here.

 ! "#
$%&')(*
+',& & -.&/0
1,&32546)789&
:<;=*+,&
>?'@'?A@CBEDGFIHKJ
LNMOEPGO JIQRTSUSGV
∗
YW X[Z]\)^I_`a\
nqz}yjhxxlu˜bpyxIcmce‰'…™dglgfhxiIcel‹jq}yŒfqi=fh}scmljhpš=‰Žc]k]i‰›cmtIjhlox‘nqx…œps}srul~n‡nqtˆgc]cmc•’ovwcmdKxpylgiIxnqc€z{}yŒxc]t‹lgtN}s…‡f“|~cmnh}sx”lglgfqk€fh}y‚xx"lKpsvwiIiIc•pypAcmjqiek]ƒ„x}szKlol†iIvwj–c]…‡iIkm…‡nqcm}ynqxcmˆgl‹nhx„cmŒtj+t‹}{}y‰Štxdgcmj+fql~}ynqnqx}ˆglN—Kcek)c]iIfh’onqxdK}ypsxd‹i,l 
nqfq}y}slxlŸšadžp¤iI !jqˆ}snq}y}yfc]f“…‡}scml¥nqˆgnqx~ˆgt=c}yk]f¢x~¡Ec€¦YcmpskmpC}ycmfhdl~nh}snhf)c]§t”if0‰›x¡Ej¢c¨dlo}sps˜{psdgxdfqnqlgj–tiInhc]ct˜otr©x…Yf–cmiIvw}slgcmj–f£iIiIp!lgc€t=ªgiIk]…+cmjqzn–pyiIc]}sf)l ž
«5tcmj–n–iiIkm}snqp¬}yž k)iIpifhz%c]kmnhfxI‰}s…+zpycm…‡cml~n–iInq}yxlxI‰nqˆ}yf¢…‡cmnqˆgx„t=iIjhc“k]xlgfq}ytcmjhc]t”}sl
­¯®¨°e±C²³°´±µ
¶ ·,¸G¹aºw»5¼½E¾„¹a¿Œ»U¸
À Á3§»Uºo¿Š¹wÄŠƑ»ŸºÇ¹aÄÈu¼¿¬ºoÈK¾„¹eɺw»UÊE¬ÈËÅ
ÍËÎ¤Ï ÐKюÒ{Ó+ÔTÕ~Ó]ÖKׄ؀ًÚ{Ò%ÛÎYΨÎYÎYÎYÎYÎYΨÎYΨÎYÎYΨÎY·ΨÎYΨÎYÎYΨÎYΨÎY·Î
ÍËÎÝÍ ÞAÕ~؀ћÕoßmюلÒTՄàGՄÒ{ÛÒgÚ{áÇâ,؀ÑãÓՄà[ä~ՄØåћÕ~߀юًÒ{ՄàUæ¬Ù„Ø€áç ÎYΨÎYÎYΨÎYΨÎY·Î
Ì Á3§»Uºo¿Š¹wÄŠƑ»ŸºÇ¹aÄÈu¿Œ¸GéUÈgºoêIÈɺw»ŸÊ#¬ÈKÅ
ì í0îðïTÅNÉEŒÈKê
ë ò¨»U¸E¾ÂŒ½ê¿Œ»U¸ê
ôEõ–öw÷åøgù‡ú)÷ûwõåüú)÷ýþ–ÿ oý ,õ ‘ÿŒý ÷ õ ‘ú9ÿ ]ú gý oþ Aø ø Aø
∗
9;: &<7=2> 9
Ï
À
Ì
ë
¶gó
è
Ü
ñ
