
hmhipÈg:À¤pmÓHpÈwmcfgnWe棤qn,]ÓWwix0zfokc?³ We¿nSp wmx,g/hy<ÀE£¤pÅwynWog:pfohmcCpmpLg:?oyx¿pm ,¢,¢,c¤oy¯,ªLfnW£*hmgApÈ ,³wÈ
G
Gm =
1
0
0
1
0
0
√
2
0
0
1
0
1
0
0
0
0
0
0
1
1
0
0
0
0
1 0 0
0 1 0
0 0 1
0 0 0
1 1 1
0 √0 0
0
2 0
0 0 0
1
0
0
0
0
1
0
0
G
0
1
0
0
0
1
0
0
0
0
1
0
0
1
√
√2
2
s11
s12
s13
s21
s22
s23
s31
s32
s33
=
t1
t2
t3
t4
t5
t6
t7
t8
=d
hi ,higÒn!°]³winx,¢Wg*wmpmxWgghigEÝ,Üf£¤gfq³e.hig:Ó,n okwmgwmc?xWhmÛWÀ p g*¬ Ç jlcfÝ,hÒwme.wmx,¢ Ó,ã pÒg cdgkcfÝ,pe.z,£,Ó,c*g wis x,nWg¡£ jlg¿cfn,cg/gA£!³n,z4wiSpmcÃc
q Û,wix,Ý!pÒwix,pg¿hyÓWnWwi¯x s£¤g¨ ÛSpiokpm ,gnCe.w ³s n,Ôcº g
m=8
ë
n=9
?]^ $]-,
\ ^
];? ]6"hV
']?^
H
U) &/S!S
'
QQ U S &
ZQJS#N U
ã ,x,î g:pmgû Ó,ò hmc?¢, gò e
pæhipmgÍ£¤ WgÍwicP ¶¸okc?nW£¤³wmcfn,n, cfj ê
yàfàW
<~yÌÙÎ
ÙJm|
Ìf~ ¤ºwÓ,~hi|H?o7wiÐo:àHm
?³ÀUk³~pmÓS gA ¯dÏ4³,nW~yW
z<mwm~kxWYgyÀU¢H ÐgxWzCwi<x,Ü?ggÆÀ³f¯?hmgºgº³n,ÎcÓSw#cCpȳgAΣUÓScCÓ,pÈhigAcf£Q¢,zg³e
¯?gÆp sLwix,¨ g ,® wmx,³c?¢Hhigp hmÓ,w×hie
g:pmgwmnChiw³Ý s
«Þ
G
x,higgÒhyÜ<fhyoy³xd£æÀ¿fcfp jLpmcfhmwipºjlcfs hu*Ó,hicf¢,geÖ/³wmx pmÀdpÈwmg:e
s×ã xWg:pmg]c?hi£¤g:hgkݤÓ,hig:pipÈcfnWp
/¶wix
zdwmxWgUÓ,hmc?¢,ge2p ðï ÿ ï ³ ÎÓScCpÈgA£ s
/¶wix z¤wmx,gUÓWhmc?¢,³g:e2p þ0ÿ ò û ¤îAòdï ¶ÎÓScCpÈgA£ s
/³wmx z¤wix,gUÓ,hicf¢,ge2p ò Sò û òCï ³¶ÎÓHc?pmg:£ s
ë
0ò Hò û ï ýkï\ï'& þ ò ÿ û<þ ïò
¨piÏ4,n
0~E/c?¤Ó¤³wmWwmx! oJp
gpmݤ³iÓSw
fg:hmnæ³~ke.
