Math496s6LecturesPreMidT.pdf

!"#$% &(')!$*
+,.-
/0%1&2!/'*43
5N76 M?8:O#9<IH;:;:=9A>?GP9A@4M?;C6QBE9D
@SRUF@HTVGJIWIH9<8FM?KLGJF @4IS;A9AM?XY>?8 8
TZX\[D]M?;AG^K09<=[ _a`@H9AMC8
db cfe.gUhigkjlg:hmg:nWokgApq
r?su—#t]g:shmœžv •šShmcdz,gŸ„wipihioyfx0 ,zEnWpi{7oy|WxC}™„~g€y˜ˆkšW~ƒzC¡a‚„€m˜ˆ…?g:†kpm‡ˆ¢W~kf‰*£¤‹g:n0ŠŒz|Žr:¥?ŒW¥f~ƒ¦Ws„’§\¨ ‘l,oyxW~‰
•hi‘e.YŠ”g“ihA‘•© ‡Eª –Q“kŠ”~|H“y~kyz—˜ˆg™„gš•›
«,s¬­‘•\Š”s?…•® |Wfz n,¨ ¯fe¿gug:fh nWs#£±¬ ° •s wmxb¤oys#xW¬ ghic?²nCgwmhAx,z?œˆ{kÀf|Wzd}—#~kcf€yœ ~/rA‚„ÁfÂÀm…?§Y†k«•‡³Áf~ÁW‰*r ªkzd´Ä жµ<rAd« ›Å¸·ºÄ «,¹Erf»¤sƉ.§”Ç ~nC€7Š”wm“yg:‘hȇdwy•¼E˜ˆn,Š ½˜³nW~š*€m~•|WnSYŠŒ£ ¾
š?gkwyp„wmc.wmxWgUx,g:fhÈw/c•jLwmx,gUe
•wÈwmg:huÉC ,˜ˆoy¯dœˆÀ,ª
¦Ws¨b¤Ó,sHhmÊ ˜ˆn,˜ˆš?hygpmoyhmx0›Y—#z4g:Ë]hmœž|•šS{7z|S\Ԁi…:g̕™Ö»W“kÕ׍YŠ”c?…hm|ͯ4z Î…ÃrA¥f’¥?Ø,‘sٍl,~§”®‰.f‘•hi\£,Š”“yg‘hA‡©­Ï4ڏ,~yg…•ÛW€7n,И³wm…ÅgÑҜˆÀ­{7|SÍ}<~šf€yhyf~£¤ W‚•€mwm…fg†‡³œ³~g:‰Üfg7œz
wigkÝdwyª
Þ suÓWt]x,s ˜ˆ—#Wzcfš?«•Á?gœYÁ?zÆ«,ß×s„…§”ljÝ,àHok»¤g¸œˆ‘gYnCŠ”…w|4•‘nW‡ f’œ³À¤~kpml˜ˆ,p„…AcfÌ<j„oÑkcf…e.€UÓ,{7 ¤|Wwy}~wm€y˜ˆkcf~UnS‚„•œ4€i…f˜ˆpi†pm‡³ ,~k‰*g:p 7s ªz0bdá ¨¬ zHâ×x,˜ˆœžf£¤g:œ¶›
Ä s¨å ysWY㠊Œ‰
•hy‘•YnCŠ”…wm|Wc?z0œˆWbdz¤á {k¨]|W¬ }~kzW€yâÆ~Òx,‚„˜³œžf€m…f£,†g‡³œˆ~Ó,‰äx,˜ž,ÏHz W«•~yÁf…Á €7ÞÐs‘•§|H—#Ì.g:hm’Àæ~pȍŒ WW¢W…:ÌpÅwyÆ•ÑknC…wm€˜ž•’œç˜³…AnCÌfwm~hi‡4c¤‚/£¤ W‘•ok€mwm‘˜ˆ‰
cfnæ~k¸wm~c €
˜ˆndÜfg:hipmguwix,gc?hmÀݕw„wix,gšfhyf£¤ Swmg]œ³g:Üfg:œSwixWw/g:e¿ÓWxWfpm˜ˆpmg:ppÈwi•wm˜žpÅwi˜ˆo:•œQokc?nWokg:Ó¤wip s ª
ØWsÇèEœˆspm˜³¨ Üd˜ˆpÅgwihAgzWhAÔuzÒg:Ÿ ™(s Õן„c?cfhmhy¯4oyx,z g«•hyÁ?p:Á z Ä t]s„s§\¨ ã nWxd£ ,hiwi¢Hx,ggUhA™/z ˜³å nWn,7\gŠŒh/‰
˜ž‘p YsˆŠ”s…ª |鑕|H̋{k|W}~k€y~!‚„€m…?†k‡ˆ~k‰*yê
ë
ì
íLî:ï\ð”ñ ò
óéôEõ*öL÷/õ*öLø
ùúrfsˆûr ð\òCüÇ ýkÝ,ñ4•î e.ûþ0Ó,œˆÿ g:íp fî:sð þ sUñÙsî sUþ sUýsñ SsUò sÒû sU ò ssULsUò sþSsUû ssUssUsÒsUsUssUssUssUsUssUs «
rfrfss ¦«ÊÚ]˜gÃÀ okt Wcfœ¶winW˜³gAopugÓ¤•wynWp„£ jlcfè h/g:á¸e.ndÜfg:g:£¤hi˜ˆpmg:g p ã xWsgsUcfhisUÀ ssUsUsssUsUsssUsUsÒsÒsUsUsUsUsssUsUsssUsUsssUsUsUsUsssUsUss Þ¦
r
«¤sˆr ¨ î:ò ¬ û cfwm˜ˆÜ<•wmð\˜ˆñLn,ò
š Ç ûÝ, •e.ò
Ó,û œˆg ò sÒ ð sUþ ñssUsUssUssUssUsÒsUsUssUssUssUsUssUs
«¤«¤ss ¦« bdbCwyc?œ³ ¤wm˜žwipȘ³wmc?˜žnWop„•œ wmc.¨ pmwiÓSx,gAgo7bdwuÀ¤c•pÈjwmg0e gAfpÈwusUb,sÉ?sU S•sUhisg:p sUsssUsUsssUsUsÒsÒsUsUsUsUsssUsUsssUsUsssUsUsUsUsssUsUss
¦,sˆr ¬ î:ò cfûwm˜ˆÜ<•wm˜ˆ n,š ð Ç ûÝ,ò?•îAe.ð?Ó,𔜈ñg sU*þsÒsUñ4î:sð\ñQsUí sUþ sí sU sýñsUSsò ûsU sÒòsU sUûþs sUï\ò
s sU ssUsUssUs
¦,¦,ss ¦« è g: WÓ,?hm£¤gAhipȝ•g:wmnC ,wmhigg h ¬ ¬ gkgwiwmx,x,c¤c¤£,£ p sUsUsÒsÒsUsUsssUsUsUsUsssUsUsssUsUsssUsUsÒsÒsUsUsUsUsssUsUsssUsUsssUsUsUsUsssUsUss
¦,¦,ss ÞÄ ¬v ggnWwmx,ghyc¤•£œˆ˜³²Ac•j#wmŸ˜ˆcffnSoyp ¯d WsUpsU•nWs£ sUv sҘˆsUœ³¢HsghmsUw sUsssUsUsssUsUsssUsUsÒsÒsUsUsUsUsssUsUsssUsUsssUsUsUsUsssUsUss
Þ sˆr â×î:hiò cfûÓHg#hmwm˜ˆg:p,cfñjL$ wix, gòbd% —]fðÚ ”òdñ sÒ
sUs,ñsUÿ sUsýï”sUï'& *þssUñ sÿ sUð”î:sÒð þ sUñ sUð”ñs sUssUssUsUssUs
ÞÞ ss ¦« á¸t nWcpÈÜwi•fhi¢,˜ˆ˜³fœˆ˜³nWwÅokÀÃgc••j nSv £ gè n,g:gAhipȝfc?œ³œ³˜ˆ ,²wmgA˜ˆ£±cfná¸ndc•Ü?j gwmhyx,pÈgUg bdv cfgœˆnW ¤gwi˜³hyc?•nWœˆ˜³p ²:g:£sUá¸sUnCÜ?sghysUpÈsgUsUbdc?sœ³ ¤sUwi˜³sUc?nssUss
ÞÞ ss ÞĨÚ]n˜ˆpiokÇ higkÝ,wifgÒe¿á¸ÓWœˆ³œ³›YgUâc?cfjpmg: £è âםfhin,cf¯C¢,›ÎœˆgÚ]e
gkÛSp o˜³sUg:nCsUwsâÆsUhmc?s¢,œ³sUg:essUsÒsÒsUsUsUsUsssUsUsssUsUsssUsUsUsUsssUsUss
)Ä sˆr ã î:˜ˆò ¯Cû*xWcf)n, cEÜ ð+è $ g: šfþ ,ñ œž•þ hi ˜ˆ²: wi˜³ò
c?HníLfï,nW û£±ð-á¸e.,î:Ó,𠜈þ gñ e.g:n?wywi˜³c?nÜd˜ž
bd—]Ú ssUsUssUs
.Ø,sˆr ã î:˜ˆò ¯Cû*xWcf)n, cEÜ ð+è $ g: šfþ ,ñ œž•þ hi ˜ˆ²: wi˜³ò
c?HníLfï,nW û£±ð-á¸e.,î:Ó,𠜈þ gñ e.g:n?wywi˜³c?nÜd˜ž
bd—]Ú ssUsUssUs
1 2435 ÷7698Hõ*ö 3 ô;:<>=Æö 5 ôEõ öLô?84õA@E÷ 3 øL÷CBED÷/ô 3F
GIHJG KL7MNPORQTS#U
ë
Â
rAr?Ár
ùr Þ
rArAØØ
r"rAÂ!
ù
rA(¥
«,«?«r
«?« Þ«
/.
«fØ
0
«!
V ñL¡að Sò xWû wÒ,•ïXhiWZgUY™º[g\wy•œˆ¯Cï”ò ˜ˆn, š±f¢Sc? ¤w^] ¨ ̕ŠŒ€m~y“kLà4€m…f†‡³~‰ ˜žp/wix,gpmcfhmwuc•jwmxW˜³n,š±™ºgwihi?£¤˜¶›
wm˜ˆcfnS•œˆ³À
wix,˜ˆn,¯f¢Sc? ¤w/˜³næe
wix,ge
wi˜ˆo:pq
Wg:pÈwm˜ˆcfn ¨ nWpm™ºg:h
¨ nƒŠŒ|W}~€yk~uà4€m…f†‡³~‰ œˆcdcf¯¤p„œ³˜ˆ¯fgÒwmxW˜ˆp:q
Wg:pÈwm˜ˆcfn ¨ nWpm™ºg:h
œˆge
¨p s o7wiáÎwu W•pmœˆx,³À?cfz• Wwiœˆ£x,˜ˆpºœˆcCpmc?oy¯ÃxWge.e
cfhiwig]˜ˆoœˆ˜ £¤¯fgcdg:pmn_ wÆÉC ,˜¶wiguofÓ¤wm ,higwmxWg/hmgA•œ
`S<Ü?cfhc•jQ˜ˆnCÜ?ghypÈg„Ó,hicf¢¤›
,g:pÈwm˜ˆcfn §”¨ Ó,Ó,hic<ݤ˜³e
wigAª ¨ nWpș„gh
ë
«
−→
←−
←−
V ñLð Sò û ,ïXWZY[\ï”ò pmå gg/‘pȉxSàHf£¤‡ˆ~ c™urpLc•§ â×jHœžhmgAwi•cCœˆ˜¶ªÆwÅÀUá¸nÃc?n¿wmxWgÒ£¤f˜ˆœ³e.ˆgš?œ³ÀEcfhiœˆ˜³À*w×cf™„jQfwmœ³x,Yzfg•onS<£EÜ?gfjlhizCcf ,e n,gwinWx,œ³˜ˆ˜ˆpךfxCewm Wg:n,pÈw#g:£±hmgAxdokcf ,nSe
pŝ•wihmnW Wp„okow fhin±g:fcfœ³nW˜ wŜ³À À s
wmå xWgE‘‰É? WàHg:‡ˆpÈ~ wm˜ˆ« cfn s ã x,g
šC•e.g
Ó,œž<Àfg:£Ícfn 㠗pmx,c™ ?gc?ÓW•hy£¤
À 7qҚ?˜³Ü?gnÍwmx,g•nWpm™ºg:h:zLpm<À
ë
¤î W Y/\ ï\ò ’‘Y€7Š Ï4,~y…•€7Ðf·.Ï4W~ ‰.‘•\€7Š ê }~y“k¸…€ ‘|HÌ }<~y“Î…•€ ‘YŠžlÑyÐ
ð û ò •î ûþ/ ï”ò
šf˜ˆÜfgn ocfe.Ó, ¤wig
ýñ Sò û ò ûþ ï\ò šf˜ˆÜfg:n okcfe.Ó, ,wmg
¼Š ½~k€i~k|S\Š”‘•\Š”…•|H·µ•ŠŒ}~|
‘•|HÌ
ÛSnW£wmx,gU˜ˆnW£¤gÛWn,˜³wmgU˜ˆn?wigš?hifœ s
ð û ò •î ûþ/ ï”ò
šf˜ˆÜfgn
•nW£
ÛSnW£
ýñ Sò û s ò ûþ/ ï”ò
šf˜ˆÜfg:n
ë
¤î W Y/\ ï\ò ® gAÆwR‡³… `Wac™uŠŒ|ƒpu‘˜ˆnÍ]Ã…:ÌpÈwmgAf£¤À pÈwi•wmgEwix,hicf ,š?x’•n!˜ˆnWpm ,œžwmgA£ ˜ˆn,x,cfe.c?šfgnWgcf Spuhicd£!™/˜¶wix
~y‘
e.E¯dc¤n,£¤cg:™/pÈw/nhmgAx,pÅg:wi•hmw„˜žo7pmwicf˜³c? ,nWhypokzdgÒwi•x,nWg£Ãwmg:wme.x,g]ÓSwmg:g:hie.•wmÓS ,g:hihigҝ•jlwm , ,nWhig]o7wixW˜³c?gn œž£±w²g:cfhm¢Hc¿gÀ¤wºp„wmwmx,xWggUgœˆnS<™ £¤ÓSc?˜³nCwyp s nS£¤gh
™/˜³•wmnWx±£ ¢Hcf WnW£,•£¤higkÀ.wigokhicfe.nS˜³£¤n,˜¶gAwi£±˜³c?nW¢dpÀ±wmx,gx,gAwpmcf ,hyokg s wmx,g:hme
fœHocfnW£¤ So7wm˜ˆÜd˜¶wÅÀ
ýkñ ð Sû òò ûfî ;ò û<ûþþ/ ï”ò
ï”ò
š?šf˜³Ü?˜ˆÜfggnn ÓW•hy•e.•gnWwmg£hyp e.g:?pÈ ,hige.g:n?wÛWnWc•£j ÛWnW£
GIH S S"O ![$U #%&(')* +S &/US ,- +S &.
Ax = b.
•
A n×1
A, x
•
m×1
x
b
b.
A, b,
x.
f (x) ∈ C[0, 1]
F (x) =
f (x) ∈ C[0, 1],
•
•
m×n
F (0) = 0
0
F (x)
Rx
0
f (t) dt
F (x)
F (x) ∈ C 1 [0, 1],
f (x) =
u(x)
0
− (k(x)u0 ) = f (x), 0 < x < 1
u(0) = 0 = u(1),
1
f (x)
k(x), f (x),
ë
f (x)
¦
k(x), 0 ≤ x ≤
u(x) = u(x; k).
u(x),
k(x).
òd¨ï”ï+& òdþ ï” ï+ò & ÿ þ ò ûÿþ ï\òûþ ï\ò
˜ˆpoyxW•hyfokwmghi˜ˆ²g:£Ã¢CÀÃwmx,higgUÓ,hicfÓHghmwm˜ˆg:p:q
r?sã xWgUÓ,hmc?¢,œˆge2xW?p/.pÈc?œ³ ¤wi˜³c?n s
«,sã xWgEpÈc?œ³ ¤wi˜³c?n˜žp ,n,˜žÉC ,g s
¦Wshy㠝•xWe.ggpmwmcfghyœˆ ¤p„wmc•˜ˆcfj n‹wmx,˜žgUp
ÓW7hm¸‘fc?†¢,‡³œ³~kg:ze wisxWw¿˜ˆp:z˜¶w¿Ü•hi˜³gApokc?nCwm˜ˆnC Wcf Wpmœ³À͙/˜¶wix‹wmxWg±šf˜ˆÜfg:n‹ÓW›
¨•hig*Ó,hijlhmcfgA¢WÉ?œ³g: WegnCwmwiœˆxWÀ’wof˜ž ¤puwmnW˜ˆcfc•nWwg:™„£’gwmœˆ¶cæ›ÎÓHe
c?pm•g:¯f£g.˜ˆpmp] ,ohmfg¿œ³ˆwig:xW£ wEð”ï\ï'& Ó,þ hicf ¢,ò ÿœˆgse á¸n ˜žpnd™„ ,ge.œˆ#ghiÓS˜ˆcCo:•pÈgAœç£’fnW¢H•gkœˆjlÀ¤c?pÈhm˜žg¿p™º™ºgg
gk£¤oyxWÝ,gAf?pȘˆn,o7šfw„šfnƒgҝfnWpȘ³c?n pmœ³™º ,pmg:wmcfhi˜ˆœˆcfpº ¤nÍwm•˜ˆhicffgn朳š?okcfokc?c?hie¿˜¶ ,wiÓWœžx,£± ¤e
wi¢HpfgEs.¢,œ³£¤¨g?hyz¤nW•pÈe
c• ,wmÓWxWwiÓSg˜ˆhUcCofpÈ© Ó,g]higkcfݤ¢,ÓSœˆgg:e hm˜ˆe.™/g˜¶nCwixwifœS Wc?nWhºpÅwynd• ,¢,e.œˆg.g:Ó,hm˜žhiocff¢,œWœˆgghie
hicfp:hÆqÒc¤g:o:Üfokg: ,nÍhyp˜³j q
ë
ýkï\ï”í bd c î û ™/,î:xW𠝕þ w ñ _ p wm x,gà jlð W pmp^û ] ò?îAã ò!x,ýkgÃñ £¤H˜ˆò hmûgAo7wEòÓ, hiûcfþ/¢,œˆgï”e ò
c•juokc?e¿ÓW ¤wm˜ˆn,š jlhmc?e
g:?pÈÀá͝fhinWcf£nWšWwm©x,gE¨ œˆpm0cfc•œˆ ¤j wi® ˜³c??n±£,wi•c*e
wifx,higU£_˜ˆp„nCÜ?™ºgg:hyœ³pÈgқÎÓSÓ,cChipÈcfgA¢,£¤œˆn,gg:epip„˜ˆphmgAÉC ,˜³hige.g:n?wypºhmj”•˜ˆšfœˆQxCw¢C] À±wmx,gU™<À¤pȘž£¤g?˜žp z
gpmÀdÜ?pÈgwmn‹g:e jlc?s h¿wmx,g mpȘˆe.Ó,œ³g ±˜³ndÜ?ghypÈgÓ,hmc?¢,œˆge1c•jÒpÈc?œ³Üd˜ˆn,š!jlc?h ™/˜¶wix
Íœˆ˜³n,gA•h
GIH ZQ !TS#U M 9S#NPS TS#U
F
F = Kf
f = K −1 F,
Ax = b
ë
x
,î þ ò ûþ ñ
r?sã xW˜ˆp/œˆ˜ n,g:fhupÈÀ¤pÈwmge
xW?pn,c
pÈc?œ³ ,wm˜ˆcfn0q
Ax = b
0
1 1
x1
=
1
x2
1 1
«,sã xW˜ˆpupmÀ¤pÅwige2xSfp˜ˆn¤ÛWn,˜³wmg:œ³Àe.fndÀ±pÈc?œ³ ,wm˜ˆcfnWp:q
1 1
1 1
x1
x2
=
0
0
¦WsãpmcfxWœˆ ¤˜ˆpEwi˜³pmc?À¤nWpÅp/wig£¤e c.n,xSc•fwupÜn,fc hmÀ±pmcfoœˆcf ¤nCwmwm˜ˆcf˜ˆndnÍ ,cfjlcf Sh pȜˆÀ
™/˜¶wix杕ÓWnW•£Íhy•˜ˆn¤e.ÛWgkn,wi˜³gwmh g:œ³ÀÍq e.fndÀ jlcfh
ë
ε 6= 0
1 1
1 1
Þ
x1
x2
ε
=
0
ε
ε = 0,
pmc
þ ­¡Íò gÒ Wpmòg •n±ò ÿ cf𔜞ò£. wm hi˜ˆW oy¯4Y0q 𠜳îAgAòdfpÈñ wº?òpiÉ? S•hig:p:zf™/x,˜žoyx
ÛWnW£Wp×wix,g wixWw„e.˜³n,˜ˆe.˜³²:g:pÆwmx,gÒpȘˆ²g
ã x,˜žpºwm ,hinWpºcf ¤w„wmc*¢SgÒg:ÉC ,˜ˆÜ•œˆgnCw„wmc*pmcfœˆÜd˜³nWš
wmc•xWjQg
wix,|Hg҅hm€7gA‰
pȘž‘£¤‡ W~ fœ »W§‘pmYÉCŠ”… W|WfhmgA£Wª
 pmÀdpÈwmg:e xW™/fxWp͘ˆoy‘x‹|W˜žÐPpUpȚfc? Sœ³• ¤hywi•˜³c?nCn0wmg:zºg:wm£’x,g:wmnac!xWgÜf<g:Ü?hmgÃÀP pÈc?pÈc?œ³ ¤œ³ ,wi˜³wmc?˜ˆcfn n wis cƒwm Wx,hÈg’wix,n,gcfhAhizLe
™„•gÜ/og:fÉCn­ W•pÈwmg:˜ˆg.cfnWwmp.xW•˜žw*pس j
g:ÓWpmcfÉCfœˆ WhÈ ¤w/•wmwm˜ˆc•cf˜ˆjcfnænW¿pwiwmc hy•nWpmÓHc?pmg] Se
pÈ㠘ˆn,x,wišÃhm˜žpu˜³wiÝ x,wihmg.˜žoyok¯cfnSgkÝdokgwmg:Ó,nWw]£,c•pj wmÈcÝ?£ e.Åcfcf˜ˆhinCgw Ef¢WcfpÅÓHwighihy?o7wiwcfhyœˆ˜ p n,g:fhcf™/ÓHx,g˜žhyoyx!wicfÓ,hyœžp<Àwmx,cfg j
ë
þ ­¡Íò g Èhmòg:šf ,òœž•ÿ hi𔘳ò²:g wmV xWñgð Ó,Qhií cfòd¢WñLœ³g:ò e s ¡g-_ œ³˜ˆœ³ˆ WpÈwmhywig˜³w¿¢dÀƒcfnWgÓWfhÈwi˜ˆo ,œž•h¯d˜ˆnW£­cfj
hiÓWgfšfhi Wfœˆe¿fhmg˜ˆwm²:g:•h wm˜ˆcfn0z¤of˜ˆœ³nˆg:£apm WÏçoyx±Š :EW…™|4<…À*}wmhmxWg:•šfw ,œžpm•e
hi˜³•²Aœˆwi˜³c?šfn ˜ˆs Üfg]°] Wn,p„gE˜³nCÓ,wmhihic¤cf£¤¢, Wœˆgoe g:puwi.xWhiwgš?˜ˆp ,œˆmfokhmœˆc?˜ˆ²:pm•g wm/˜ˆcfwmnc
wmwmxWxWggUcfe¿hic¤˜ˆšf£¤˜ˆ˜³nWÛW•gAœ £s á¸hin.g:pmwi˜žx,£¤g] W•o:œ fpmguc•j4wmxWgn,c?hme
•œWg:ÉC Wwi˜³c?nWp:z?c?n,gofnÃpÈxWc™ wixWw„e¿˜ˆn,˜ˆe.˜³²:˜³n,š
œˆ°]g:fn,£Wg/p owmfcUn*wipmx,x,g/c™‹œ³˜ˆn,wigAx,•guhÆokpmcdÀ¤g pÅÃwigoe ˜³g:n?w#e
wihm˜³Ý
™/œˆ™„x,<g:À¤hmg pLn,cf˜žp#nWpmwi˜ˆx,n,g/šf ,˜ž£¤œž•gnCh sçwm˜³ã wÅÀ¿x,g:e.hmg•jlwmcfhihi˜¶Ý gfsz
ž
˜
#
p
•