"!#%$'&'()+*,(.-0/%)132%-'45!.#'(6/87
e° ± E® 1± 9®¨°
ÐËюÒ{Ó©áâ,ß %ÙËÛ{çeæ¬Ù‹Øeß {â©ÒgÚ{áâI؀ÑãÓՄà³çåًàŽÚ%ß€ÑŽÙ‹Ò Ù„æ0ً؀Û{ÑãÒTÕ„Ø 8Û{Ñ GâIØåâIÒßmюՄà"â gÚTÕ~߀юًÒ%ç
TÕä‹âÔGâ,âIÒ æ¬Ù„Ú{Ò{ÛußmÙ©ÔGâeÕ3ä‹â,Ø *â [â,Ó,ßmѤä‹â´ßmâ,Ó {Ò{Ñ KÚ%â {ՄØå߀юÓIÚ%à›Õ„Øåà æ¬Ù‹Ø {ØåًÔ{àŽâ,áÇç
Ñãß ¥ç€ÑŽÒ%׋Ú{à›Õ~ØçåًàŽÚ%߀юًÒ%ç0ՄÒ%Û¥ß {لç€â•Ù‹Ò¥Ú{ÒgÔGًÚ%Ò{Û{âIÛ*Û{لá”Õ„ÑãÒ{çIÎ qÒß %юç {Õ Gâ,Ø â
ÓIًÒ{çåюÛ{â,ؓՄҥюÒä‹â,؀ç€â {؀ًÔ%àŽâIáÕ~ç€ç€ÙKÓIюÕ~ßmâ,Û Ñ¤ß ß {âÛ%ю؀â,Ó,ß {؀ًÔ%àŽâIá Ù~æç€Ù‹à¤äKюÒ{×ÇÕ
çåßmâIÕ„Û ç–ß]Õ~߀âYÓ,ًÒä‹â,Ó,ßmÑãÙ‹Ò ‘Û{Ñ GÚ{ç€ÑãًÒç Kçå߀âIá ÑãҩلÒ{â‡ç TՄÓ,â¨Û%юáâIÒ{çåюًÒ3׋Ѥä‹â,Ò©Ô
?
BA DCFEHG I
@
0J
0J
K
J
K
0J
S
'L
J
MN
0J
5J
ML
.OQP
MK
0J
ZY
RP
UT
WP
XK
6N
ML
S
K
0J
VP .P
S
VP
5P
[K
Lc ≡ −(D(x)cx )x + (v(x)c)x + λ(x)c = f (x), x > 0
Ac(0) + Bcx (0) = G, B 6= 0
c(∞) = 0.
\
Ï
]
{âюÒä„âI؀çåâ {ØåًÔ{àŽâ,á юçCß TÕoß#لæ{Û{â,߀âI؀áюÒ%юÒ{×³ß {â1Û{Ñ GÚ{çåюًÒYÓIÙKâ ÓIÑãâIÒß æ¬Ø€Ù‹á
áÇâIՄç€Ú{ØåâIáâIÒßmç¢Ù„æðß %â0ç€Ù„àŽÚ%ß€ÑŽÙ‹Ò c(x) Î %юçAÛ{юØåâIÓ,ß {؀لÔ{àŽâ,á юçAç€ÑŽÒ%׋Ú{à›Õ~ØAD(x)
çåюÒ{Ó,â0ѤߢÑãç
Û{â TÒ%âIÛNلÒNÕ3ç€â,áÇÑ qÑãÒ TÒ{ѤßmâÑãÒßmâIؖä~Մà‚Î ©Ù‹Ø€â,Ùwä„âIØ â”Õ~àŽàŽÙ ÓIâ,ØåßmՄюÒ*ç€ÑãÒ{׋Ú{àŽÕ„؀ѤßmÑãâIç
юÒß {âÓ,ÙËâ ÓIюâ,Òßmç λ(x) Õ~ß£ß {â¨âIÒ{Û GًÑãÒßmçIÎ âáÇՄքâՄç€çåÚ{á %ßmÑãًÒ{çՄÔGلÚ%ß