wmx,g· nCgwÆe¿p#£,ÓS£¤g:hÈg jlsc?hm¨ e.gAÜ£*hi¢dÀ¿¢,£¤g³Üd³nC£¤wmg:n,nWEpm¶UwÅÀok³hiof³xCgw Wpmpmcfn, ,EhyokgÜfpug:hÈÓ,wio:fodg:£æwmhynShicfpÈÜ? WgnWhm£
wmxWw/gÓHcfgkjnCw#wixWp/fc?¶jHn±cwijSx,wmgUx,g/hmokfxChyw/okxWgff¶nWj £cj hy<wmx,À¤pçgEÓSof³hypiokpçgwix,s hicf ,?xEwmxWgpm¶wAz/x,ghigºwmx,g:Àhigºe.gAfpm ,hmgA£
jlpm¬ c?³wÅh/g:À fwmpmxW ,gEhigpÈc?s ,nWhifog]g:punCowmcfg:nW ,pÈnC³wmwÅg:À hio³c¤oy¯d/zWpÈnWgÒ£ jlhicfe wmx,g ¸Ý¤p:zW SpÈjlc?n,h £¤gApÅwi³nWwmcfn³nCwign¤
ã xWg×e.cd£,gjlc?hQwmx,p0ÓWhmc?¢,³g:e okc?e.g:p4jlhicfeV£¤ 4hyfo7wi³c?nÒwmx,g:cfhiÀHq
Gm = d
• O
• O
1
jα
1
jα
j→∞
• O e−αj
0<α≤1
α>1
0<α
•
x
−π/2 ≤ s ≤ π/2
m (θ)
d (s)
•
−π/2 ≤ θ ≤ π/2
d (s) =
Z
π/2
(cos (s) + cos (θ))2
−π/2
ò ûþ/ ïò
dθ
θ1
d(s)
s
θ
m(θ)
s1
Ï Æ
*i
f³~k*·
wiã ³c?xWnægU³jlnCcfwmhig:nWfpmhi¶£±wÅÀ Ó,hicf¢,gs eæq#fÜfg:n pÈc? ,hiog³nCwmg:nWpm¶wÅÀ
«Ä
ds
•
d (s)
m (θ)
zSocfe.Ó, ¤wigwmx,g£,g:pÈwmnW
sin (π (sin (s)
π (sin (s) +
•
•
ã nCxWwmg:gnWpÈnd³ÜfwÅÀg:hipmgºÓWhmc?s ¢,³g:eæq0fÜfg:n*£¤gApÅwi³nWwmcfn¿³nCwignWpm¶wÅÀ zfocfe.Ó, ¤wigwmx,g/pmcf ,hyokg
áÎwo:n¢SgEpmx,c/nwmxWw/wmx,gUndÜfg:hipmg]ÓWhmc?¢,³g:e2p/pÈg:ÜfghiÀó³YÓHc?pmg:£ s
d (s)
m (θ)
ò ûþ/ ïò
ÏW
*¼Em~\ ~æÏHW~Um
f³~.·
Ú]pmohmgwm²g*wmx,g.ÓWfhinCfwme¿c gwmg:pÈhÒ ,£¤¢Wc?³nCe
wmg:hmnÜfpcfjLg:ÉC Wfçpm³²:g nW£!wmx,g
£,wis £¤cfe
n
ã xWghigkjlcfhigfz,fnW£³gw z ¢Sgwix,gUe.£,ÓSc?³nCwipucj wmx,g YwmxæpÈ ,¢W³nCwmg:hmÜfp:q
•
−π/2 ≤ s ≤ π/2
•
•
−π/2 ≤ θ ≤ π/2
∆s = ∆θ = π/n
n
s i θi
Ú]gkÛSn,g
i
si = θ i = −
π (i − 0.5) π
+
, i = 1, 2, . . . , n.