wmxWgUë Ó,hmc?¢,œˆge2xW?p/¿ ,n,˜žÉ? WgEpÈc?œ³ ¤wi˜³c?n s
þ ð ?ò þ ü ò
Sí ï û ð,-¤îAð þ ñ9 û [­òCîAò û
˜jlˆn?cfwih/hm¡a˜ˆ˜ˆnWšfpm WxW˜³˜³š?n,xCw±šdw:ªºpmz,x,Ó,pic?<hm ,c?À œˆ¢,£Jœˆge
™„g pc•£¤jc­˜³nd•Ü?¢Hgcfhy ¤pÈwg]wmx,g:cfã hiÀ x,s ˜žp.瘞gkp
w _ cfp/n,fgænW•cfœˆj]Àd²wigx,g cfn,e.gUcfcfhijLgc?jl , WhnWpm£,˜³•e.e.Ó,g:œˆgEn?wypȝ•À¤œ pÈwm§ g:•e.nW£ p
™¢H„g:g/okxWc?á¸nde.<Ü<Üfg:fg p hm˜ž•¢Wœ³À?z?c? ,hº˜ˆn,Ó, ,jlwcf£,hº•£,wiwyjlcf˜³hºnWpÈwmwmx,gAgҝf˜ˆ£ nCs Ü?0ghygpÈw gÓ,hmc?¢,œˆgeæz ã x,g/hixWg?š?pÆ ,g:œˆfhmhihmcf˜ˆ²hºgA˜³£npm˜¶À¤wApÅzdwipig<e À
x
kb − Axk2 .
AT Ax = AT b,
Ax = b
Ax = b.
Kx = y
K
K∗
AT .
α>0
α
2
kb − Axk + α kxk
AT A + αI x = AT b,
AT A+αI
2
I
α?
1 1
1 1
x1
x2
2+α
2
2
2+α
™/x,˜žoyxxSfp ,n,˜žÉC ,gEpmcfœˆ ¤wm˜ˆcfn
ë
x1
x2
=
=
1
1
(1, 1),
δ = δ 1 + δ2 .
(1 + δ1 , 1 + δ2 )
2+α
2
x1
x2
2
2+α
=
−1
Ä
2+δ
2+δ
(2 + δ)
1
1
2+δ
=
4+α
1
1
= (2 + δ)
1
1
þ ð ?ò þ ü ò
Sí ï û ð,-¤îAð þ ñ9 û [­òCîAò û
x1
x2
2+α
2
2
2+α
−1
1
1
2+δ
=
4+α
1
1
•n, nScfwÆ£’°]²™„g:¢Whmg.pmcSg™ºzhiÜfwic?fg„ ,¯Cwmœˆ˜ˆ£ÍxWn,•ššfwÆgwi˜³wUx,jHgwmwix,x,œˆ˜³g.gue.˜ˆÜ˜³n,wº•Ó,œˆf˜ž ¤£p wºpmgcfhiœˆhm ¤c?wih ˜³c?šfn ™„˜ˆÜfggAhip#g Wpºfœ³™º,Ÿº™„c? ,hig/wEpmgu™„šf˜ˆ•cfÜfÓ, ,gÓWœžnÍ£¿hmc<wmxWݤxS<˜ˆÜfe.wg„•wmwmwmx,c*˜ˆg
cf£¤n˜ˆcUn,wmÓ,˜ˆcp× ,Eœ³wgpmw gcfhiœˆhm ¤c?wih]˜³c?˜žn p
wmxS•n智gUzQ™„pÈcfc± Wwmœˆc£pmc••wiwmx,˜žgpÅjlhiÀ ™/˜ˆpmgšfgwu¢CÀoyx,cd™„c?gpm˜³nWnWšgg:£ § °] WhupÈc?œ³cf ¤hwi˜³fc?pÒnWp/okœˆ•c?œˆpm™g*<fÀdpp/™ºpig¿wio˜ˆpȝfjlnÀ
šfgwã wmc
x,g˜³whisg
ª •hig*e
fnCÀ!ÉC ,gApÅwi˜³c?nWpx,g:hmg?z0g s š s zQx,c™ £,c™„g¿¯CnWc™é˜ˆn͚?gn,g:hifœ ™/xSwwmx,g
¢Hpm ,g:¢pÈwÅg:oyokx,w/c?e.˜ˆo•gwÈcfwijçghuhmg:cfšfj ,.œž•okhic?˜ˆ²: ,hiwipm˜³gc?n
˜³næÓW˜ˆ•ndhyÜf•ge.hypmggwmgwihºx,g˜ˆp:c?zdhm˜¶À js •ndÀ[] ã x,˜ˆpfnW£Ãcfwmx,g:hº˜žpmpm ,gAp„fhmgwmx,g
ë
0î Ḡnæð”ï\wmðlx,î ˜žppmÓHg:ok˜ž•œ o?pÈg?z,™ºgUš?gkw]pÈwif¢,˜ˆœ³˜ wÅÀÃjlc?h/jlhmg:g jlcfhg:foyxƒ€m~εf»¤‡³‘€7Š ~yÌæÓ,hicf¢Wœ³g:e s
pm˜ˆnWokg
¡g¿o:£¤•n,cdg:n,pmcfnw]_ wx,c?g:ÜfÓSg:gnwmcgݤxW˜ˆpȝ<w Üfs g*pÅwy•¢,˜ˆœ³˜ wÅÀjlcfh]wmx,g¿ ,n,higš? ,œž•hi˜³²:g:£æÓ,hicf¢,œˆge
gpÈwi•¢WŸ„Ü?˜³gœˆ ¤˜¶nwÅwºÀ ˜¶wij x,xS˜ˆ•n,Ó,š?ÓHpg•nW˜ˆhip/pÒgu™„˜ˆg:ngÜfœˆg0pmn±cf£¤e.ge¿ÛWg¿c?n,hmog:gҝf£pmokg:wic?pyx,e¿ª gUs*ÓW˜³®ndœ³˜žÜ?oc•g™„hywmgpÈg:gÒÜf£0g:qÓ,h:hizHcfcf™„¢,hºg*œˆgwmx,e2xWgҝ<Ü?e
šfgEg:<n,wiÀÃcghynW•œˆc•cdœSwucfœ³¯æ˜ˆ¢Hn,gEg:wmcfpÅhºwy˜ˆ•n¤ÓW¢,ÛWhmœˆc?n,g ¢,˜³wm§œ³g
g:feœ¶wi£¤x,˜ˆe.cf ,gš?n¤x ›
™g/pm˜³Ü?c?x,gnWg:nhm•gEœ,wmx,g˜³wÒc?Ý, ,•o:šfe.•x n!Ó,œˆ¢Hg:g*pƘˆpmpmp Wx,s oycxÙ/?næp×wicfxW Whºw £¤˜ Hg:hmg:§nC£¤wm˜ ˜ž4gwm˜ˆhicfgn
nCwmg˜žÝ,wi•˜³e.c?nSÓ,ª/œˆg gÝd§ c?˜žpÈÓSwig:p]hi•¢,wm ¤cfw]h ˜žp]n,˜ˆc•pÆw˜³nCokwicfgnCšfwihy˜³ndwi ,˜³c?c? WnSpª7zz
ë
*þ0gw ñ4îAð”ñQí þ í ýkñ Sò û ò ûþ/ÜC ˜ž.ï”ò
wi x,ghi ,œˆg
ã x,˜žp˜žpÃcfn,g›\wic•›
cfnWg]jl WnWo7wi˜³c?n s׬ g:?pÈ WhmgUpm˜³²:gÒ¢dÀ
wix,gEpm ,Óæn,cfhieæq
=
δ
0,
α→0
1
2 (1, 1).
α→0
x1 = x 2
(2 + δ)
α ≈ 2δ.
x 1 = x2 =
x1 + x 2 = 1
1
2
Ax = b
A−1
y,
Kx =
K −1
K −1
K
K
K : C[0, 1] → C[0, 1]
Kf (x) =
Rx
0
f (y) dy
kf k = sup |f (x)|
pmã c.x,wmg:xWn•c?w/n,wmgEx,g ofmnokœˆc?pmx,pmgcnW™ g:piwmp xW]•cfw/j wmx,gEc?ÓSfg:nWhi£•wmc?h ˜žp˜žpu£¤ogcfwmnCg:wmhm˜ˆe.nd ,˜ˆn,cfg: W£p„¢d˜ˆnæÀÃwmwix,x,gEgEpmndg ,nSepÈg¢HwigxWh wu˜³j
•nS£ 0gw fhmgUoœ³cCpÈg?zdwmx,g:næwmpmx,c
gU•hyhi•g n,š?g]cfj fnWã £ x,gn
˜ˆpufœˆpmc¿cfn,g›\wic•›
cfnWg ës Ÿ„ ¤wu˜¶wu˜žpn,cfwokcfnCwi˜³nd ,c? Wp s
Wð”ï”t í cfû nWò pm˜žþ £¤üghQîwix, g jlð\ ,ï”ð”nWî ok
wm˜ˆcfn
0≤x≤1
f (x)
g(x)
R = K(C[0, 1]),
g(x)
K
Kf (x)
K.
kf − gk .
f (x)
Kg(x).
K −1 : R → C[0, 1]
gε (x) = ε sin
Ø
x
ε2
,
™/²g:x,hmg:c*hmjlg ,nWokwm˜ˆcfn s¡Õ×gUgkw:xWz <Ü?g
ε > 0.
kgε k = kgε − 0k ≤ ε
K −1 gε (x) = gε (x)0 =
s b¤c.jlcfhupme.fœ³
ε, gε (x)
˜ˆpuoœ³cCpÈgÒwic.wmx,g
x 1
x
ε
=
cos
cos
ε2
ε2
ε
ε2
pmc±wixW˜ˆpw n,cfw.okcfnCwi˜³nd ,c? Wzçppmc±cfÓHwixWghyw wicfh s ¢Hg:ocfe.g:p]j”fh]jlhicfe ²:ghic?p ® g:nWokg
ë
òdñLò û ,ï û [­ò þSû $
okLc?…nW€ pmƘˆpȑwi€ip„Ì*c•‚„j €m…?†k‡ˆ~k‰
¨ e.c¤£¤g:œQjl ,œˆ³ÀpÈÓHg:o˜¶ÛWgA£¢CÀ § Ó,xdÀ¤pȘžofœžªºÓWfhife.gkwmg:hip s
¨ ¯dn,c™/njl ,nWokwm˜ˆcfn wixWwAz0Š”Ìf~y‘•‡Œ‡ ÐzSe
fÓWpÓW•hy•e.gwmghypºwmc
£,•wi ¢dÀ±™<À
c•j
K
−1 K gε =
−1
1
ε
K −1 gε
ε → 0.
•
m
•
G
d
d = G (m) .
ž˜ p„‚„wm»¤c.¡Í€m~ ÛWg*UnW{kx,£ |Wcf}ÓH~kg €yš?§ ˜³~©Ü?ªg‚„nwi€mxW…?cf†k¢Ww]‡³~pmwmg‰ x,hiܘžp]wme¿˜ˆcfgAnS•p nWpus wmco•œžok Wœˆ•wmg
zH¢, ¤wҙ/xWwҙºgEhig:fœ³ˆÀ
šfgwupÅwi Woy¯Ã™/˜³wmx昈p
˜žp„‚„wm€mc.‘?“kÛWYnWŠ”“y£ ‘‡ *{kš?|W˜³}Ü?~kg€yn~]cf‚¢Wpm€mg…fhi†Ü‡³~‰wm˜ˆcfnSp
pÈc¿wixWwugAÉ? Swm˜ˆcfn±wmc
¢HgU˜³ndÜ?ghmwmg:£˜žp
m
d
m = G−1 (d)
m
d = dtrue + η
d = G (mtrue ) + η.
a¡ xWwu™„gU•higÒwmge.Ó¤wig:£wmcã,c¿˜žp˜ˆnCÜ?ghmwwmx,gUgAÉ? Swm˜ˆcfn
wm•˜ˆnScf£
në ¢Swmcg]xW•ÓWÓCÀ.sי/㠘³xWwmx ˜ˆp/e
f¯fg:p„c?s , h n¤Åcfjlcf¢ hmwm¿ ,nS™/x,wmcfg:œˆœ³gÀ?z œ³cfwwmcf Wšfx,g:e
h <À.f¢HnWg]£E˜³nCÓHwicdgcfhih„g:pȝ•wmÓ,˜ˆn,Ó,šWhi©c<ݤ˜³e
•›
d = G (mapprox )
mapprox
mtrue
mapprox
!
þ ]î:ò ,û<hû oÍcfnCýkñ4wm˜ˆîAndò
, cfû W,puïX˜³WndÜfQg:íhipm¤gîAðÓ,þ hiñ cf¢, œˆge gkÝ,•e.Ó,œˆgU˜ˆp
pÈÓHg:o˜ˆfœço?pÈgUcfj wix,˜žp/˜³e.ÓHcfhmwifn?w
okœžfpip„c•jÓ,hicf¢,œˆge
p:q
ò %ñ ðlî:ð þ ñ ¨ ngAÉC Wwi˜³c?ncfjLwix,gjlcfhie
d (s) =
Z
s
g (s, x, m(x)) dx
˜žp/o•œˆ g:£S…‡ ¸~€7€m‘.ŠŒ|W¸~ε•€i‘‡L~ »W‘YŠ”…|…ÈÑUl,~ƀy7 •ŠŒ|HÌ § — Ê ª s áÎwu˜žpU‡ ŠŒ|H~y‘•€˜³j
˜ˆ— n ™/Ê.x,s ˜ˆoyx!o:fpmg ˜žp/wix,g ?~k€7|4~k‡#cfjwmx,gEgAÉC Wwi˜³c?n s °wmx,g:hm™/˜žpÈgU˜³w]˜žp!|H…|S‡ ŠŒ|H~y‘•€
zHpÈc
z s
ëá¸næcf ,h/gݤfe.Ó,œ³g
û ò ¨ ÿ n, cfþ wmïx, g:huý˜ˆñ4e¿î:ÓHò
cf hmû wi,fïXnCw/W oQœˆí?pm,p„î:ðcfþ j ñ Ó,¿hicfþ ¢Wü/œ³g:î e.Lp:ò q ð û î ð”ñ ÿ ý ò %ñ ðlî:ð þ ñ ¨ ngAÉC Wwi˜³c?ncfjLwix,gjlcfhie
a
g (s, x, m(x)) = g (s, x) · m(x)
g (s, x)
d (s) =
Rs
a
m (x) dx
g (s, x) = 1 a = 0
Z
b
˜žp/o•œˆ g:£ Q€m~yÌA,…‡¶‰ ŠŒ|SÎ~εf€m‘‡L~ »W‘YŠ”…|ƒ…Åэl,~׀y7 •ŠŒ|HÌ § á Ê ª s áÎwu˜ˆpE‡ ŠŒ|H~y‘€*˜¶j
˜ˆn™/xW˜ˆoyxæo?pÈg ˜žp„wmx,g ?~€7|H~‡LcfjçwmxWgUg:ÉC Wwi˜³c?n s áÎjÅz¤jl ,hmwmx,g:h:z
wmxWgUg:ÉC Wwi˜³c?n˜žp/ofœ³ˆg:£ “y…|W}…‡¶»¤\Š”…•|’g:ÉC W•wm˜ˆcfn s
WZY[t \cfnWpmžò £¤gh#c? ,h×gkÝ,fe¿ÓWœ³g
wm˜ˆcfn wmc
¢Hg ˜¶j ˜ˆp/nWcfn,n,g:š?•wm˜ˆÜfg•nW£ c•zdwm•xWšCg•hi˜ˆ™/n ˜ˆs pmg Ú]s#gkã ÛSn,x,g/g:n wmxWg ® gA<ÜC˜žpm˜ˆ£¤g„jl ,nSo7›
d (s) =
g (s, x, m(x)) dx
a
g (s, x, m(x)) = g (s, x) · m(x)
g (s, x)
g (s, x) = g(s − x)
d (s) =
H (w)
Rs
m (x) dx
0
Z s
Z ∞
d (s) =
m (x) dx =
H (s − x) m (x) dx.
1
w
0
g:ã ÉCxd W W띕p:wmzf˜ˆcfwix,n昈p„fp—#™„c?œ¶gwiœˆgQhi™/hiU˜¶wi˜ˆx nCwmokg:cfšfndhyÜ?•cfœWœˆgA ¤ÉCwm W˜ˆcfnwi˜³c?¯fn±ghion,fg:nÜ ¢SgÒÜd˜³g:™ºgA£ÃfpºEá Ê s •nS£±ocfndÜfc?œ³ ,wm˜ˆcfn
0
0
Â
g (s, x) = H (s − x)
„ò YQî;WZY[\ï”ò
™/€x,m‘g:}AhmgŠŒ¸‘YŠ”…|H‘•‡ ‘•|H…‰
‘‡¶Ð‘#µ•€i…»¤|HÌdz~}<~‡LÌ»W~¸…±†»¤€7Š”~iÌ #ŠŒ€m~‰.‘i
v hicf WnW£±œˆgÜ?gœQ˜žpwmxWg ›Î•ݤ˜ˆp s
qwmxWgE£¤gÓ¤wixæc•j wmx,gU™/˜ˆhmgU•w s
q#˜žp„wmx,gE£¤g:nWpm˜¶wÅÀc•jçwix,gU™/˜ˆhmgUw s
q#e.g:?pÈ Whmg:e¿g:nCw„cfjLwix,gE•n,c?e
•œˆÀÝwuÓHc?pm˜¶wi˜³c?n z,š?hmc? ,nW£ÃœˆgÜ?gœ s
ã x,˜žp/Ó,hicf¢,œˆge2œˆg:?£,p„wmc.œˆ˜³nWg:•hufnW£ § x,˜ˆšfx,œˆÀ,ª„n,cfnWœ³˜ˆn,g:fh/˜³ndÜ?ghypÈgÒÓ,hicf¢,œˆge
p
D öL÷ 3 5 õ÷ 3 ÷ 3 ÷/øLø 5 ôEõ
ó4
XHJG ! *M ! 4KL7MINPOZQTS
•
x
• h (x)
x
• ρ (x)
x
ë
• d (s)
s
ò WZY[\ï”ò
°]ÏS…¿¢Wpm~kg7hihi\cfÜfŠŒe‰
g¿‘wm¸x,Ó,~ҘžhmpUlc ,ř„~Òg:g¿ok‰
wmxW˜ˆ‘<œ³cfgҁyÓHÒwmg.xW…ÅÑÒhmwmcc ‘™/àHg:n±pȇ³‘•wmjl˜ˆhm|He
c?~e Æwi…Åg.pmÑ cfwme.x,|4gÃg…#?ÓS|æoc?ok˜³€mnCg:‘fœ³wug:̕hi•ŠŒ•»dnWwm £˜ˆcfLe.n ¤g:ŠŒ‡³?~EpÈ£¤ W… ,hm|æg.gҍlwi˜¶,wyc ~pušf•hy‘œ³wm<ŠŒ˜³€7ÜCwm‡³˜³ S~kwŁy£¤À! g •s nS7»¤£’€lÑkwi‘fx,“yg~An ·
WpmgUÔug™wicfn_ p/œž<™up„c•jšfhy<ÜC˜³wi•wm˜ˆcfn±fnW£e.c•wm˜ˆcfnwmc.c?¢¤wif˜³njlhicfe
a
GM m
= ma
R2
wmxSw
M=
aR2
.
G
W Qí¤îAð þ ñ .þ ü þ î:ð þ ñ
¡aË xWßם•‘wu‡ˆ“k˜ˆ»¤p„‡ wi»dx,gU{ÜfàHg:€mhȅ?wi˜ˆ†ko:‡³•~‰
œ4ÓS· cCpȘ³wm˜ˆcfn c•j wmx,gUÓWhmc Åg:o7wi˜³œˆgUfp/*jl ,nWokwm˜ˆcfnæc•jLwm˜ˆe.g ]
f SpÅwu˜ˆnCwmgš?hi•wmg]wmx,gEocfnWpÈwifnCw/?oogœˆghywm˜ˆcfn±wř/˜ˆogÒwmc.cf¢¤wy•˜ˆn
y (t)
1
y (t) = m1 + m2 t − at2 .
2
¡gjlcfœˆ³c™awix,gwmgÝdw•nW£™/hi˜¶wig•w/wm˜ˆe.g z,™ºgxW<Ü?gcf¢WpmghiÜfgA£Ãܝ•œˆ ,g fnW£
tk
™/x,g:hmg
dk
1
dk = y (tk ) = m1 + t m2 − t2 m3
2
k = 1, 2, . . . , m
s×ã xW˜ˆp˜žpu.pÈÀ¤pÈwmg:e2c•j g:ÉC W•wm˜ˆcfnWp˜ˆn ,nW¯CnWc™/nWp s#® ghig
¥
m
3
˜žp/˜³nW˜¶wi˜ˆfœ ›¸£¤˜žpÈÓWœˆ?okge.g:n?w
˜žp/˜³nW˜¶wi˜ˆfœQÜfgœˆc¤ok˜³wÅÀ
˜žpufo:okgœˆghywi˜³c?n±£¤ ,gwic
šfhy<Üd˜¶wÅÀ s
¤î û ð+Y þWû ’‘Y€7Š 煕€7‰ …ÈэŒW~U–HÐ<§ çy¸˜³nW~‰.g:•· h/á¸ndÜ?ghypÈgÒâ×hicf¢,œˆgeê7q
• m1
y
• m2
• m3