ß {âeÓIÙKâ Ó,юâIÒ߀çՄÒ%Û*v(x),
ß {âeç€Ù‹àãÚ%ßmÑãًÒuՄç âIàãà‚Î qÒ TՄؖßmюÓ,Ú{à›Õ~Ø âՄç€çåÚ{áÇâ´ß TÕ~ß+ß %â
Û{юç Gâ,؀ç€ÑãًÒ*ÓIÙKâ ÓIÑãâIÒß D(x) Ñãç‡ÓIًÒßmÑãÒgÚ{ًÚ{ç ÔUًÚ{Ò%Û{âIÛNՄÒ{Û*ßmâIÒ%Û{çY߀٩ÕÓ,ًÒ{ç–ß]ՄÒß
Մç x → ∞. %âIç€â©ÓIلÒ{Û{Ñã߀юًÒ%ç•âIÒ{çåÚ{؀â âIàŽà Uًç€â,Û{Ò{â,ç€çeلæ£ß {â3Û{ÑãØ€â,Ó,ß {ØåًÔ{àŽâ,áÎ
Û{Û{Ñã߀юًÒ{ՄàðÓIلÒ{Û{Ñã߀юًÒ%ç³Õ„Ø€â‡Ø€â gÚ{юØåâIÛæ¬Ù„Ø£ÐËюÒ{Ӈáâ,ß {ÙËÛ%ç³ß€Ù ًØåÖՄÒ{Û âYÛ{юçåÓIÚ{çåç
ß {â,ç€âYюÒÐËâIÓ9ßmÑãًҩÜ%Î
{â,؀â³Õ„ØåâáÇÕ„Ò ´ÐËÑãÒ{ÓÕ {Ø€Ù‹Õ„Ó {âIç!߀Ù+ç€Ù‹à¤äKюÒ{דçåâIÓ,ًÒ{Ûeً؀Û%âIØ!Û{Ñ [â,؀â,Òg߀ћՄàKâ gÚTÕ
ßmюلÒ{ç çåâIâ 5â„Î ×{Î è !æ¬Ù‹ØÓIًá {Øåâ {â,Ò{ç€Ñ¤ä‹â´ç€Ú%Øåä‹â KçIÎ {âIçåâeß {ÑãÓՄàãà ©Ø€â gÚ{юØåâ´Õ
Ú{Ò{ÑãßÓIÙKâ Ó,юâIÒßæ¬Ù‹Ø"ß {â¨ç€âIÓ,ًÒ{ÛuًØåÛ{âIسßmâ,؀áلæEß {â¨Û{Ñ GâIØåâIÒßmюՄà5â gÚTÕ~ß€ÑŽÙ‹Ò {ÑãÓ
ًÚ%àŽÛ†Ò{âIÓ,âIç€çåÑãßmÕ~ßmâÛ{Ñ GâIØåâIÒßmюÕ~ßmÑãًÒuلæ1ß {âeÛ{Ñ [Ú{çåюًÒ*Ó,ÙËâ ÇÓ,юâ,Ògß D(x) Î â9ß {ÙKÛ{ç
ß TÕ~ߔÕä‹Ù‹ÑãÛ ß {юçeÛ{Ñ [â,؀âIÒ߀ћÕ~ß€ÑŽÙ‹Ò âI؀âÛ{â,ä„âIàãÙ Gâ,Û ÑŽÒ Í ç€â,âՄàãç€Ù è ðÎ Ï
æ¬Ù‹Ø‡ç€âIà¤æŒÕ„Û åًÑãÒß %؀ًÔ{àãâIáç+Ù‹Ò Õ TÒ{ѤßmâюÒßmâ,Øåä~Մà Ñ¤ß 0юØåÑŽÓ {àãâ,߇ÔUًÚ{Ò{ÛTÕ~Ø *ÓIلÒ{Û{Ñ
ßmюلÒ{çIÎ {âÇÛ%ю؀â,Ó,ßYç€Ù„àãä‹â,ØYß TÕ~ß â”âIá {àãÙ Õ~çÛ{â9ä‹âIàãÙ UâIÛNÑãÒ '߀٥Մàãç€Ù©Õä‹Ù‹ÑãÛ
Û{Ñ GâIØåâIÒßmюÕ~ßmÑãًÒ*لæß %âÇÛ{Ñ [Ú%ç€ÑŽÙ„Ò Ó,ÙËâ ÇÓ,юâ,Ògß D(x) Õ~Ò{Û ß€Ù TՄÒ%Û{àŽâeß {âÓÕ~ç€â”Ù~æ"Õ