2
n
Gi,j = (cos (si ) + cos (θj ))
•
2
sin (π (sin (si ) + sin (θj )))
π (sin (si ) + sin (θj ))
2
∆θ
ã xd Wpͳj z4wmx,g:nÍ£¤zpmohmgwm²:wmcfnfz nW£ wix,g.e¿£¤ÓHcfnCwhi ,g?³Ü?g fnW£ z
?p³n t xWfÓ¤wmg:h ¦,s
mj ≈ m (θj ) di ≈ d (si ) m = (m1 , m2 , . . . , mn )
d =
(d1 , d2 , . . . , dn )
Gm = d
òÔucPº g/o fn*ûþ/g Ý,ïò
e. ³nWgÆwix,g/gkÝ,e.Ó,gÛWg:pcfn*wmxWgºwigkÝdw t ÚJjlcfhwix,p#Ó,hicf¢,ge sLã xWp
ÛWÓWgÍwmx0zSÜfwmg:x,pg:n n4cfÓH_ ¬ gnæwiwix,fg¢ ã gݤcCc?fe.p Ó,Ç ³gEݤfÛWe.³g Ó,³gA p oyxWÓ Þ jlc?<ghÝ,gA£¤e.¶wiÓ³nWr _ ssu® chipÈgwæÜ?g?hA£,z,£ax,g:wihmx,g g_ puokfcfn hihig:g:?o7wypÈ£À
wmc.<À±x,g:wi³c±Óæ¢,/ ,³wmx £ ¦ wm¸xWÚ gÓ,e
cwmwiwmhm³n,Ý s /¶wix,cf ¤wcCc?ÓWp s fpmo:³À?z,wix,g:pmgwicdcfpºg:hmg¿£¤g:pmfn,gA£
$] CN
G
UZX:
+-U ]a% '
e+e,%(] \ 4=-?: ]a%GPL-?:a
)?^ ZOW
@ ?^?E+Uh$^&h%VOI?^6W
FG \ H6 -gY \ H6 ?^-OC1T
: C12 V%I]a%?26V% - YACCC
%7 ?^
-OC <D]h%?26%7 Y!%7 ?^
-OC1T
:2'OW
[ `'+Hf
G (s, θ)
g($^/ ?^=F-
\ H
4Fh
e =Fh
)
.Fh
«Ø
ë
ó4DöL÷ 3 B 5 ;Dôõô @ ÷ < 35 ö 5 ôEõ
XHJG , -" * 9S ZQTM & M ! M 'NPOZQTSN S !M ! (* TM ú ð ã¬x,~ÎcCµfpÅp.»¤w#³e.okc?7g:e¿nSe.\p c?
¸n|Hwi· ,e.hmgknÙwix,c¤nJ£³p YãÓHc?³¯dpmg:x,£Pc?n,Ó,chiÜcfhm¢,g:fgeä ,³hinC²:wmcwi³c?n0zAg/¶x,ÎÓHoyc?x¿pmg:pL£ e._ n,cfgAwmÜ<h
wm¢dgAÀ £_#Ó,n¿hmc?ocf¢,nCgwmegÝd w s
cj cf ,h/ÓHc?pipm³¢,Àó ÎÓScCpÈgA£
z, s g s z¤e.n,³e.²g
zWÓ,hmc?¢,ge2¢dÀ4q
âÆhmc?¢,³g:eæq#e¿n,e.³²:g pm ,¢ ÅgAo7wwmc
âÆhmc?¢,³g:eæq#e¿n,e.³²:g
pm ,¢ Åg:okw/wmc
âÆã hmxWc?p/¢,³g:peæwmxWq g § Eÿ [ð+$ \ Æþ ñò ÿ þ ïò