Gm = d.

d1
 d2 


d=



dm

•nW£
® g:hmg ss ss ss z
ss zQ¢, ¤wU™„g
pÈxWfœ³
gk•Ý,nSf£ e¿˜ˆn,˜žg]p wmx,gUÓWhmc?s ¢,œ³g:e2˜ˆn±wix,gUe.cfhig]š?gn,g:hifœ4pmgkwmwm˜ˆn,š.™/x,ghig ˜žp z ˜ˆp
ºò ?ð+% > ûþ ï\ò
Ï4,~¿~ ‘?“kº…‡ »¤YŠ”…|4·
gk•ݤnSÓH£±bdgn,hiÓW˜³c??e.hmoke
g:˜ž•n?fœWw œ³ WsˆÀ±n,¡Í˜¶£¤wyg¿pº˜žpÅwif™/hmhm˜ˆ˜ˆg/¢,œ³× ¤e.£¤wigg:cwm£gpÈhycæ™/pƘ¶ffwipixænWpm£. ,e¿e.wigA˜³e.˜³•n,n gš W•n,n͘¶wygpºhihmf•c?hmnWh]gu££¤pmg:pȘžpÅowiwi•cfhmnSnW˜ˆ¢,£,£W ¤•p wishy˜³£áÎc?w n!£,_ p×gwiÜdgAxWf˜ˆ•pmwwmÀ˜ˆcf˜ˆwipÒn c˜ˆnWpȘˆ£¤eg: WÓSœˆg:•nWwms £¤ggfnCn w
hie fnW £¤n r:§ Á _ pÈwi•wmg _³z Á ª
eEpÈv ˜ˆšfwie
hm ,g c?n,g:rAp rAا eæÁ z r:z r ÁfªkÁ z z ¥W§År s  q eÃë _ ª _ˆz¤› Á,s Ä §Èr q eê _ s ¤« ë
£,£,wywy wihm ,g£,• wiv wihm< WeEg wiŽhm WpÈg˜ˆ šfe
 <hy•nW£¤n § eæz r ª XH Q ! U !. !.- S U !S#N
1