Ò{Ù‹Ò ‘ç€âIà¤æŒÕ„Û åًÑãÒß {؀ًÔ%àŽâIá Ñãß †áÑ ËâIۆÔGلÚ{Ò{ÛTÕ„Ø uÓIلÒ{Û{Ñã߀юًÒ%ç‡Õ„ç âIàãà‚Î Nâç {ՄàŽà
ç {Ù ß TÕoß %âIÒ {ØåÙ Gâ,Ø€à •ßmÚ{Ò%âIÛ ËÑãß KюâIàãÛ{ç1ÕYØåًÔ{Ú{ç–ß"ՄÒ{ÛÇâ GâIÓ9ßmÑãä„â߀ÙËًà{æ¬Ù„Ø1ÑãÛ{âIÒ
ßmÑ {ÓÕ~߀юًÒلæ D(x) Î àŽâ,Ó,ßmØåًÒ{ÑãÓÓIÙ {юâ,ç0لæß {â {Øåً׋ØmÕ~áÇçÚ{ç€â,ۆÑãÒß {юç {Õ Gâ,ؓՄØåâ
Õaä~ՄÑãà›Õ„Ô%àŽâ³Ú UًÒ=؀â gÚ{âIç–ß"æ¬Ø€Ù‹á ß {â+ՄÚ%ß {ًØ,Î {âIçåâ {؀ل׋ØmՄáç â,Ø€â Ø€Ñ¤ß€ß€âIҔÑãÒ”ß %â
à›Õ„Ò{ׄÚTՄ׋⠓Ó,ßmÕä‹â ç€â,â ¤Ï Ô{Ú%ߣՄØåâ‡âՄçåюà GلØåßmâ,Û3ßmÙ
Î
^ J
_P
0J
0J
b
cY Xb
5J
0J
`
P
O S
gf
XP
5J
DP
6O S
O
^ J
cYjP
S
k
S
hT iP
S
`
`
aP
ed
'`
0J
ML
^ J
0J
0J
N
5J
[K
\
"O
"PlP
MOon XO8p%q
`
DP
mL
6J
'K
5J
%v
0J
mL
wP
^ J
5J
ML
0J
ZY
5J
Mb
S
%v
0J
~P
S J
lP
‚
S
xP
P
DP
K
8O
O S J
rd
0J
J
N
3u.u"q]
K
mY
{n|q
0J
ef
S
oK
Y
tn XOaP
}J
K
5J
L
.P
5J
\
J
P
S
'`
m
mK
N
\
S
0J
~€
sn %q
0Jzy
6N
MK
6N
'`
P
S
mL
jKP
ML
mL
S
xb
^ J
]
0J
ML
S
0J
S
J
0J
0J
eP
S
0J
^ J
5J
5J hP
^ J
5J
Dn 6q,]
Í
MKƒP
ZY
5J
RP
rd
S
k ^…„ k†
S
P .P
0J
‡
® )±
‚AŒI ŽF
ˆŠ‰‹
•g–—
~® ± 3²
 ~A
#² A± #® ²
‘CxIA …G “’xA ‚”
‰ …
˜g™šV›œžo›XŸg ¢¡l£o¤¥šV¦
â,ÓՄàãà[ß TÕoß£ß {â
§
Ž
0J
Ñãç"Û{â {Ò{âIÛ©æ¬Ù‹Ø³Õ„àŽà z ∈ C Ô
5J h¨'©ª«¢¬­ª«'®©°¯%ª
b
sinc(z) =
„
±K
sin(πz)
πz
z 6= 0
z = 0.