û ò
Hî íLï, Qû íð ¤û î:ò ð þ ªñ e.cfjL³nWwi³x,e.g²cfg hi³?³nWf4Ó,hmc?¢,ge s s
âÆhmc?¢,³g:eæq/ÛWnW£e¿n,z¤e
jlc?±hucfpÈc?j e.g pm ,¢ s ÅgAo7wÒwmcokcfnSpÅwihif³nCw
s g*jl ,nWokwmcfn
Gm = d
kGm − dk2
•
kmk2
•
kGm − dk2
kGm − dk2 ≤ δ
kmk2 ≤ •
•
2
f (x)
λ≥0
L = f (x) + λg (x)
2
kGm − dk2 + α2 kmk2
g (x) ≤ c
ú ð ¨Ó,hi~γµfnS»¤cok³j#Ó,wm7³xWgg*cf\j¢H
Lc|HÜf· fgUhyÓWnWhmfc?g¢,³e*g:e
,³pwmÓ,hi³gUgg:hyp:ÉCq ,ÜgnCw] WnW£¤gh]e.³£ hig:pÈwmhiokwmcfnWpuwmxWfn,¯¤p/wmc±wmx,g
pÈoã wicfxW ,gwm£cfe.nW/fn,hmhm³³À wme
g ÓHcfcnCj wipcfjºwmc
jl ,pÈgnS We.o7¢ wmÓ,Åg:cfxSokn fwpm³wm²:cgÒnWokc?cfnWn¤pÈÎwmn,hygCn?wiw ³Üd³wÅÀ s ª zçjlcfhEpme*cfe. WpÅg w.c¤oo ,h*§pÈw*cæwix,gg
¡ocfgºnCwmo:c? ,nhupmokg WgÆhm/Ü?g:xCp À]s wmxWpLpçwmhi ,g×nUwix,gºo:fpmg×cjWwÅc£¤e.gnWpmcfnWf ¢dÀÒgÝ,e.³nW³n,
Lb,É? S?hifhigun,fwmxWgnWpwighihie.gÒphmg:nÃwiwmx,g:£gÛS³j hipÈwÆgwÅwifc¯fgÒÓ,hihmcfgA¢Wok³Ó,g:e.hmc¤po:nSpº£Ãcfjg]s pmgguwixWwwmxWgÒ?pmpmc¤okwmgA£
³×ã ÛWfxWgAhm£Ãpcfo Sg:ffpºnpÈÜwf¢Hpi³g*ÉC , WgA WpnWhic£¤g:j gpÆhyÓ,pÈwmhifcdcfc¤¢,Üfg£geÖ¢dÀæwmhywmfnShy£¤£
fgoy³Y¯dcCc ³pmnWpÆ
¢HcjLgkwmwÅx,?g¿ogoÜg: ,n±hi? ,wiokx,g¿À*g]ccj×j0nWwipÈwix,wix,fg*g]¢,e.pm³e.³wÅn,cCÀÃcfe¿cwmx,j0²gAwigA£Ãx,£!gÓ,jl ,hi Wcfn,nW¢We.o7³wig:c¤³ec?£dn s
nwmx,gjlc?hmecj#*ÓSwmx £¤g:ÓSg:nW£¤n,
cfn z c?h s
•
f (x)
g (x) ≤ c
L = f (x) + λg (x)
λ≥0
λ = α2
•
x
•
•
α
α
δ «!
α
ë
ó4DöL÷ 3 B 5 ;Dôõô @ ÷ < 35 ö 5 ôEõ
XHJG , -" * 9S ZQTM & M ! M 'NPOZQTSN S !M ! (* TM ú ð ã¬x,~ÎcCµfpÅp.»¤w#³e.okc?7g:e¿nSe.\p c?