 1
G=


t1
t2
1 tm
d
t2
− 21
t22
2
t2m
2



m1

 m =  m2 


m3
G
m×1
m×n m
n×1
T
m = [10, 100, 9.8] = (10, 100, 9.8) .
ë
µ=0
σ = 16
þ ï\¡ÍíçîAgEð þ oñ cf , œž£òCwmî hiÀ þ0ÿ wiÓWã x,œ³xWcfggw/e wme.x,wicÃc?gUpÈhipÈw*g:c?pmnSœ³Ü? ,•gœ³˜ˆwiÜfp„jlg±cfjlh/cf˜ˆe
hwix,wi•gUx,š?gU˜³wmnWxWgkfhmÝ,¢,g:?gEœˆgfo7Üwuq
•£,™„hi˜ˆg±fwy¢,.cfœ³gAnW•pnWœ³À‹s £±0n,wmgx,g:w g:gE_ £ƒp/pmhm˜ˆwiegAx,• ,hiœˆg³œžÀ±gæwiwmg:£,hi£æÀ±wy£,!˜³w]ÓHwy™/ cf˜³s ˜ˆwmn?x wyp ¬ s •çwmgkœž•w ¢_ p*• WnSpÈ£ g
•
r:Á
•
/™nW¨ cf˜ˆœ¢Shi×e g¢SwÈwmg
c•g:jÆhƘˆnWwi˜žox,£¤cfg¿g:nWWhmpmqçgA˜ˆpÈ¡pÈwm˜ž£¤g:gnC W•w:fzLhiœˆg/p pmsc杕œˆã e.™ºx,g.c?˜žpÒpÈwiwÆhmhmÀÍokgAgÉ?hm Wwi˜³fohi˜³•g:n¿œžpÒokwi W£¤cUœ³g WxWÜ?pg<œˆÜf˜žcf£¤g/Ó,gAg:e.,hmqUhig:cfn?e.h w s瘳snW® 㘳e.g:x,nW˜ˆg¿²okg.g?¢Wz•fwmwixWpmx,˜žgÃog/pÈjlÓ, , ,hiœˆe cfS¢Wpmœ³c•À¤g:j„pÅe wiwmgx,e ˜ˆgp
wic.ÛWnW£wmxWg ï”ò
î Qí û ò Aþ ï\íçîAð þ ñ
pÈ Soyx±wixWw
§ 0g:?pÅw]b,É? S•hig:p„â×hicf¢,œˆgeê7q
ë
m = m L2
2
2
kd − GmL2 k2 = min kd − Gmk2
m
ò ò íLï”î ü þWû> ò
î Qí û ò ‰.‘•\€7Š
ò þWû ò
) Ï4W~U‡³~y‘<7# »W‘€m~k×à4€m…f†‡³~‰W‘<E‘*k…•‡ »¤YŠ”…|Ñk…•€U‘•|WÐ
‘|4̱Ì?‘¸‘ êÆ|H‘•‰.~‡ б‘|SÐ.…‡ »¤YŠ”…|͍΅ÍŒW~
‚„€m…A…Åс ?~k¸“y,·
b¤x,c™ Ó,hic¤£¤ Wokwuhm ,œˆgx,cfœž£,p„jlc?h/Ó,hmc¤£¤ So7wipcfj e
•wmhi˜¶ÝÃjl WnWo7wi˜³c?nWp s
e*Ôc• WwipÈg wuxW<Üfg¿e¿˜ˆn,˜ˆe ,e ˜žpænWcfn,n,g:š?•wm˜ˆÜfg
ÉC Wf£¤hywi˜ˆo¿jl WnWo7wi˜³c?n­˜³n zpmc
˜ˆnW£wmx,gEohm˜³wm˜žofœQÓSc?˜³nCwyp/c•j ¢dÀ±pmgkwÈwi˜³nWš
s
ò ò íLï”î ò þWû ò
. {lÑ
…‡ »¤YŠ”…|͊žU»¤|WŠ »W~7êÆ‘|4Ìʞ‰.µf‘•ŠŒ\}<€7~Š |†Ð ,‘Ñy»¤‡Œ‡º“y…‡ »¤‰¿|­€m‘•| ê]l,~|­ŒW~Lj~i‘7 »W‘€m~k
m×n
d
G
GT Gm = GT d
•
•
•
f (m) = kd − Gmk
2
m
f
m×n
∇f (m) = 0
G
â×hicCcfjpm¯fgwioyx0q
b¤x,c™ xSfp²g:hmc¿¯fg:hmnWgœYz¤x,gnWogU˜ˆp˜ˆndÜfg:hÈwi˜³¢,œˆg s
âÆœ³ ,š
˜ˆnCwmc.n,c?hme
•œQgAÉC Wwi˜³c?nWp/•nW£pmcfœˆÜfg s
0gAfpÈwpmgb¤ÉC¬ W•hiwig:œˆfp ¢’Ç wiݤcæÓHgpmhicf˜³œˆe.Üfg¿gnCcfwy Wphq pmÓHg:ok˜³ÛSo¿Ó,hicf¢,œˆge ™/˜¶wixÍgÝdÓHghi˜ˆe¿g:nCwi•œ×£Wwi•nS£’Ó,œˆc•w
pmcfœˆ ¤wm˜ˆcfnWp s#ã x,gn月gkw _ p/pmgg™/xdÀÃwix,gwmx,g:cfhige
p•higÒwmhi ,g s×ã x,g:hmghige
•˜ˆnWp:q
‚®„€mc…?™†k‡ˆ~kšf‰
cdc¤· £­˜žp.cf ,h.œˆg:fpÈw
pmÉC WfhmgAp¿pmcfœˆ ¤wi˜³c?n] t fn ™„gwmhi WpÅw
˜³w^] áÅp¿wmxWghig¢HgkwÈwigh
pmcfœˆ ¤wm˜ˆcfn]
XH !M !J
U ! MIQ UO S !(# S#M
U ! M &[S#U
m L2 = G T G
•
GT G
•
ë
−1
rfr
GT d
í—,ï\˜ˆðlgî ™ Pwiþ x,ü g. â×ò
hi cf ¢Sî bCwyQw^í0g:okû wmò , hig:p]n,cfwmg:p]higš?fhi£,˜³n,š±ÓSc?˜³nCwg:pÈwm˜ˆe.•wm˜ˆcfn sEã xWgn’™„g*pmgg
™/xdÀ
wmxW˜ˆpj”?o7wu˜žp„wmhi ,gfq
ò þWû ò
0 –S»Aà?à,…k~l,‘LŒW~]~€7€m…•€…ÅÑ ŒÃ“i…A…€iÌŠŒ|H‘•Î~…ÈэŒW~/€m~k7Š”Ì»W‘‡SŠž/|H…€7‰
‘‡Œ‡¶Ð
Ì‘Šž|47Ì Y€7Š”†k»¤¸~y"Ì #ŠŒl‰.ê ~y‘•| ~€m…‘|HÌ 7Ï4¸‘,|H~|­Ì?‘l€m,ÌÒ~.Ìf‡³~~y}A‘Š”y‘uYŠ”…| »W‘€i~7 ¿´L~k… ‡ »¤YŠ”…|‹¸…ŒW~¿“y‘‡³~yÌæŠŒ|S¾
}~k€y~/àH€m…?†k‡³~‰
Šž‘ ±¸…
l,~/à,‘•€m‘‰
~Î~€U}<~y“Î…•€ ±ñ 0WZgw Y_ p/[\šfg:n,ï”gò hywigҝ¿Ó,hicf¢,œˆge fp„jlcfœˆ c™up
i
GW = W G d W = W d
σi
W = diag (1/σ1 , . . . , 1/σm )
GW m = d W
!#"$
%$&'()+*-,
.-%'&/102
345-67"82
3459:;2
3<=;(
?>)A@"$7"$B/CD0?E/
FGA@IH
9JK"9L$"6MNO6QP'/CDR26$"9MSO6CT
:?E
>UGF-2V->W
+X>UYZ%$&'(2
JK"
9W
FGA@IH
9JK"9L$"6MNO6QP'/CDR26$"9MSO6CT
:?E
>UGF-2V->W
+X>UYZ%$&'(2
JK"
9W
[Z\ H$]?>U?^G,??Z'_>
)
H,'>(%'H'+`a%$?^H'>
[ ?b
\ cHZ%$&'(d^
XH+?^e \ ,?G,?$f'_>
[ \ H$]CC?CCD,'HgHZ
H()&
]^h
í¨,ï\ðlÜfî g:
PhmÀÃþ ünWcf nCò
wm hi˜³ Üdî ˜ž•œ4Qhiíg:pm ,û œ¶òw/ ™/x,˜žoyx智gU?pmpm ,e.gfq
l,~E‡³~y‘<7× »W‘€m~k]…•‡ »¤\Š”…•|Ñk…€
ò þWû ò
´ç~ ,‘•}<~„Ñy»¤‡Œ‡ç“y…‡¶»¤‰*|!€i‘| Ñ|HÌ
l,~Ek“y‘•‡³~yÌ
ŠŒ|W}~€yk~/àH€i…f†‡³~k‰ Ï4,~7Î‘•\Šž7YŠ”“
G
kdW −
GW mk22
=
m
X
m
(di − (GmL2 )i )2 /σi2
ŒŠ…Å|Ñ#ÑyŒ€iW~i~¿~yÌ?€m…‘‰ |4Ìf …‰ }‘€7Š”‘?†k‡ˆ~ ,‘¿‘æ“i¤ŠŒ¾Î »W‘€i~
ÌŠž7\€7Š”†»¤YŠ”…| #ŠŒŒ
Ì?~Yµf€m~y~k
Éc•Cj W•cf㜈¢¤˜³wÅwyx,À•˜žp˜ˆc•n,jQÓ,˜ˆn,c?hiš
c ,Üdhº*˜ˆ£,£,œžg:••£hiwišf Wg:s h/pE¡oy™/x,gu˜³˜¶wmn,›¸xPpig:É?g: S!£.•pÅwihiwyx,g]guwiܘˆ˜ž•pÈ£¤œˆwm ,g:˜žoUgҝfcfwmœÆxSj4f•wmpix,npÈggAwmpmx,pm&gUe.[c?g,n,nCï\íLwgUò f§ wiokc•x,wmj4 Wgwifx,oyœ³xWguˆÀضwi›¸g:cfpmÉCpÈ¢,w: Wwiz?•fwm˜ˆhmx,n,g.gugAwi£QÓWg:q hmpÈc?wyª¢W•cf¢,j/˜ˆœwm˜¶x,wÅÀg
i=1
d
ν = m−n
p
p=
Z
∞
χ2obs
fχ2 (x) dx.
rA«
ký ñ4îAò¨ û p„ Uû ò?hy¤nWî:£¤ð c?þ eéñ Üþ •ü7hi˜ž •¢,œˆgfzfwmx,g ›ÎÜ<fœ³ Wgu˜ˆpÆ ,n,˜³jlcfhie.œ³À.£¤˜žpÅwihm˜ˆ¢, ¤wig:£
¢Hgkwř„gg:n
²ghicE•nS£
cfnWg s#ã x,˜žpuofn¢HgUÜfg:hmÀ
˜ˆn¤jlcfhie
wi˜³Ü?gfq
r?s mÔuc?hme
fœ0pȘˆ²gA)£ q ™„gÓ,hicf¢Wf¢,œ³À±xW<Üfg•næfo:okgÓ,wi•¢Wœ³gÒÛ,w
e
<À¢Hg/™/hicfn,š
«,s„c?Ç huÝCwi£,hmg:wye.¿ge.œˆÀ¿<À±pme
xW•<œˆÜfgÒqœˆf£,hmš?wygÒh˜ˆgpÆhihiÜfcfghyhip×ÀEwi ,xWnW•œ³n昈¯fg:g:pȜ³À?wm˜ˆz?e
pmcUwie¿g:£ c¤s£¤g:œ
¦Ws„Çe
ÝC<wiÀÃhmg:¢He.ggwmœˆcdÀEc.œˆfšfhmcdš?c¤g £±wm§ c
˜ s g ¢Hs gzfÜfwmghihi ,ÀUg s okœˆc?pmgÆwic ª7qQÛ,wwicÒe.c¤£¤g:œC˜žp•œˆe.c?pÈw gݤ?o7wAz™/x,˜ˆoyx
ë
V ñLèð\ü þSg:?û pÈ c?n± jlc?ð h/ î ,û n,𠘳jlíçcfhiîAeð þ ñ £¤˜žpÅwihm˜ˆ¢, ¤wi˜³c?n0q
ò þWû ò
( ´L~
ŠŒ…|H|͓€mŒ~yW‘<~U7ŠŒŠŒ|d|Sµ Î~L€7}<,‘•~‡ €m~ ,‘}~ ‘ “iÏ4…•,|W~Y|ƒŠŒ|WŒ»WW…•~¿»dÃ€ } “ Ì Ñ 7»WŠž“y‹»¤|Wl,Š Ñk‘•…• €7‰*‡ ÐæÌŠžŠž
7Y7€7\Š”€7†kŠ”»¤“¸\~y‡¶ÌÐ
‚„€m…A…Åс ?~k¸“y,·
Wpm˜ˆn,š¿j”fo7w/wixWw xWfp/fn昳ndÜfg:hipmg]jl ,nWo7wi˜³c?n s
t fœˆo ,œžwmg
wic
Ó,hmcÜ?guwixWw
pÈgwix,gj”fokwwmxW•w
s
¨ ÓWÓ,ë œ³˜žo•wm˜ˆcfn0qº°]nWgo:•n Wpmg]wix,˜žpwmc
š?gn,g:hi•wmgÒhifnW£¤cfe pmfe¿ÓWœ³gApÆjlc?h s
±ñ 0WZgw Y_ p][\hig:pm ,ï”òe.g¿cf ,hgkݤÓHghi˜³e.g:n?wÒjlhicfe •¢HcÜfg s °]ÓSg:n!wmxWg.piokhi˜ˆÓ¤wçg:okwm ,hig ÂWs e •nS£
xW<Ü?gҝ¿œˆcCn,c?c¯ ™(sã pmgkxWwg ,næÓÃhm Wjlc?n h„¬ o:•œžokwm ,œž•œž¢wicf˜³n,nš˜³wwmx,•gÒnWÓ¤£›ÎÜhmgA•pȜˆ , Wge¿cfgUj0o:wm•x,œžg]ok ,wmœžgApÅwiw˜³c? ,nWnWp £,s gh„¢Scfwmxpiokg:nW•hi˜ˆc?p s
p
p
p
Gm = d
p
1
X
0<x<1
(0, 1)
F (x)
Y = F (X)
F (x)
•
P (Y ≤ y)
•
F −1
F
P (X ≤ x) = F (x)
P (Y ≤ y) = y
X
\ a
^ %'H
*(" GH
' GPUF-2V(
]?]H 9"
?T
:
\ ^a%'H
*(':UGH
' (29+PLF-2V(
]?]H :?T
:
'^,'] \ ^a%? ']b