1
â,ß h ÔGâYÕ Gلç€Ñã߀Ñãä„â+ÓIًÒ{ç–ß]ՄÒßIÎ â юàãà[Û{â,Ò{لßmâ‡ß %â
²P
of
S(k, h)(x) = sinc
YÔ
0J ²¨'©ª«‚³´%¨'©µ¨¢¬­Zª«'®=©°¯%ªX¨
S
x − kh k ∈ Z,
[K
−∞ < x < ∞.
{â*ç€ÑŽÒ%hÓÛ{Ñ iGâIØåâIÒßmюÕ~ßmÑãÙ‹Ò Ù UâI؀Õ~ßmلØ=á”ÕoßmØ€Ñ Ù„æYÛ{юáâIÒ%ç€ÑŽÙ„Ò m + 1 £ÑŽç=ׄÑãä‹â,ÒÔ
%âI؀â δ ≡ hS (j, h)(x) | ՄÒ%Û ç€ÑãáÇÑãà›Õ„Øåà I = I =
I
= δ
Î
[δ ] = [S(k, h)(jh)]
â,ß ÔUâ3Õ¥Ó,ًÒ%æ¬Ù‹Øåá”Õ„à'áÇÕ %ÑŽÓ áÇÕ {ç¨ß {â {Ù„Ø€Ñ ,ًÒß]Մà'ç–ßmØ€Ñ Ù„æ³Ø€Õ„Û{юÚ%ç
ՄÔGلÚ%ß•ß %φâ xhÕ ËÑãçًÒßmÙß {â=Û{لá”Õ„ÑãÒ D Ñ¤ß ÔUًÚ{Ò{Û{Õ„Ø Γ Õ~Ò{Û ÑŽÒä‹â,؀çåâ3á”Õ ψd
ՄÒ{Û F (z) ՄÒâIàãâIáâIÒߣلæ
Z
Ž
Ñ
³
ç
„
Õ
{
Ò
„
Õ
à
g
m
ß
ã
Ñ
“
Ó
‹
Ù
Ò
B (D) = F (z) | F
D,
|F (w)dw| < ∞
ç€çåÚ{áâ юçe؀âIՄà£ä~ՄàãÚ{âIÛ Ù‹Ò (0, ∞ γ Ñãç”Õ~ÒTՄà gß€ÑŽÓ φ F/γ ∈ B (D) ՄÒ{Û
ç€Ú UًçåâYßF{(x)
âIØåâ¨Õ~؀â Gلç€Ñã߀Ñãä„â+ÓIًÒ{ç–ß]ՄÒ߀ç α, β ՄÒ%Û C ç€Ùeß TÕ~ß
^ J
ML
(1)
jk
(1)
jk
P
m
O S J
h
(1)
jk
j,k=0
„
Y %
O
MK
0
.P
0J
c
S J
x=xk
J
.P
5J
S
5J ¶J
µ·
0J
[K
(0)
MP
K
.P
MK
Γ
k
]O
lPlP
5J
{âIØåâ
S J
MK
~P
Î
ÄÈg»ŸºwÈËÅ À Œ¶
ՄÒ{Û
Γb ≡ {ξ ∈ Γ : φ(ξ) = x ∈
B¹ º¹g» ¨¨'­¼ƒ½Uª¯%®¾´.®=©°¯%ªH´%¨¥´[³'¯%¿.½¥´.ª+À‚¼D´%Á[½ÃÂX´.Ä´.¼ƒ½'®½'Äa¨3½'ŵ½«'®=©°¯%ªX¨
α
N = d Me
β
Æ ½'®Q¨3½'®
0
F (ξ) exp(−α|φ(ξ)|), ξ ∈ Γa
γ(ξ) ≤ C
exp(−β|φ(ξ)|), ξ ∈ Γb
Γa ≡ {ξ ∈ Γ : φ(ξ) = x ∈ (−∞, 0)}
[0, ∞)}
¸
.O
0J
½'ªF®
´.ª+À
h=
πd
αM
21
½'Ä0½W½Ê©µ¨'®¨‚«¯%ªX¨'®¾´.ªº®¨
≤
2πd
.
