MA1132 (Advanced Calculus) Solutions to tutorial sheet 9 1. Evaluate Z 0 3 Z √ y= 3x y=0 1 p dy dx x2 + y 2 by making a change of variables to polar coordinates. [Hint: Sketch the region first. Then do R the dr integral first, before dθ; for fixed θ find the limits for r in terms of θ. Recall that sec θ dθ = ln | sec θ + tan θ| + C]. Solution: This iterated integral is the same (by Fubini’s theorem) as the double integral ZZ 1 p dx dy x2 + y 2 R where √ R is the triangle in the plane bounded by the x-axis, the line x = 3 and the line y = 3x. 3 The √ limit x = 3 is r cos θ = 3 or r = 3/ cos θ and the angle is π/3 (because tan(π/3) = 3). Changing this integral to polar coordinates, and remembering that dx dy = r dr dθ, we get ! Z θ=π/3 Z r=3/ cos θ Z θ=π/3 1 cos θ [r]r=3/ dθ r dr dθ = r=0 r θ=0 r=0 θ=0 Z θ=π/3 3 = dθ cos θ θ=0 Z θ=π/3 = 3 sec θ dθ θ=0 = [3 ln | sec θ + tan θ|]π/3 0 √ = 3 ln(2 + 3) 2. Consider the function f (x, y, z) = 1 + x2 ex y + xey z x+y+z (a) Find ∇f (evaluated at an unspecified point (x, y, z)). Solution: (2xex y + x2 ex y + ey z)(x + y + z) − (x2 ex y + xey z) ∂f = ∂x (x + y + z)2 ∂f (x2 ex + xey z)(x + y + z) − (x2 ex y + xey z) = ∂y (x + y + z)2 xey (x + y + z) − (x2 ex y + xey z) ∂f = ∂z (x + y + z)2 ∂f ∂f ∂f ∇f = , , ∂x ∂y ∂z (2xex y + x2 ex y + ey z)(x + y + z) − (x2 ex y + xey z) , = (x + y + z)2 (x2 ex + xey z)(x + y + z) − (x2 ex y + xey z) , (x + y + z)2 xey (x + y + z) − (x2 ex y + xey z) (x + y + z)2 (b) Find the equation of the tangent plane to the surface f (x, y, z) = 1 + 2e at the point 3 (1, 1, 1). Solution: We are getting the tangent plane to a level surface f (x, y, z) = 2e/3. So the normal vector to the tangent plane is the gradient of f evaluated at the point (1, 1, 1). 10e 4e e (4e)(3) − 2e (2e)(3) − 2e 3e − 2e ∇f |(1,1,1) = , , = , , . 32 32 32 9 9 9 2 For the tangent plane we get 10e 4e e (x − 1) + (y − 1) + (z − 1) = 0 9 9 9 and we could simplify this by dividing by e/9 to get the equivalent equation 10(x − 1) + 4(y − 1) + (z − 1) = 0. (c) Find the direction u = (u1 , u2 , u3 ) for which the directional derivative Du f (1, 1, −1) is as small as possible. Also, what is that smallest possible value of Du f (1, 1, −1)? Solution: What we need is u to be the unit vector in the direction opposite to ∇f |(1,1,−1) and the smallest possible value is −k∇f |(1,1,−1) k. e(1) − 0 (2e + e − e)(1) − 0 , 0 − 0, = (2e, 0, e) ∇f |(1,1,−1) = 12 12 So u=− 1 k∇f |(1,1,−1) −1 ∇f |(1,1,−1) = √ (2e, 0, e) = k e 5 2 1 − √ , 0, − √ 5 5 and the corresponing smallest value of the directional derivative is √ Du f (1, 1, −1) = −k∇f |(1,1,−1) k = − 5e 3
© Copyright 2025 Paperzz