']9"c#" P \ ^a% \ b4 \ ^a%'H'*("( 6Pa
']:G#" P \ ^a% \ b4 \ ^a%'H'*(
:4 6Pa
[ H
`eHU`Z%])^
U$>-,
h
[ H
`G]> ?^U*e$(%(LH+?^),U
ë® c™V£¤c
™ºg˜ˆnCwmghiÓ,higkwwmxWg:pmgÒhig:pm ,œ³wip^]
r:¦
Sþ Ç û òÝ,•þe.˜ˆn,ñ gÃfò•LnWîA£í WWpmï g. wmþ0xWþg ï ¬ —]Ô wix,gc?hmg:e.pcfj„âÆhmc?¢SbCwi•w çg:o7wi ,hig:pÒwmc!ocfe.Ó, ¤wig.wmx,g
gkpmcfݤœˆÓH ¤g:wmok˜ˆcfwin0wiz ˜³c?n!xW•?nWp„£æjl ,Üœ³fLhmok˜ž•cfnWœˆ ,oe.gEnæc•jhiwifx,n,g¯Ãh •s Ü nSs £ zH˜žpu™/¿x,gÜfhigAg o7wmc?h˜ˆc•pjwm˜³xWnWg£,ge.ÓHc¤g£¤nW˜¶£¤ÛSg:g:nC£ wuœˆh g:s ?Ü pÅs w]_ p spiÉC W•hig:p
wiÇ hmf˜ˆ¢,oyx( ¤wig:g:£n?wiÜhm•ÀJhi˜ˆc•fj ¢,œˆg:p:z,˜žpÈp±˜ˆnW‹okg œˆ˜³nWg:•hokc?e¢,˜ˆnWwi˜³c?nac•jE˜ˆnW£¤g:ÓSg:nW£¤gnCwn,cfhie
•œˆ³ÀJ£¤˜ˆpț
m
d
G
•
m
m
−1
xSfp/okcܝfhm˜ž•nWoge
wihm˜³Ý s
ã xWgU™ºg:˜³š?x?wig:££,wy
Ú]g:£, WokgwixWw
s
Ôc•wigEpȘˆe.Ó,œ³˜ ÛSo:wm˜ˆcfn˜³j ܝ•hi˜ž•nWog:p•higUokcfnSpÅwy•nCw:q
s
*þ ñ ÔufògÝC wuî:gíÝ,,•ïe. ˜³nWþçg]þ wiï x, gUe.g:fncfj •nW£æ£¤gA£¤ WokgÒjlhicfewmx,gj”?o7wip„wixWw
fnW£
•nS£ ¬ —ÒÔVj”fokwipwixWw
® gnWogfsz¿e.cd£,˜¶ÛWgA£ œˆg:fpÈwÍpiÉC W•hig:p!pmcfœˆ ¤wi˜³c?nŽ˜ˆp͝•n í ñ ð ò ÿ ò î:ð, ¤î þSû cfj
® gnWogU™ºgUo:•næokcfnSpÅwihm Wokwu
okcfn,ÛS£¤gnSokg˜³nCwighiÜ<fœ4jlcfh/c? ,hgkݤÓSg:hm˜ˆe.gnCw:q
m = GTW GW
•
GTW dW .
dW = W d
Cov (m) = GTW GW
•
•
I
−1
Cov (m) = σ 2 GT G
−1
m
E [dW ] = W dtrue
GW mtrue = dtrue
• E [m] = mtrue
•
mtrue
•
a¡ xSwu˜³jLwix,g § ocfnWpÈwifn?w7ª„ܝ•hi˜ˆfnWokgҘˆp Wn,¯dn,c™/n]!bCwi W£¤g:n?w _ p/w/wmc¿wmx,gUhig:piok Wgf©
® c™Vë £¤c.™ºg˜ˆnCwmghiÓ,higkwwmxWg:pmgUhmgApÈ ,œ³wip^]
ì
íLãî:ï\x,ð”ò g:û pmg.•hig¿£¤˜žpiokcfhy£,fn?w£,wy,zQÓHc?pipȘˆ¢,œˆÀ!£¤ ,g*wmcæc•wix,ghg:hmhicfh]cfhUpȘˆe.Ó,œˆÀ ¢Wf£’œ³ Woy¯ s
¡axW•w/wmc
£¤c]
pÈgEpÈwi•wm˜žpÅwi˜ˆo:•œQgApÅwi˜³e
wi˜³c?n±wic㤘žpmo:•hy£
wmxWgUcf ¤wiœ³˜ˆghyp s
e
œˆ gepȝfg¯fg:’pu£¤e.˜ 4•wÈgwihigghynCp/wen, Wc?hmoyex e.jlhic?cfhme gEocfe.Ó,s͜ˆ˜ o:㠝x,wmggA£Q© ›Yn,t c?cfhmnWe pm˜ˆ£,˜žpgh/•winPx,gE•œ³cfwmgÓ,hiwmnW˜ˆe¿•wm˜ˆ˜ˆ²:Üf•gfwmz ˜ˆcf¢,næ ¤w¿Ó,hiwmcfxW¢¤˜ˆp›
® c™V£¤c.™ºg˜ˆnCwmghiÓ,higkwwmxWg:pmgUhmgApÈ ,œ³wip^]
rÞ
m ± 1.96 · diag (Cov (m))
1/2
•
•
•
k·k2
1
kd − GmL2 k1 = min kd − Gmk1
m
4ó DöL÷ 3 5 ø#= 3 ÷„ö 5 5 õ óéôõö 5 õ <ô <ø 84õA@E÷ 3 øL÷ 3 ô
÷ ø
XHJG ! *M ! 4KL7MNPORQTS
ë
þ î:ð [,î:ð”ñ W Y[ ï\ò ýkñ4îAò û ,ïXW Qí¤îAð þ ñ wm0ßטˆge.…w |Sg Î‘•|Wz¤™/ŠŒ‰
x,‘g|Whi¢SgEg.Ï,wi€mx,‘|WgÁ\àWokc?…nW€7okg:nC•wmnWhy£wm˜ˆcfnÍc•j/ÓSs#c?œ³ã ˆ ¤x,wigUfnC£¤wgÛWn,wE˜ˆn,ÓHš
cf˜ˆe.n?w c¤£¤g˜ˆœ n‹æœ³˜ˆn,gA•hEpÈwmhig:•eæz
C (x, t)
t
x
0≤x<∞
þ ï\íçîAð þ ñ
Ḗ4n…•‡ wm»¤x,YgEŠ”…o:|Hf· pmg]wixWw
™/x,g:hmg
0≤t≤T
∂2C
∂C
−v
2
∂x
∂x
Cin (t)
∂C
∂t
C (0, t)
=
C (x, t)
C (x, 0)
→ 0, x → ∞
= C0 (x)
C0 (x) ≡ 0
=
D
zdwix,gUgkݤÓ,œˆ˜ o˜¶wpmcfœˆ ¤wi˜³c?n˜žp
C (x, T ) =
Z
T
0
Cin (t) f (x, T − t) dt,
2
x
f (x, τ ) = √
e−(x−vτ ) /(4Dτ )
3
2 πDτ
!ò ýkñHò û ò ûþ/ ï”ò
vx,‚„˜ž€m˜ˆpÅÜf…?wigcf†knE‡ˆhi~kÀ ‰
pms#˜ˆe·ã ,xWœ³•wiwfn,˜žp:gz,c?šf W˜ˆpQÜfe.g:ng:?£,pȝ• ,wihi ge.g:n?wyp0wçwm˜ˆe¿g zwicug:pÈwm˜ˆe
wig#wmx,gºokcfnCwy•e.˜³nS•nCw瘈n`Wc™
wmc.gApÅwi˜³e
wig
T
di = C (xi , T ) , i = 1, 2, . . . , m,
Cin (t) , 0 ≤ t ≤ T.
rÄ
þ ­¬ ò cfhi gšfòCg:î n, gþ0hyÿ•œˆ ³À
v‚„€m˜ˆÜf…?g†kn‡ˆ~k‰
wmxW· gUá Ê
Z
b
•nS£*]ÛWn,˜³wmgupi•e.Ó,œˆg„c•j4Ü<fœ³ Wg:p z
¬ gkwix,c¤£,p/™„gU£¤˜ˆpiok Spmp/•w/wmx,gU¢Hc?fhi£Qq
r?s Sf£¤hywi ,hmg
«,sè gÓ,hig:pmgnCwmg:hip
¦Ws °wix,gh t xWcf˜žokg:pcfj ã hi˜ˆfœ ,nWokwm˜ˆcfnWp
d (s) =
zwmcgApÅwi˜³e
wigÓW•hy•e.gkwigh
g (x, s) m (x) dx
a
d (si ) i = 1, 2, . . . , m
m (x)
s
ë
XH
M " &/M !
[S S ! -" U
&
í‘<7 Š”“ÿLû{¤Ìf~yî:‘í kû · ò
¨ ÓWÓ,hmc<ݤ˜ˆe
wmg]wmxWgU˜³nCwmg:šfhy•œžp
di ≈ d(si ) =
Z
b
g (si , x) m (x) dx ≡
Z
b
gi (x) m (x) dx, i = 1, 2, . . . , m
ª„¢dÀ
§ ™/xWghig]wix,gUhigÓ,hig:pmgnCwmg:hipºcfhu£Wwi¿¯?ghin,gœžp
s§ áÎw]e.˜³š?xCw¢Sg*™/˜ˆpmg
wib¤c
gœˆgg:nWo7wipm˜³ ,nWhišg ÃpmgkwcfjÆs ª okc?œ³ˆc¤owi˜³c?næÓSc?˜³nCwip
b¤gœˆg:o7w •n˜³nCwigšfhywi˜³c?nҝfÓ,Ó,hic<ݤ˜³e
wi˜³c?ne.gkwix,c¤£¢Wfpmg:£Òc?n]wix,gÆocfœˆ³c¤o•wm˜ˆcfnÒÓSc?˜³nCwyp s
˜³n
wi gpÈhige
wip/x,c•gEjL˜ˆwmnCx,wmggUš? ,hinW•wm¯C˜ˆnWcfcn™/•nWÓ,p Ó,hic<ݤ˜³e
•wm˜ˆcfnWpºwmz c
c?¢¤wif˜³næ.œˆ˜³n,gAs•hupmÀ¤pÅwige
a
a
gi (x) = gi (si , x)
•
xj , j = 1, 2, . . . , n
n<m
•
ë
•
XH 9SO
Gm = d
mj ≡ m (xj ) j = 1, 2, . . . , n
/S#US !
S & +S !.- &
r:Ø
ò è û ò wix,òdgñ4hÒî:wiò xWû• n’jlcdo Wpm˜³n,šcfn’wmx,g¿Ü•œˆ ,g¿c•j •wҘˆnW£¤˜ˆÜd˜ˆ£¤ S•œÓSc?˜³nCwypz4wy•¯fg.Ãš?œ³c?¢W•œ
jlÜd ,˜³g:nW™(okwm˜ˆwicfxWnWp w œˆ˜³Ü?g:p˜ˆn*jl ,nWokwm˜ˆcfn pmÓWfog]™/x,˜žoyx˜ˆp/pmÓW•nWn,g:£¢dÀ
wmx,g û ò û ò òdñ4î:ò û
‘<7Š”“{Ìf~y‘k·
wmcEfÓ,Ó,hic<ÝC›
˜ˆ¬ e
•¯fwig/g pmgœˆg:o7z,wipi˜³c?<n.À c•jWwix,gu¢W?pȘžp jl ,nWokwm˜ˆcfnWp
m
m (x)
g1 (x) , g2 (x) , . . . , gn (x) , . . .
•
•
g1 (x) , g2 (x) , . . . , gn (x)
m (x)
Ú]ghi˜ˆÜfgU.pÈÀ¤pÈwmge
m (x) ≈
Γm = d
n
X
αj gj (x)
™/˜³wmx  v hife¿˜ž•nokcdg Ão˜³g:n?wue
•wmhi˜¶Ý
j=1
Γi,j = hgi , gj i =
Z
b
gi (x) gj (x) dx
a
WZY[\ï”ò
Ï4,~E’…<7L‘‰
…»d€m‘•‰*Š”‘•|ƒ…ÈѱÏHW~k‰Ë]‡Œ‡³·
c?b¤n ,Ó,wmÓHx,c?gUpm˜ˆgUnCwmwmgx,hig*ܝ•¢Wœ fpm˜žpjl ,s nWokwm˜ˆcfnWpwm ,hin cf ,wuwmcâHg
Ç ÝdxW˜³¢,˜³wuwix,gU˜³n,j”•e.cf Wp ® ˜³œˆ¢Hghmwue.•wmhi˜¶Ý s
•
z
gi (x) = xi−1 i = 1, 2, . . . , m
[0, 1]
•
XH
S S+&/MQ M ! ZU
ë
ì.î Lã ò fû>¯fg
æ þpÅwi𠘳fòœˆ×.e.þ cfühig. šfû œˆðcf,¢Wï fœíLÜCñ˜ˆg•î™éAð wmþ xWñ • w œˆ˜³Ü?g:p˜ˆnjl ,nSo7wm˜ˆcfn‹pmÓWfog¿pmÓWfn,n,g:£
¢dÀ±.pÈÓS•n,n,˜ˆn,š
pmgkwu™/x,˜žoyxe
<À!|4…„¢Sgwix,gUhigÓ,hig:pmgnCwmg:hip:©
‘<7Š”“{Ìf~y‘k·
pm¬fÓWÓ,•fÓ,¯fn hig×c<ݤ/˜³e
pmgœˆ§ g:wiookg•wmœˆ˜ˆcfg:n£ c•ÅjCwmzWwmhixW˜žpi•<gלºÀ ¢Wjlf ,pmnW˜žo7p4wijl˜³ ,c?nWnWokp wm˜ˆcf˜³nWnPp wmxWg™„g˜ˆšfxCwig:£‹hig:pm˜ˆ£, W•œ„œ³˜ wmg:™/hi•˜³wmwmxU ,hiœˆ˜³gAn,ªEgAwm•c h
m (x)
•
h1 (x) , h2 (x) , . . . , hn (x)
Hn
m (x)
•
Ú]ghi˜ˆÜfgU.pÈÀ¤pÈwmge
m (x) ≈
Gα = d
n
X
αj hj (x)
™/˜³wmx .okcdg o˜³g:nCwe
•wmhi˜¶Ý
j=1