ln(2)
©ª+À½jº½'ª+À½'ªº®Ë¯¬
´.ª+À
É
wk = ψ(kh) ÇDÈ8É
K, L
M
¨'­<«
® ´.®Ì¬;¯%Ă´.ÅÅ
É
É
m = 0, 1, . . . , n,
ξ∈Γ
N
dm
√
X
F (wk ) dm
(m+1)/2 − πdαM
γ(ξ)S(k,
h)
◦
φ(ξ)
≤
KM
e
m F (ξ) −
dξ
g(wk ) dξ m
k=−M
Ü
∞
´.ª+À
Z b
√
vw
≤ LM e− πdαM .
(vw[S(j,
h)
◦
φ])
(x)dx
−
h
(x
)
j
φ0
؀ÙKلæ¬ç•Ù~æ£ß {âIçåâ3æŒÕ„Ó,߀ç´ÓՄÒ8ÔUâ”æ¬Ù‹Ú{Ò{Û8ÑãÒ ß {â©ÐK߀âIÒ{ׄâIؕßmâ Kß Ù‹Øß %â Ú%Ò{Û
ՄÒ{Û Ù âI؀ç߀â Kß è Î {юçAæŒÕ„Ó,ß"â {юÔ{ѤßmçAß {â“â GًÒ%âIÒßmюՄàðՄÓ,ÓIÚ{Ø€Õ„Ó ÇلæCÓ,ً؀ØåâIÓ,߀à
ßmÚ{Ò{â,Û çåюÒ{ÓeÕ {؀٠ËюáÇÕ~߀юًÒ{ç,Î ‘ßYՄàŽçåÙ3Ú{Ò{Û{â,؀ç€Ó,ً؀â,çYß {â´Ò{â,âIÛ*ßmÙÚ{Ò{Û{â,؀ç–ß]ՄÒ{Û*ß %â
Մç Ká %ßmل߀юÓÒ{Õ~ßmÚ{Øåâ³Ù„æŸß {âæ¬Ú{Ò%Ó,ßmÑãًҕßmهÔUâ³Õ {ØåÙ %Ñãá”ÕoßmâIÛ[Î KßmâIÒ%ç€Ñãä„âÛ%юç€Ó,Ú{ç€çåюًÒ%ç
لæEß {âIçåâ¨áÇÕ~ßåßmâIØåç"ÓՄҩÔUâ‡æ¬Ù„Ú{Ò{۩юÒ=ß %â‡ß€â Kßmç£ÓIѤßmâ,ÛðÎ
a
Í
5J
†
0J
^ J
' ~n .q
S
"PlP
ZJ
;
0J
ZP
„
0J
K
~T
K DP
MK
5J
0J
.PlP
5J
0J
•g–°•
 Fnp"q
0J
;
ÀQ
'
ÎϞ¢¡l™žÃÐZ™£oš¥žËÑežošV¦Òš_¤VÓÕÔ8¡l™›žoѲÖQž¢¡X™žÃÐZ™£ošVžoÑe×£o¡lÓÕØ
„Ù àŽàŽÙ ÑãÒ{× â‡á•Ú%àãßmÑ {à ´ß {â‡Û{Ñ GâIØåâIÒßmюՄàUâ gÚTÕ~߀юًÒلæç Kç–ßmâIá Ï 1Ô 3çåÚ{ÑãßmՄÔ{àŽâ
ßmâIç–ß³æ¬Ú{Ò{Ó,߀юًÒ%ç {ÑãÓ ©ä~ՄÒ%юç Õoß"ß {â+â,Ò{Û UًюÒßmç ŸÕ„Ò{ÛÚ{çåâYÑãÒßmâIׄØmÕ~߀юًÒ=Ô {ՄØå߀ç
ßmÙًÔ%ß]Õ~ÑŽÒ uZ
Z
Ù
¶n|%qO S
S
MP MK
S J
5J
J
∞
ML
6N
5J
0J
K
lP
\
O
∞
(Dcx ux − vcux + λcu)dx =
] [K
[KxP
f (x)udx.