¸n|Hwi· ,e.hmgknÙwix,c¤nJ£³p YãÓHc?³¯dpmg:x,£Pc?n,Ó,chiÜcfhm¢,g:fgeä ,³hinC²:wmcwi³c?n0zAg/¶x,ÎÓHoyc?x¿pmg:pL£ e._ n,cfgAwmÜ<h
wm¢dgAÀ £_#Ó,n¿hmc?ocf¢,nCgwmegÝd w s
cj cf ,h/ÓHc?pipm³¢,Àó ÎÓScCpÈgA£
z, s g s z¤e.n,³e.²g
zWÓ,hmc?¢,ge2¢dÀ4q
âÆhmc?¢,³g:eæq#e¿n,e.³²:g pm ,¢ ÅgAo7wwmc
âÆhmc?¢,³g:eæq#e¿n,e.³²:g
pm ,¢ Åg:okw/wmc
âÆã hmxWc?p/¢,³g:peæwmxWq g § Eÿ [ð+$ \ Æþ ñò ÿ þ ïò
û ò
Hî íLï, Qû íð ¤û î:ò ð þ ªñ e.cfjL³nWwi³x,e.g²cfg hi³?³nWf4Ó,hmc?¢,ge s s
âÆhmc?¢,³g:eæq/ÛWnW£e¿n,z¤e
jlc?±hucfpÈc?j e.g pm ,¢ s ÅgAo7wÒwmcokcfnSpÅwihif³nCw
s g*jl ,nWokwmcfn
Gm = d
kGm − dk2
•
kmk2
•
kGm − dk2
kGm − dk2 ≤ δ
kmk2 ≤ •
•
2
f (x)
λ≥0
L = f (x) + λg (x)
2
kGm − dk2 + α2 kmk2
g (x) ≤ c
ú ð ¨Ó,hi~γµfnS»¤cok³j#Ó,wm7³xWgg*cf\j¢H
Lc|HÜf· fgUhyÓWnWhmfc?g¢,³e*g:e
,³pwmÓ,hi³gUgg:hyp:ÉCq ,ÜgnCw] WnW£¤gh]e.³£ hig:pÈwmhiokwmcfnWpuwmxWfn,¯¤p/wmc±wmx,g
¬ ³n,e
.cj c¤ook Whw î ¤î:ð þ ñ û þ ð\ñ4î cj § s ª
ÓwiH¬ c
cf³n,gnCe.wie
p#Ó,ÃcfxWjS?cfjlpÈj W²nWgo7win,³c?c?nn¤pÈÎ Wn,¢ gÅCg:okwmwÜdwm¶cwÅÀ oks ªcfnSpÅwihif³nCzw jlc?h×pÈc?e¿g e* WpÈw]§ c¤guooo ,fhn*/whipųwmwyg wi³c?nWhiÀ
¡ocfgºnCwmo:c? ,nhupmokg WgÆhm/Ü?g:xCp À]s wmxWpLpçwmhi ,g×nUwix,gºo:fpmg×cjWwÅc£¤e.gnWpmcfnWf ¢dÀÒgÝ,e.³nW³n,
Lb,É? S?hifhigun,fwmxWgnWpwighihie.gÒphmg:nÃwiwmx,g:£gÛS³j hipÈwÆgwÅwifc¯fgÒÓ,hihmcfgA¢Wok³Ó,g:e.hmc¤po:nSpº£Ãcfjg]s pmgguwixWwwmxWgÒ?pmpmc¤okwmgA£
³×ã ÛWfxWgAhm£Ãpcfo Sg:ffpºnpÈÜwf¢Hpi³g*ÉC , WgA WpnWhic£¤g:j gpÆhyÓ,pÈwmhifcdcfc¤¢,Üfg£geÖ¢dÀæwmhywmfnShy£¤£
fgoy³Y¯dcCc ³pmnWpÆ
¢HcjLgkwmwÅx,?g¿ogoÜg: ,n±hi? ,wiokx,g¿À*g]ccj×j0nWwipÈwix,wix,fg*g]¢,e.pm³e.³wÅn,cCÀÃcfe¿cwmx,j0²gAwigA£Ãx,£!gÓ,jl ,hi Wcfn,nW¢We.o7³wig:c¤³ec?£dn s
nwmx,gjlc?hmecj#*ÓSwmx £¤g:ÓSg:nW£¤n,
cfn z c?h s
•
f (x)
•
f (x)
f (x) ∇f = 0
L = f (x) + λg (x)
g (x) ≤ c
λ≥0
•
x
•
•
λ = α2
α
α
δ «Â
α
© Copyright 2026 Paperzz