Gi,j = hgi , hj i =
r!
Z
b
gi (x) hj (x) dx
a
z
û ð,,ï í ñ fî:ð þ ñ ¨Üf€gAnJ7o7ŒwiW•cf…mÓ,hyµCp ÓH…s g:|4áΝf‘j œ³‡S˜ˆ™„n,{:š’gUÌf~y£¤oy‘fxWc
· cfpȘžcSokg±q cfju¢Wfpm˜žpÜ?g:o7wicfhypE˜žp*fn­cfhmwmxWcfn,c?hme
•œ § c s n s ª pÈgw*c•junWcfn,²:ghic
• km (x)k =
n
X
α2j
Pn
¬ g:•nW˜³n,š.cfj mw xg:ÉC W•wm˜ˆcfn0q
XH S ! - # M U M JQ S &.!
• ProjHn (gi (x)) =
•
ë
z
j=1
i
j=1
hgi , hj i hj (x) i = 1, . . . , m
ProjHn (gi ) , m = di
s
ú $0ûí þ/ & ï”ò
ð\ï ò ™„û îgu™ •ò?nCî wÆ wiþçcÿ gApÅwi˜³e
wig w„*pȘˆn,š?œ³g]ÓSc?˜³nCw Wpm˜³n,šwmx,gҝ<ܝ•˜ˆœ f¢,œ³g
£,•wi,z,fnW££¤c
˜¶wu™„gœˆ s® c™(wic
Ó,hmc¤ogg:£]
‘<7Š”“{Ìf~y‘k·
¡hi˜¶wig
•nW£
s
™/˜³wmx
è g:£¤ Wog wmxWg’˜ˆn?s wigš?hifœokc?nW£¤˜³wm˜ˆcfnWp.wic
áÅ£,g:•œˆ À
s ¡axW•w _ pwmx,gUnWgkÝdw/¢SgApÅw/wix,˜³nWš]
m (x)
x
b
•
• P
m
m (b
x) ≈ m
b =
j=1 cj gj
•
Pm
j=1 cj dj
dj =
Rb
m
b =
(x)
a
gj (x) m (x) dx
Rb
a
A (x) =
A (x) m (x) dx
A (x) = δ (x − x
b)
ú $0í & ð\ï ò û îAW Qí¤î:ð þ ñ ßׅ|WyY€m‘•ŠŒ|W\U…•|’l,~¿‘}~k€m‘:µ•ŠŒ|dµ f~€7|H~‡ ·
s bdgw
fnW˜ˆhi£pÈw:šfz,gfw nfhmgAocfnWs pÈwmhy•˜ˆnCw:qLwmc•wy•œQ•hig:
b¤g:okc?nW£¤œˆÀfz,e.˜ˆn,˜ˆe¿˜ˆ²gEpmg:ocfnW£e.cfe.gnCw
s
ãfnWxW£æ˜ˆpçok¢Sc?gAnWokpÅcfwie.hifgA˜³nCp0wypºÉ?œˆ S˜ n,fg:£¤fhyh s wi˜ˆoÓ,hicfš?hife.e¿˜ˆn,š„Ó,hicf¢,œˆgeæq4cf¢ ÅgAo7wi˜³Ü?gjl ,nWo7wi˜³c?nEÉC Wf£¤hywi˜ˆo
á¸xSnÝ<Üfj”fgUo7*wAz?wm˜³cdwºcf˜žœ4pÆjloc?cfhundpÈÜfc?gœ³ÝQÜdzf˜ˆn,˜ sš¿g s wmzCx,cf˜ž¢pqÅgAo7wi˜³Ü?g/ jl ,nWokwm˜ˆcfnÃs e
wihm˜³Ý.˜ˆpÆÓScCpȘ³wm˜ˆÜfg£,gkÛWn,˜³wmg s ¡Íg
•
A (x)
Rb
a
qT c = 1
Rb
•
a
•
•
A (x) dx = 1
A (x)2 (x − x
b)2 dx
_>? ]H& CN
r:Â
qj =
Rb
a
gj (x) dx
•
]° nWgæocf ,œž£JokcfnSpÅwihif˜³n wmx,gæÜ•hi˜ˆfnWokgc•j]wmx,gægApÅwi˜³e
wig zpm<À
z
™/e.xW˜ˆ²:g•hiwmg ˜ˆcfnæÓ,˜žpUhicfwi¢,x,œˆgÃge ¯dn,s c™/nƒÜ•hi˜ˆfnWokg
cfj sæã xW˜ˆpU˜žpæe.c?hmgÃocfe.Ó,œˆ˜ o:wmgA£cfÓ¤wi˜¶›
σi
m
X
m
b
di
i=1
c2i σi2 ≤ ∆
ë
ò 0î:í ÿ
ü þSû î ò*WZ
¨hiÏ4˜³Ü?,j”g~fh¿o7‚„wi™/cf€m…?˜¶hiwiÀæ†kxJ‡³~cf‰
WnÍnW· fo:hiok˜³gÜ?ÓSg•h¢,¢Sœˆg•n,œˆg¯ Ü?xWgœž?p¿pÒc•hmj]gAokÓHgcfnCœˆwiÀ¤œ³oyÀæx,¢Hœˆcfghig˜³nnW•ÓHwmgAcf£‹œˆ³ ¤¢,wi˜ˆ˜³Ó,nWx,šgndÀdÓ,œžphigÜd§ ⠘³c?t WŸpmœ³pyÀª s ,n,¡ÍÓHcfg月³xW ,<wmg:Ü?£ g
ÛWc£¤™/˜žn,pmgAn,opc˜ˆzn,Üfš*g:fhmp¿wmgAx,£Ã™„gg.j”œˆ?uÓ,o7fœˆwm ,p
c?e.hmoÀ gUcfs n¤c•ÛWjLhiâ e t Ÿc?h.•£,nSg£ndÀ™•oknCœž•w˜ˆwme
c.p
gApŝ•wi¢H˜³e
cf ¤w.wigUwix,˜¶wyg!pu•pme.˜³²:g]cf Wwin?cÃwyfp¿pi¢CpÈgAÀ pmpwmx,£,gfe
ocf•e.šfgÓW••nSnd£À
¡pi•e.g’Ó,oœˆcfg:nCpwmhi™„cfgUœ/oe.fng:?xSpÈ W•hmnWg:£¤e¿œˆgfg:zdnCwiwixWp.¢,wu ¤˜žp:wÃz,xS<wuÜfe.g c?•pÈnÙw ,Ó,ÓHs gh±¢Sc? ,nW£ÙcfnJwix,g nd ,e¢HghÃcfj
•¬ wg:£¤f˜ pmH ,g:hihmgg:e.n?w/gnCœˆc¤wypo•e
œˆg:<p À s ¢Hgwy•¯fg:n͝•w£¤˜ 4ghignCw]wi˜³e.gApzQ¢, ,wU•wÒe.cCpÅw ÓSg:h]wi˜³e.g
®f¢,cœˆ™éÀ‹g:™„pÈcfwm˜ˆ ,e.œž£•wm™ºgApg
wi£¤x,gA˜žpÈp.˜ˆšfÓSnƒc?œ³ˆ ¤wmwmgA˜ˆpÅcfwinJ˜³n,£¤š ,ÓWe.hmÓ,c¤ok˜ˆn,gA𣤠, WhipÈg˜ˆn,wišÍxWwmwx,g?ooocfcfnC ,winCfwie¿pҘˆjlnWc?fhEn?•w*nWwm£Íhy•hinWg:fpmÓHpmcfcfn,hmw›
gAÉC Wwi˜³c?n?pcf ,h/e.c¤£¤gœ']
•
•
100
20
•
ë
ó4DöL÷ 3 Eõ ÷= 5 ÷/õ>= F E õ: 8 QóéôEõ: 5 ö 5 ôEõ 5 õ JH G & O +S &.!TSU # ! - S ú ò ð þWû ò
Lò ùþSû Ù þ –Sü ŠŒ|dµ•»¤‡ˆ ‘€ S‘‡ »W~¼*~y“y…‰à,…7ŠŒ\Š”…•| *´ç~ †y~E‘| €m~y‘‡Q‰
‘Y€7Š Ï4,~|‹ŒWÌ~kŠ”€i‘~õC~…|4Šž‘7‡E ‰
‘Y€7Š …€7l#,…iŠŒŒµC …|H̕‘•Š”‡#‘µC‰.…|4‘•\‘€7‡Š ~|WY€7ê Š”~7 …•€7ŒW…mµC…|4‘‡#‰
‘Y€7Š #‘ŠŒ|4ŒÌ
‘€m~
’…•€m~y…}~k€yêU|W»¤‰
†y~k€y
»¤|WŠ »W~‡ бÌf~Î~€7‰¿êuŠŒ|H7»W~y̱“i­†Ð ŒW‘ ok• c?nSònW£¿%pmo˜ˆñ pÈcfwmðlœˆ˜ˆî: ,n,ð e.þš±ñ nWcfp#j×ùScfwmù xWj g¡azfÛW™/hy˜³wmpÈx,x¿w g:n,hmgcfokwic?œ³wi ,˜³˜žc?e.p#n*wmnWxW?pÒgupLcf˜ˆœˆjn*?pÅwmw×x,z nWgucfbdn,zQ—Ò²:higÚ g:hipmcãÓSpmgAx,˜ˆo7n,gwic?šf˜³Ü?hm ,g:gœžeœˆ•Àfh#zQz•ܝf•fnWnWœ³£ ,£ g?z•wix,z wmgxWn
g*wiwiÛSx,x,higgpÈe
w þ0wmhihiþSc˜žû ok™uòg:p&p
òdñ ûþ ò òdí ÿ þ ð”ñ Sò û ò c•j ˜žp
s
r:¥
m×m
m×n
q = min{m, n}
S
U T GV = S
G
m×n
U n×n
V
σ 1 ≥ σ2 ≥ . . . ≥ σ q ,
σ 1 , σ2 , . . . , σ q
G
p
S
U V
σp
G
G† = Vp Sp−1 UpT ≡
U p Vp
Sp
p
X
1
Vj UTj
σ
j
j=1
p
¤t îA hi hmÀ
c? ¤ñ w/þ wmxW g:pmý7gî o:•œžok ,œžwi˜³c?nWp˜ˆn ¬ wmœž•¢çq
UZX8
+Fe+^a%
,'*/Da6W
e =Fh
@ E) Fh6W
2'F-2 Z
P @ E) F/= \ H
6W
[ ?3e
&-%+`a%?^ a"$8 +?^
XFF$"9MD0-
[ `^G+?^UH
HX%7&?>-,?
,'>LH?bGF
ë
ï”pmð g¤n,î:c•ð wyþ ñ wm˜ˆ.cfnþ ü•¢Hî LcÜfò g]fnW£Ã hig:o:•œˆHwmxW•wºwix,gnC Wœ³QpmÓWfogҝfnW£±ocfœˆ ,e.npmÓWfog § hifn,šfg<ª
c•j e
wmhi˜³Ý fhmg
fnW£
N (G) = {x ∈ Rn | Gx = 0}
G
R (G) = {y ∈ Rm | y = Gx, x ∈ Rn } = span {G1 , G2 , . . . , Gn }
ò þWû ò
ù ‘ |4Ì
ŠžUl,~‡³~y‘<7º »W‘€i~7…‡ »¤YŠ”…|͍΅
…ÅÑU‰¿ŠŒ|WŠŒ‰¿»¤ê ‰ ¾¸|H…•€7‰ ò
û pmî gþ wmx,ü/gUî LÓWòhmg:ÜC ˜ˆcfð Spº?ínWLc•ï”wiî:•ð\òwm˜ˆ cfn0 z,ðlpmî c¿ wmxW•ò
w î ˜žp Qí û ò ™/˜³wmþ xæï”íLhyî:•ð n,þ ¯ ñ •nS£æb¤—]Ú*z,gkwyoUfp
e.•¢Hg:cfÜfn g s Ÿ„Às ÿ ¤î ?ò ™„g]e.g:fnÃwix,gÜfg:okwmc?h„pmÓWfog fnW£Ã¢dÀ þçÿ òdï ?ò ™ºg
ã¹x,… ˜žpe.‘•| g:E•nS¼¿p„~ wmºxW“•Š”w~k|4“kÐf· sºt c?e.e¿g:nCwip:q
ã xW˜ˆp/e.gA•nWp„wixWwund ,œˆ0pÈÓSfokgcfj ¢Hc•wix •nW£ fhmgÒwmhi˜ˆÜC˜ž•œ § ¢Scfwmx ª s
e.ã xWc¤g£¤nÃg:œçwix,pÈÓSgfhigokg?˜žqp„EÓHghmjlg:o7wokc?hmhig:pmÓSc?nW£¤g:nWokgu¢Hgkwř„gg:nÃÜfgAo7wicfhypטˆn±£,wypmÓWfog•nS£
ã xW˜ˆp/˜žp„wmxWgU˜ˆ£¤gA•œ s Ÿ„ ¤w•hig]™„gcf ¤wucfjçwix,gU™ºcdc¤£,p^]
Ôo˜³g:cWnCz¤wu™„e.gҝ•pÈwmwm˜ˆhiœ ˜¶HÝ xS§<hiÜfggue.wigc¿e*£,¢Sg:g:•h œ4®™/˜ˆ˜³œ³wm¢Hxæghm£,w^]<wyª s g:hmhicfh„•nW£±˜³œˆ³›ÎocfnW£¤˜³wm˜ˆcfnW˜³n,š¿c•jçwmx,gUokcdg ¿›
rank (G) = p
span
{V1 , V†2 , . . . , Vp }
m† = G d
G=
σj Uj VjT
ê
N (G) = span {Vp+1 , Vp+2 , . . . , Vn } R (G) =
j=1
N GT = span {Up+1 , Up+2 , . . . , Um } R (G) = span {U1 , U2 , . . . , Up }
Gm = d
2
p
X
G
m×n
Rn
p
Rm
p=m=n
•
G
GT
•
Gm = d, m = G−1 d = G† d.
•
•
«•Á
{0}
ò û pmî gþ wmx,ü/gUî LnWòc•wi•wmð˜ˆcfn ?íLï”î:ð\ò ðlî s ò
î Qí û ò þ ï”íLî:ð þ ñ ãx,… ˜žpe.‘g:| •nSp„¼¿wm~ xWº•“w Š”~k|4“kÐf· sÆt cfe.e.gnCwip:q
ã xW˜ˆp/e.gA•nWp„wixWwund ,œˆ0pÈÓSfokgcfj ˜ˆp„wihm˜ˆÜd˜ˆfœ\z¤¢, ,w/wmxW•wuc•j ˜ˆpnWc•w s