Nâ‡ÓÕ~Òâ %؀âIçåçß {юçä~ՄØåћÕ~߀юًÒTÕ~àUæ¬Ù‹ØåáœÕ„ç T (c, u) = R(u). Ù Û%â TÒ{â
f
0
XP
5J
0
b
S
Ú
c̃(x) ≡ c(x) − c0 (0)q0 (x) − c(0)q1 (x)
æ¬Ù‹Ø"ç€Ú{Ѥß]ՄÔ%àŽâ+ÓÕ~؀Û{ÑãÒTՄà[æ¬Ú{Ò%Ó,ßmÑãًÒ{ç q (x), q (x) ç€Õ~ßmÑãçåæ KюÒ{×
K
0
1
q0 (0) = 0, q1 (0) = 1, q00 (0) = 1, q10 (0) = 0
„Õ Ò{Û ´â لÔ%ß]ՄÑãÒ¥ß {Õ~ß c̃(0) = 0 ՄÒ{Û c̃ (0) = 0 ΨÐËÑãÒ{Ó´Õ {؀٠ËюáÇÕ~ßmÑãًÒß {â,Ù‹Ø ¥ÓՄÒ
ÔGâYÕ %Žà юâ,Û=ßmÙeß {Ñãçæ¬Ú{Ò{Ó9ßmюلÒÕ~Ò{ÛÑãß Kюâ,àŽÛ{çß {â
0J
S
.PlP
0J
.PXP
0
gK
;
0J
K
5J eªº­Z¼ƒ½'Ä©°«5´.Å8¿%´.Ä©=´.®=©°¯%ª+´.Å.¬;¯%ļ
T (c̃, u) + cx (0)T (q0 , u) + c(0)T (q1 , u) = R(u).
‹Ù Ø¥Õ ÐKюÒ{Ó ‡Õ„àŽâ,؀ÖgÑŽÒ Õ {ØåÙ ËÑãá”Õ~ß€ÑŽÙ‹Ò â8Ó {ÙKًçåâ ßmâIç–ßuæ¬Ú{Ò{Ó9ßmюلÒ{ç u (x) =
%âI؀â γ(x) юçYÕ â,ÑŽ× ß‡æ¬Ú{Ò{Ó9ßmÑãًÒNÕ~Ò{Û φ(x) юç‡ÕÓIلÒ%æ¬Ù‹Ø€áÇՄà
γ(x)S(j, h) ◦ φ(x)
á”Õ †æ¬Ø€Ù‹á (0, ∞) ßmÙ (−∞, ∞) #ç€Ú%Ó 8Մç φ(x) = ln(x) Î Nâ”Õ„ç€çåÚ{áÇâß TÕoßß %â
ÓIÙKâ ÓIÑãâIÒßmç³Ù„æCß %â {؀ًÔ%àŽâIá Ï 1ՄÒ{Û3ß {â+Ó %ًюÓ,â+لæÓՄØåÛ{юÒTÕ~àGæ¬Ú{Ò{Ó9ßmÑãًÒ{ç q ՄÒ%Û q
Մ؀â"çåÚ{Ó Çß TÕ~ß!ß {â³ç€Ù‹àãÚ%ßmÑãÙ‹Ò c̃(x) ç€Õ~ßmÑãç Tâ,ç'ß {â"؀â,çå߀؀юÓ9ßmÑãًÒ{çلæ {â,ً؀â,á.ÍËΤϋΠgÚ{ç
âYÓՄÒÕ %؀٠ËюáÇÕ~ßmâ c̃ â GلÒ{âIÒßmюՄàŽà âIàãà5Ô
Ù
YÛ
.P
3
0J RP
J
5J
.PlP
\
5J
;
0J
mK
c̃m (x) =
Ff
0J
0J
J
b
Nx
X
j
J
]
'ZP