® ghig ˜žpwmx,gU Wn,˜ˆÉC ,gœˆg:?pÅwpiÉC W•hig:ppmcfœˆ ¤wm˜ˆcfn s
gkÝ,fokwmœˆÀ*˜³j ˜žpº˜³n
wix,gÒhifn,šfgucfj s
¨ nW£ ˜žp×wix,gÒgkÝ,fokwºpÈc?œ³ ,wm˜ˆcfn
wic
Ÿ„ ¤w ˜ˆp/˜ˆnWpmgnWpm˜³wm˜ˆÜfgÒwmc
•ndÀ
wihifnWpmœˆ•wm˜ˆcfn ™/˜³wmx
m† = G † d
d=n<m
•
GT
G
•
m†
•
m†
•
m
Gm = d
G
d
d + d0
d0 ∈ N G
†
ò û î þ ü/î Lò ð ?íLï”î:ð\ò ðlî ò
î Qí û ò þ ï”íLî:ð þ ñ ã ß×x,…‡˜ž»¤p‰¿e.| g:•]nS‘p | E¼¿~ „“kŠ”~|H“sºÐft · c?e.e¿g:nCwip:q
ã xW˜ˆp/e.gA•nWp„wixWwund ,œˆ0pÈÓSfokgcfj ˜žp„wmhi˜³Üd˜ž•œYz¤¢, ¤wuwixWw/cfj ˆ˜ pnWc•w s
® ghig ˜žpu.pÈc?œ³ ¤wi˜³c?ncfj e.˜ˆn,˜ˆe ,e ›În,cfhie s
˜žp/•œžpÈc.
pÈc?œ³ ,wm˜ˆcfnwmc
jlcfhufnCÀ
¨ nW£
s
b¤c ˜žp/˜ˆnWpmgnWpm˜¶wi˜³Ü?gÒwmc
•ndÀ
wihifnWpȜžwi˜³c?n
™/˜³wmx
s
p=m<n
GT
•
G
•
m†
2
•
m† + m0
Gm = d
•
m† + m0
d
m0 ∈ N (G)
m0 ∈ N (G)
ò û î þ ü/î Lò ð ?íLï”î:ð\ò ðlî ò
î Qí û ò þ ï”íLî:ð þ ñ ãx,… (˜žpe.‘|Hg:̒•nSß×p …‡ »¤‰¿| ]‘| *¼¿~ „sº“kt Š”~cf|He.“Ðfe.· gnCwip:q
ã xW˜ˆp/e.gA•nWp„wixWwund ,œˆ0pÈÓSfokgcfj ¢Hc•wix •nW£ f hmgn,c?n?wihm˜ˆÜd˜ˆfœ s
® ghig ˜žpu¿œ³gAfpÈw/piÉC W•hig:ppmcfœˆ ¤wm˜ˆcfn s
¡gUxW<Ü?g]wihmc? ,¢,œˆg˜³næ¢Hc•wmx £¤˜ˆhig:o7wi˜³c?nWp s
p < min {m, n}
•
•
G
m†
•
«¤r
GT
H *M & JM S9M 9S#U) Q ! # ! - S 9S S+&[MIQ S '
* S &/US
Q !
*þ [ û ð,ñ fò ,ñ ÿ ò :þ ï”íLî:ð þ ñ
˜žp
ò %ñ ðlî:ð þ ñ s ù ã xWg þ0ÿ òCï û ò Aþ ï\íçîAð þ ñ ¤î û ðY jlcfhwix,g
Ó,hicf¢,œˆge
ßׅ|Wk~ »W~k|4“y~7·
z¤™/x,˜žoyx˜žp Å WpÈw ˜¶j xWfp„jl ,œˆçocfœˆ ,e.nhy•nW¯ s
áÎj
zdwmx,g:n
ã xd Wp:zwmxWg!¢,˜žfp؈nÙwmxWg!šfg:hmg:hifœ³˜ˆ²gA™/£ ˜³wm˜ˆndx Üfghypmg!pÈc?œ³ ¤wi˜³c?s n٘ˆp
ob¤c˜³e.ܝ•˜ˆhiœ f˜ˆfhmnWœˆÀfokz¤gҘˆn±e
wix,wmgEhi˜³Ý±o?˜ˆpÈp gÒc•j ˜ˆ£,gnCwm˜žofœ³ˆÀ±£¤˜žpÅwihm˜ˆ¢, ¤wig:££,wy™/˜³wmxæÜ•hi˜ž•nWog z¤wmx,g
fhmhmgÒc?e okœˆc?gpmÝdguÓHwig:c okwmgAzd£ƒ™„Ü<g]foœ³ Wœˆfg:˜³pUe֙„š?g
cCc¤cf£
¢¤wyhi•g:˜ˆpmn‹cfœˆ ¤wiû ˜³c?ò n
Aþ c•ï\j0íçwiîAxWð þ ñw/okî:cdò cf hyî £¤qE˜ˆnW˜³j/wigfz?£,c•˜ˆwmfxWšfgcfhinS™/•˜ˆœ#pmggnCn,wicfhmw À s
Gm = d
Rm = G † G
• Rm = Vp VpT
•
•
Gmtrue = d
G
E [m† ] = Rm mtrue
(Rm − I) mtrue = −V0 V0T mtrue
•
E [m† ] − mtrue =
V = [Vp V0 ]
2
Cov (m† ) = σ G
•
ë
In
†
G
† T
=σ
2
σ2
Pp
Vi ViT
i=1 σi2
.
1
H '
ZU
!
M J Q ! #
S S &[MIQ S S /US Q ! ZU
') * +&
ýkñ î ð”ï”ð”î þ ü òCñ ò û ,ï”ð,fò ÿ ýkñSò û ò þ ï”íLî:ð þ ñ
Ï4,~ f~ÐÀm~k7»¤‡ \k·
cfh pmÉC WfhmgÒe
wihm˜³Ý
s
˜žã p xW˜ˆp˜³nWpmÓ,™/˜ˆhmx,gAgphiwmg xWg£¤gkÛSn,˜¶wi˜³c?n0qºwmx,s gocfnW£,˜¶wi˜³c?nnd ,e*¢Sg:hcfjfn e
•wmhi˜¶Ý
Ôc•wigfq#˜³j zdwix,gEokc?nW£¤˜³wm˜ˆcfnænd ,e¢Hgh/˜žp˜ˆn¤ÛWn,˜³wÅÀ s áÅpwix,˜žp/n,c•wi˜³c?n SpÈgjl ,œ ]
áÎj £,wy Üfg:okwmc?hƘžpÆÓHghmwm ,hi¢Hg:£
wic zChig:pm ,œ³wm˜ˆn,š˜ˆnÓSg:hÈwi ,hi¢Wwi˜³c?nÃc•jQwix,g]š?gn¤›
g:hifœ³˜ˆ²gA£±˜ˆndÜfg:hipmgÒpmcfœˆ ¤wi˜³c?n wmc z¤wmx,g:n
•
•
•
•
n×n
σ1 /σq
G cond2 (G) = kGk2 G−1 2 = σ1 /σn
m×n
q = min {m, n}
G
σq = 0
d0
d
m†
m0†
«f«
km0† −m† k2
km† k2
≤ cond (G)
kd0 −dk2
kdk2
.
ë
0î ð”ï\ðlî ý íLò … aŒW~7~ºÑk‘f“”‘Ƚ~y“kº7Î‘?†kŠŒ‡ ŠŒYÐf·
áΣWj wi s ˜žpºnWc•wÆwicdcœž•hišfgfzfwmx,g:n
wmxWgÒpmcfœˆ ¤wm˜ˆcfn±˜ˆp„pÅwy•¢,œˆguwicÓHghmwm ,hi¢W•wm˜ˆcfnWpƘ³n
áΘ³wij pmgœ³jSxSfp pÈe
zdwm•x,œˆ¤g:hmokgc?e¿˜žpÓHcfnWÓHgc•nCwiwigpLnCwm˜³n˜ž•wmœ4x,jlg/c?h„£¤˜ˆ˜ˆnWhig:pÈo7wiwif˜³¢,c?˜³nEœˆ˜³wÅc•À jHs pȘˆáÎn,w/šf˜ˆ Wpœˆ£¤f˜ˆhLe.Ü?˜³g:nWo7˜ˆwipmcfx,hyg:pç£ocf˜³jLhihmwigAx,pÈgUÓHcf£,nWwy£¤ ›
˜ˆn,š.wic.pme
•œˆ0pȘˆn,š? ,œˆfh/ܝ•œˆ ,g:p s
áΝfj nW£‹wix,ghmgAz?pÅwAfz#nW£E™ºgwix,pÈg˜ˆhie.g„Ó,˜ˆp#œ³g杣¤ok˜žœˆpmg:o:f•h#hy£¤£gœˆwm˜³x,nWgæg:pmwie.˜³c?fn*œ³/¢Hpmgk˜³wÅnW™„šfg ,g:œžn •h*mpmÜ<e.ffœ³ Wœ³g:„p¿pm•˜³nWnWšf£­ ,œžwm•hihg:Üw*•œˆwm ,x,g:gp
ÓWhmc?¢,œ³g:efpc?n,gc•j#pÈe
fœ³ˆgh/hy•n,¯
™/˜³wmx Țfcdc¤)£ Òpm˜³nWšf ,œž•h/ܝ•œˆ ,gAp s
áÎÜj fœ³ ,gApfnW£ƒwmz/xW•g±nWhi£Pg:pÈwiw:x,zg™ºhigæg±˜ˆxWp
<nWÜfg.c­wiokc͜ˆg:•£¤h؞pmo:£,•ghyœˆ£ƒ˜³n,gApȝc?wie¿˜³c?g±nJc•¢Hj/gkwmwÅxW™„ggeæg:nz#¢,È ¤pme
w¿•™/œˆx,˜ˆoypmx ˜ˆn,cfšfn, ,gAœž•p ]h
ãpme
xW•˜ˆp„œˆ0œˆg:pȝf˜ˆn,£Wš?p# ,wmœˆc¿fh/higÜšf• Wœˆ ,œˆfg:hmp˜ˆ²:Ó,•hiwmc¤˜ˆ£¤cfn. Wo˜ˆg:pip/pm , g:p î sû íá¸nñ•¤ndî:À.ò oÿ fpmgfzd• ndÀ.§\e.ã bdgkwi—]x,Úc¤£
ª/pmwmcfxSœˆ ¤w„wm˜ˆ£,cf˜ˆn pios fhi£,p
•
cond (G)
•
σ1 σp
•
σ1 σp
•
σ1 σp
H
KLXMINPOZQJS # M 9 M S JS !
& ZQTSN
ð\ñLò
û þ þ û !"#þ0$&ÿ %òdï ')(*,+.-/0(+.132
(454 67## 89:%
<;
¨£¤g‘<wmhi7g:<Š”okÀ¿“wifg{¢,e
Ìf~yœ³g•‘?nS· Ó,hmwmc?gAÓSp#g:jlhÈhiwÅcfÀ±e֙/c?x,n,˜ˆoygx ¯d˜žn,pucc?™/¢Wn
pmgÓHhicfÜ<˜ˆfnC¢,wºœˆgEwic¿£,fn,wy c•swix,ã gx,h„g:•pmœˆgcfn,£,š•wi
¯d•n,hicgU™/ WnÃpmg:ÓW£•wmwix cÃg:zCpÈwm™/˜ˆe
˜³wmxwmg
*pmc*wmhywixW<Üfg:wAœQq Ó,hmc?ÓSg:hÈwÅÀ
cfjLwix,gUe.g:£¤˜ˆ ,e s cfh/gݤfe.Ó,œ³g?z,œˆgkw/wmxWgUÓ,hmc?ÓSg:hÈwÅÀ±¢Sgwihi<Ü?gœ4wm˜ˆe.gfz
ã hy<ÜfgœHwi˜³e.gU˜žp/šf˜ˆÜfg:n±¢dÀ
¡gEofnœˆ˜ n,g:fhm˜ˆ²g¢dÀÃe
•¯d˜ˆn,š.ÓWwixWpupÈwmhy•˜ˆšfxCw„œˆ˜ n,g:p s
˜ˆcfÚ]nCjL˜žwmpmwicUox,hmhigUggwmš?Ó,˜ˆ ,²hicfg„œˆf¢,¢Ch#œˆÀgpÈeà ,g:¢Seªºpm¢H˜žÉCpug: W£,okfc?£¤hmnWgA˜ˆn,ppŚ]wy§ •okwmnC ,x,w ¢Hgs g:e.pyª g:£,˜ˆn¿˜³ ,™/e xW˜ˆ˜ˆoyn*x.Ò™„pigÉ? S?•pmpmhi ,g e.§ og ,È¢Spmg<œˆcª ™/•nWn,£*g:pipÈp , ¢4§ ÓW£¤˜ˆ•Üdhy˜ˆ•£¤e.˜ˆn,gšÒwmg˜¶wh
Sã pÈhygA•£nWpm˜ˆe.n昶g:w*pÈwmwm˜ˆx,e
ghiwm<˜ˆn,Àƒš •mœˆpÈcfœˆn,c™/š!n,pmg:ÓHpig:p ok ˜³s ÛWgA£­ÓW•wmxWp*•nW£­ocfœˆ³gAo7w*wmge.ÓHcfhy•œ„£,wy wmcÍ¢Sg
ë
`
•
t=
Z
`
dt
dx =
dx
•
•
•
«•¦
Z
`
1
dx
v (x)
ZW Y[ã \x,guÛSï”ò šf ,ù hi g/. jlcf,hÆñ wmÿ x,˜žpº”gkù ݤÓSg:hm˜ˆe.gnCw § fpipÈ We¿gg:foyxÃpm ,¢WpiÉC W•hig/xW?pºpm˜ˆ£,g:p×cfj0œ³g:n,š•wix z
pmc*wix,gEpm˜³²:gÒcfjçwix,gUœˆfhmš?gÒpiÉC W•hig˜ˆp ªkq
1
3×3
11
12
13
t4
21
22
23
t5
t8
31
32
33
t6
t2
t1
t7
t3
ZW Y[t \cfhihmgAï”ò pÈÓHù cfnS. £¤˜³,nWñ šÿ e
”wiù hm˜³Ý’cfj„£¤˜žpÅwy•nWog:p § hic™upc•j higÓ,hig:pmgnCwU£¤˜ˆpÈwifnWokgApU•œˆcfn,š
˜ˆokn,c?š
hmhipÈg:À¤pmÓHpÈwmcfgnWe棤q˜ˆn,š]ÓWwix0zfokc?œ³ We¿nSp wmx,g/hy<ÀE£¤˜žpÅwy•nWog:pfohmcCpmpLg:?oyx¿pm ,¢,¢,œˆc¤oy¯,ªLfnW£*hmgApÈ ,œ³wț
G






Gm = 





1
0
0
1
0
0
√
2
0
0
1
0
1
0
0
0
0
0
0
1
1
0
0
0
0
1 0 0
0 1 0
0 0 1
0 0 0
1 1 1
0 √0 0
0
2 0
0 0 0
1
0
0
0
0
1
0
0
G
0
1
0
0
0
1
0
0
0
0
1
0
0
1
√
√2
2















s11
s12
s13
s21
s22
s23
s31
s32
s33



 
 
 
 
 
=
 
 
 
 
 

t1
t2
t3
t4
t5
t6
t7
t8






=d





hi• ,higÒn!°]˜³winx,¢Wg*wmpmxWgghigEÝ,Üf£¤gf•q˜³e.hig:˜ˆÓ,n okœˆwmgwmc?xWhmÛW˜ˆÀ œˆp g*¬ Ç jlcfÝ,•hҝ•wmœže.wm•x,¢ Ó,˜žã œˆpÒg cdgkcfÝ,œž•pe.z,£,Ó,c*œˆg wi•s x,nWg¡£ jlg¿cfœˆn,cg™/gA£!˜³n,z4wišSpmcÃc
q Û,wix,Ý!˜ˆpÒwix,˜žpg¿hyÓW•nWwi¯x s£¤g¨ ÛSpiokpm˜ˆ ,gnCe.w ˜³s n,šÔc™º™ g
m=8
ë
n=9
?]^ $]-,
\ ^
];? ]6"hV
']?^
H
U) &/S!S
'
QQ U S &
ZQJS#N U
ã ,x,î g:pmgû Ó,ò hmc?¢, œˆgò e
p杕hi˜ˆpmgÍ£¤ WgÍwicP˜ˆœ ¶›¸okc?nW£¤˜³wm˜ˆcfn,˜ˆn,š cfj ꑁƒ…yàfàW…<~yÌٍ΅ّJ€m‘•|
Ÿ„Ìf~ ¤ºw“Ó,Š”~hi|H?o7“wiЄ˜ˆo:àH•€mœˆ…?³ÀU†k‡³~pmÓS‰ gA •¯dÏ4˜³,nW~yšW…•z<€mwm~kxWYgŠ”“yÀU‘¢H‡Œ‡ ÐgxWzCwi<x,Ü?ggÆÀœˆ˜³f¯?hmgºgº˜ˆœ³n,›Îc•ÓSw#cC˜ˆpȜ³gA›Î£UÓScCÓ,pÈhigAcf£Q¢,z•œˆgœˆ˜³e
¯?gÆp sLwix,¨ g ,® wmx,˜ˆœ³c?¢Hhigp hmÓ,w×hie
g:pmgwmnChiw˜³Ý  s
«Þ
G
x,•hi˜ˆggÒhyÜ<•fhyoyœ³˜žxd£æÀ¿fcfp jLpmcfhmwipºjlcfs hu*Ó,hicf¢,œˆge֙/˜³wmx pmÀdpÈwmg:e
s×ã xWg:pmg]c?hi£¤g:hgkݤÓ,hig:pipȘˆcfnWp
™/˜¶wix
zdwmxWgUÓ,hmc?¢,œˆge2˜žp ­ð”ï ÿ ï ˜ˆœ³ ›ÎÓScCpÈgA£ s
™/˜¶wix z¤wmx,gUÓWhmc?¢,œ³g:e2˜žp þ0ÿ ò û ¤îAòdï ˜ˆœ ¶›ÎÓScCpÈgA£ s
™/˜³wmx z¤wix,gUÓ,hicf¢,œˆge2˜žp ò Sò û òCï ˜³œˆ¶›ÎÓHc?pmg:£ s
ë
0ò Hò û ï ýkï\ï'& þ ò ÿ û<þ ï”ò
¨piÏ4•,n
œ0~E™/c?–¤Ó¤˜³wmWwmx!˜ž‘ oJp
gpm‚„ݤœ³˜€iÓSw…fg:†˜ˆhmn懳˜ˆ~ke.‰
wmx,g· nCgwÆe¿˜žp#˜ž£,ÓS£¤g:œˆhÈg jlsc?hm¨ e.gAÜ£*•hi¢d˜ž•À¿¢,£¤œˆg˜³Üd˜³˜žnC£¤wm˜ˆg:n,nWšEpm˜¶UwÅÀok˜ˆœ³hi˜ˆošfœ³xCgw Wpmpmcf˜ˆn, ,šEhyokgÜf˜žpug:hÈÓ,wi˜ˆœžo:f•oœdg:£æwmhy••nShicfpÈÜ? WgnWhm£ ›
wmxWw/g„ÓHœˆcfgk˜ˆjŒnCw#wixWp/fc?œ¶jHn±c•wijSx,wmgUx,g/hm˜ˆokšf˜ˆxChyw/okœˆxWg„ffœ¶nWj £c•j hy<wmx,À¤pçgEÓSof˜³hypiokp眈gwix,s hicf ,š?xEwmxWgpmœˆ˜¶wAz•™/x,ghigºwmx,g:À•higºe.gAfpm ,hmgA£
jlpm¬ c?˜³wÅh/g:À fwmpmxW ,gEhigpÈc?s • ,nWhišfog]œˆg:pu˜ˆnCowmcfg:nW ,pÈnC˜³wmwÅg:À hioœ³c¤oy¯d™/zW˜ž•pÈnWgÒ£ jlhicfe wmx,g ›¸ݤ˜ˆp:zW SpÈjl˜ˆc?n,h𠣤gApÅwi˜³nW•wm˜ˆcfn˜³nCwign¤›
ã xWg×e.cd£,gœjlc?hQwmx,˜žp0ÓWhmc?¢,œ³g:e okc?e.g:p4jlhicfeV£¤˜ 4hyfo7wi˜³c?nÒwmx,g:cfhiÀHq
Gm = d
• O
• O
1
jα
1
jα
j→∞
• O e−αj
0<α≤1
α>1
0<α
•
x
−π/2 ≤ s ≤ π/2
m (θ)
d (s)
•
−π/2 ≤ θ ≤ π/2
d (s) =
Z
π/2
(cos (s) + cos (θ))2
−π/2
ò ûþ/ ï”ò
dθ
θ1
d(s)
s
θ
m(θ)
s1
Ï Æ…*‚„€i…f†‡³~k‰*·
wi㠘³c?xWnægU˜³jlnCcfwmhig:™„nWfpmhi˜¶£±wÅÀ Ó,hicf¢,œˆgs eæq#šf˜ˆÜfg:n pÈc? ,hiog˜³nCwmg:nWpm˜¶wÅÀ
«Ä
ds
•
d (s)
m (θ)
zSocfe.Ó, ¤wigwmx,g£,g:pÈwm˜ˆnW›
sin (π (sin (s)
π (sin (s) +
•
•
ˆ˜ã nCxWwmg:g„nW˜ˆpÈnd˜³ÜfwÅÀg:hipmgºÓWhmc?s ¢,œ³g:eæq0šf˜ˆÜfg:n*£¤gApÅwi˜³nW•wm˜ˆcfn¿˜³nCwignWpm˜¶wÅÀ zfocfe.Ó, ¤wig„wmx,g/pmcf ,hyokg
áÎwo:•n¢SgEpmx,c™/nwmxW•w/wmx,gU˜ˆndÜfg:hipmg]ÓWhmc?¢,œ³g:e2˜žp/pÈg:ÜfghiœˆÀسœˆ³›YÓHc?pmg:£ s
d (s)
m (θ)
ò ûþ/ ï”ò
… ÏW…*¼EŠž“€m~\Š ~æÏHW~U‚„€m…f†‡³~‰.·
Ú]˜žpmohmgwm˜ˆ²g*wmx,g.ÓWf˜ˆhinCfwme¿c gwmg:pÈhÒ ,£¤¢Wc?˜³nCe
wmg:•hm˜ˆnܝfœˆpcfjLg:ÉC Wfœçpm˜³²:g •nW£!wmx,g
£,•wis £¤cfe
•˜ˆn
ã xWghigkjlcfhigfz,fnW£œ³gw z ¢Sgwix,gUe.˜ˆ£,ÓSc?˜³nCwipuc•j wmx,g ›YwmxæpÈ ,¢W˜³nCwmg:hmܝfœˆp:q
•
−π/2 ≤ s ≤ π/2
•
•
−π/2 ≤ θ ≤ π/2
∆s = ∆θ = π/n
n
s i θi
Ú]gkÛSn,g
i
si = θ i = −
π (i − 0.5) π
+
, i = 1, 2, . . . , n.
2
n
Gi,j = (cos (si ) + cos (θj ))
•
2
sin (π (sin (si ) + sin (θj )))
π (sin (si ) + sin (θj ))
2
∆θ
ã xd Wp͘³j z4wmx,g:nÍ£¤z˜žpmohmgwm˜ˆ²:•wm˜ˆcfn’fz nW£ wix,g.e¿˜ž£¤ÓHcf˜ˆnCwhi ,œˆgš?˜³Ü?g fnW£ z
?p˜³n t xWfÓ¤wmg:h ¦,s
mj ≈ m (θj ) di ≈ d (si ) m = (m1 , m2 , . . . , mn )
d =
(d1 , d2 , . . . , dn )
Gm = d
òÔuc™P™º g/o fn*ûþ/g Ý,•ò
e. ˜³nWgÆwix,g/gkÝ,•e.Ó,œˆg„ÛWœˆg:pcfn*wmxWgºwigkÝdw t ÚJjlcfhwix,˜žp#Ó,hicf¢,œˆge sLã xW˜ˆp
ÛWÓWœˆ•gÍwmx0œˆ˜zSÜfwmg:x,pg:n ˜ˆn4cfÓH_ ¬ gnæwiwiœˆx,fg¢ ã gݤcCc?fœˆe.p Ó,Ç œ³gEݤfÛWe.œ³g Ó,œ³gA p •oyxW•Ó Þ jlc?<ghÝ,gA•£¤e.˜¶wiӘ³nWr š _ ssu® c˜ˆ™„hipÈgwæÜ?g?hA£,z,£ax,g:wihmx,g gƒ_ puokfcfn hihig:g:?o7wypÈ£À
wm™c.<À±x,g:wiœ³c±Óæ¢,™/ ,˜³wm˜ˆœžx £ ¦ wm›¸xWÚ gÓ,e
œˆc•wmwiwmhm˜ˆ˜³n,Ý š s ™/˜¶wix,cf ¤wœˆcCc?ÓWp s Ÿfpm˜ˆo:•œˆ³À?z,wix,g:pmgwicdcfœˆp™ºg:hmg¿£¤g:pm˜ˆšfn,gA£
$] CN
G
UZX:
+-U ]a% '
e+e,%(] \ 4=-?: ]a%GPL-?:a
)?^ ZOW
@ ?^?E+Uh$^&h%VOI?^6W
FG \ H6 -gY \ H6 ?^-OC1T
: C12 V%I]a%?26V% - YACCC
%7 ?^
-OC <D]h%?26%7 Y!%7 ?^
-OC1T
:2'OW
[ `'+Hf
G (s, θ)
g($^/ ?^=F-
\ H
4Fh
e =Fh
)
.Fh
«•Ø
ë
ó4DöL÷ 3 B 5 ;Dôõô @ ÷ < 35 ö 5 ôEõ
XHJG , -" * 9S ZQTM & M ! M 'NPOZQTSN S !M ! (* TM ú ð ã¬x,~ÎcCµf˜žpÅp.»¤w#‡³e.‘okc?€7g:Še¿•‘•nSe.\p Š”c?…•¸n|Hwi· ,e.hmgknÙwix,•c¤nJ£˜ˆ˜žœ³p ›YãÓHc?˜³¯dpmg:x,£Pc?n,Ó,chiÜcfhm¢,g:œˆšfgeä ,œž•˜³hinC˜ˆ²:wmc­wi˜³c?n0™„zAg™/œˆ¶x,›ÎÓH˜ˆoyc?x¿pmg:˜žpL£ e._ n,cfgAwm•˜ˆÜ<h
•wm¢dgAÀ £_#˜ˆÓ,n¿hmc?ocf¢,nCœˆgwmegÝd w s
c•j cf ,h/ÓHc?pipm˜³¢,œˆÀ؈œ³ ›ÎÓScCpÈgA£
z,˜ s g s z¤e.˜ˆn,˜³e.˜ˆ²g
zWÓ,hmc?¢,œˆge2¢dÀ4q
âÆhmc?¢,œ³g:eæq#e¿˜ˆn,˜ˆe.˜³²:g pm ,¢ ÅgAo7wwmc
âÆhmc?¢,œ³g:eæq#e¿˜ˆn,˜ˆe.˜³²:g
pm ,¢ Åg:okw/wmc
âÆã hmxWc?˜ˆp/¢,œ³˜žg:p„eæwmxWq g § Eÿ [ð+$ \ Æþ ñò ÿ þ ï”ò
û ò
Hî íLï, Qû íð ¤û î:ò ð þ ªñ e.cfjL˜³nWwi˜³x,e.g˜ˆ²cfg hi˜³š?˜³nWfœ4Ó,hmc?¢,œˆge s s
âÆhmc?¢,œ³g:eæq/ÛWnW£’e¿˜ˆn,z¤˜ˆe
jlc?±hucfpÈc?j e.g pm ,¢ s ÅgAo7wÒwmcokcfnSpÅwihif˜³nCw
s g*jl ,nWokwm˜ˆcfn
Gm = d
kGm − dk2
•
kmk2
•
kGm − dk2
kGm − dk2 ≤ δ
kmk2 ≤ •
•
2
f (x)
λ≥0
L = f (x) + λg (x)
2
kGm − dk2 + α2 kmk2
g (x) ≤ c
ú ð ¨Ó,hiœˆ~Θ³µfnS»¤c•ok‡³j#˜ˆ‘Ó,wm€7œ³xWŠgg*‘•cf\•jŠ”¢H…•Lc|H•Üf· šfgUhy•ÓWnWhmšfc?g¢,œ³e*g:e
,œ³pwm˜ˆ•Ó,hiœ³gU˜ˆgg:hyp:ÉCq ,˜ˆÜ•œˆgnCw] WnW£¤gh]e.˜³œž£ hig:pÈwmhi˜ˆokwm˜ˆcfnWpuwmxWfn,¯¤p/wmc±wmx,g
pÈoã wicfxW• ,gwmœž˜ˆ£cfe.nW™/˜ˆfn,hmhm˜³˜³À wme
g ÓH’cfc•˜ˆnCj wipcfjºwmc
jl ,pÈgnS We.o7¢ wmÓ,؈g:cfxSokn fwpm˜³wm²:cƒgÒnWokc?cfnWn¤pțÎwmn,hyg•šC˜ˆn?wiw ˜³Üd˜³wÅÀ s ª zçjlcfhEpme*cfe. WpÅg w.c¤oo ,h*§•pÈw*cæwi™„x,gg
¡ocfgºnCwmo:c?• ,nhupmokg WgÆhm™/Ü?g:xCp À]s wmxW˜ˆpL˜ˆpçwmhi ,gטˆnUwix,gºo:fpmg×c•jWwř„c£¤˜ˆe.gnWpm˜ˆcfnWfœ ¢dÀÒgÝ,•e.˜³nW˜³n,š
Lb,É?• Sš?hi•fhigun,šfwm˜žxW•gnWp„wig•hihie.gÒp„hmg:˜ˆn܈•wiwmx,g:£gÛS˜³j hi™„pÈwÆgwř„wifc¯fgÒÓ,hihmcfgA¢Wok˜ˆœ³Ó,g:e.hmc¤p„o:••œžnSpº£Ãcfj™„g]s pmgguwixWw„wmxWgҝ?pmpmc¤ok˜žwmgA£
˜³—×ã ÛWfxWgAhm˜ˆ£Ã˜ˆpcfœˆo Sg:ffpºn’pÈÜw„f¢Hpiœ³g*ÉC , WgA Wp„•nWhic•£¤g:j gpÆhyÓ,pÈwmhišfcdcf˜ˆc¤¢,Üfg£œˆge֝¢dÀæwm•hywmfnShy£¤£
fgoyœ³›Y¯dcCc ˜³pmnWpƚ
¢Hc•jLgkwmwÅx,?™„g¿ogoÜg: ,•n±hiœˆ? ,wiokx,g¿À*g]c•c•˜ˆj×j0nWwipÈwix,wix,fg*g]¢,e.pm˜³œˆe.˜³˜ˆwÅn,cCÀ؈cfe¿c•wmx,j0˜ˆ²gAwigA£Ãx,£!gÓ,jl ,hi Wcfn,nW¢We.o7œ³wig:c¤˜³ec?£dn › s
˜ˆnwmx,gjlc?hmec•j#*ÓSwmx £¤g:ÓSg:nW£¤˜ˆn,š
cfn z c?h s
•
f (x)
g (x) ≤ c
L = f (x) + λg (x)
λ≥0
λ = α2
•
x
•
•
α
α
δ «!
α
ë
ó4DöL÷ 3 B 5 ;Dôõô @ ÷ < 35 ö 5 ôEõ
XHJG , -" * 9S ZQTM & M ! M 'NPOZQTSN S !M ! (* TM ú ð ã¬x,~ÎcCµf˜žpÅp.»¤w#‡³e.‘okc?€7g:Še¿•‘•nSe.\p Š”c?…•¸n|Hwi· ,e.hmgknÙwix,•c¤nJ£˜ˆ˜žœ³p ›YãÓHc?˜³¯dpmg:x,£Pc?n,Ó,chiÜcfhm¢,g:œˆšfgeä ,œž•˜³hinC˜ˆ²:wmc­wi˜³c?n0™„zAg™/œˆ¶x,›ÎÓH˜ˆoyc?x¿pmg:˜žpL£ e._ n,cfgAwm•˜ˆÜ<h
•wm¢dgAÀ £_#˜ˆÓ,n¿hmc?ocf¢,nCœˆgwmegÝd w s
c•j cf ,h/ÓHc?pipm˜³¢,œˆÀ؈œ³ ›ÎÓScCpÈgA£
z,˜ s g s z¤e.˜ˆn,˜³e.˜ˆ²g
zWÓ,hmc?¢,œˆge2¢dÀ4q
âÆhmc?¢,œ³g:eæq#e¿˜ˆn,˜ˆe.˜³²:g pm ,¢ ÅgAo7wwmc
âÆhmc?¢,œ³g:eæq#e¿˜ˆn,˜ˆe.˜³²:g
pm ,¢ Åg:okw/wmc
âÆã hmxWc?˜ˆp/¢,œ³˜žg:p„eæwmxWq g § Eÿ [ð+$ \ Æþ ñò ÿ þ ï”ò
û ò
Hî íLï, Qû íð ¤û î:ò ð þ ªñ e.cfjL˜³nWwi˜³x,e.g˜ˆ²cfg hi˜³š?˜³nWfœ4Ó,hmc?¢,œˆge s s
âÆhmc?¢,œ³g:eæq/ÛWnW£’e¿˜ˆn,z¤˜ˆe
jlc?±hucfpÈc?j e.g pm ,¢ s ÅgAo7wÒwmcokcfnSpÅwihif˜³nCw
s g*jl ,nWokwm˜ˆcfn
Gm = d
kGm − dk2
•
kmk2
•
kGm − dk2
kGm − dk2 ≤ δ
kmk2 ≤ •
•
2
f (x)
λ≥0
L = f (x) + λg (x)
2
kGm − dk2 + α2 kmk2
g (x) ≤ c
ú ð ¨Ó,hiœˆ~Θ³µfnS»¤c•ok‡³j#˜ˆ‘Ó,wm€7œ³xWŠgg*‘•cf\•jŠ”¢H…•Lc|H•Üf· šfgUhy•ÓWnWhmšfc?g¢,œ³e*g:e
,œ³pwm˜ˆ•Ó,hiœ³gU˜ˆgg:hyp:ÉCq ,˜ˆÜ•œˆgnCw] WnW£¤gh]e.˜³œž£ hig:pÈwmhi˜ˆokwm˜ˆcfnWpuwmxWfn,¯¤p/wmc±wmx,g
¬ ˜³n,˜ˆe
.c•j c¤ook Wh•w î ¤î:ð þ ñ û þ ð\ñ4î c•j § s ª
ÓwiH¬ c
cf˜³˜ˆn,gnCe.˜ˆwie
p#Ó,ÃcfxWjS?cfjlpÈj W˜ˆ²nWgo7win,˜³c?c?nn¤pțΠWn,¢ gŚCg:okwmw˜ˆÜdwm˜¶cwÅÀ oks ªcfnSpÅwihif˜³nCz•w jlc?h×pÈc?e¿g e* WpÈw]§ ™„c¤guooo ,fhn*™/whipŘ³wmwyg wi˜³c?nW•hiÀ
¡ocfgºnCwmo:c?• ,nhupmokg WgÆhm™/Ü?g:xCp À]s wmxW˜ˆpL˜ˆpçwmhi ,gטˆnUwix,gºo:fpmg×c•jWwř„c£¤˜ˆe.gnWpm˜ˆcfnWfœ ¢dÀÒgÝ,•e.˜³nW˜³n,š
Lb,É?• Sš?hi•fhigun,šfwm˜žxW•gnWp„wig•hihie.gÒp„hmg:˜ˆn܈•wiwmx,g:£gÛS˜³j hi™„pÈwÆgwř„wifc¯fgÒÓ,hihmcfgA¢Wok˜ˆœ³Ó,g:e.hmc¤p„o:••œžnSpº£Ãcfj™„g]s pmgguwixWw„wmxWgҝ?pmpmc¤ok˜žwmgA£
˜³—×ã ÛWfxWgAhm˜ˆ£Ã˜ˆpcfœˆo Sg:ffpºn’pÈÜw„f¢Hpiœ³g*ÉC , WgA Wp„•nWhic•£¤g:j gpÆhyÓ,pÈwmhišfcdcf˜ˆc¤¢,Üfg£œˆge֝¢dÀæwm•hywmfnShy£¤£
fgoyœ³›Y¯dcCc ˜³pmnWpƚ
¢Hc•jLgkwmwÅx,?™„g¿ogoÜg: ,•n±hiœˆ? ,wiokx,g¿À*g]c•c•˜ˆj×j0nWwipÈwix,wix,fg*g]¢,e.pm˜³œˆe.˜³˜ˆwÅn,cCÀ؈cfe¿c•wmx,j0˜ˆ²gAwigA£Ãx,£!gÓ,jl ,hi Wcfn,nW¢We.o7œ³wig:c¤˜³ec?£dn › s
˜ˆnwmx,gjlc?hmec•j#*ÓSwmx £¤g:ÓSg:nW£¤˜ˆn,š
cfn z c?h s
•
f (x)
•
f (x)
f (x) ∇f = 0
L = f (x) + λg (x)
g (x) ≤ c
λ≥0
•
x
•
•
λ = α2
α
α
δ «•Â
α