J
S
J
S
O
`
S
.PlP
S J
0
^ J
5J
^ J
1
[K
S
dj
γ(x)S(j, h) ◦ φ(x)
γ(wj )
{âIØåâ Ñãç³Õ„ÒÕ {ØåÙ {؀юÕ~ßmâ,à ”Ó {ًç€â,Òç€Ùeß {Õ~ß ÑŽç£Õ„Ó,ÓIÚ{؀Õ~ßmâ,à Õ {؀٠ËюáÇÕ~ßmâ,Û
Ô 3ß {âYγÛ{âIØåÑãä~Õ~ßmѤä‹â‡Ù„æEß {â‡ÓÕ~؀Û{ÑãÒTՄà5ç€Ú%áՄÒ{Û mc̃ =(x)M + N + 1 {ß {âYÒgÚ{á•ÔUâIألæ
è
j=−Mx
S J
±K 5J
.PlP
P
MK
0J
J
0J
MK
0
.PXP
O 0J
x
x
;
ç€ÑŽÒ%ÓÇÒ{ÙKÛ{â,çIΠل؀âюá Gًؖß]ՄÒ߀à ðß {юç+æ¬Ù‹Øåá•Ú{àŽÕÓIՄÒNÔUâÛ{Ñ GâIØåâIÒßmюÕ~ßmâ,ۆ߀ÙًÔËß]ՄÑãÒ
Õ„Ò â GًÒ%âIÒßmюՄàŽà uՄÓ,ÓIÚ{؀Õ~ßmâ´æ¬Ù‹Øåá•Ú{à›Õ”æ¬Ù„Ø“ß {âÛ{âIØåÑãä~Õ~߀Ñãä‹â´Ù~æ c̃ (x) Î {юç+æ¬Ù‹Øåá•Ú{àŽÕ
ÓՄҩÔGâ‡ÑãÒ{ç€â,Øåßmâ,ÛÑãÒßmÙ´ß {â‡ÒgÚ{áâIØåюÓÕ~à[ä~Մ؀юÕ~ßmÑãًÒTÕ„àŸæ¬Ù‹Ø€á æ¬Ù‹Øß %âYÛ%ю؀â,Ó,ß {ØåًÔ{àãâIá©Î
â,ß
ÔGâAß {â1ß {â¢ä„âIÓ9ßmًØ!Ù~æTç€ÑãÒ{ÓÒ{ÙKÛ{â1ä~ՄàãÚ{âIçEلæ
{âÛ{Ñãç€Ó,؀â,߀â
ç Kçå߀âIá6dÓ,ً=؀Øå[dâIç U]ًÒ{Û%юÒ{×=ß€Ù”ß {â´ÒgÚ{áâIØåюÓIՄàä~ՄØåћÕ~߀юًÒ{Մàðæ¬Ù‹Ø€á™Óc̃Õ~Ò (x).
5Õ~æŠß€âIØ0áÚ{Ó †Õ„à
׋âIÔ{؀ՄюÓ"áÇՄÒ{Ñ {Ú{àŽÕ~ßmÑãÙ‹Ò „ÔUâ"â {ØåâIçåç€âIÛÕ~ç'ÕYàãюÒ{âIՄØ!ç Kç–ßmâIá Ñ¤ß ÓIÙKâ ÓIÑãâIÒßAá”Õoßm؀Ñ
ŸÒTՄáâIà
M
{âIØåâ c = c(0) ՄÒ{Û c =M dc +(0)c Î T +â,ß cwT == MR ,R w ≡ M (T ) Õ~Ò{Û
Õ~Ò{Û âYá”Õ ؀Ñã߀â“ß {Ñãç³â gÚTÕ~߀юًÒюÒ3ß {â+æ¬Ù‹Ø€á
w ≡M T
Hd
DP
ZP
MKO 5J
ML
mK
0J
0J
„
0J
0J
m
^ J
m
0J
MP
O
…P
0J
j
5P j=1
K
^ J
0
8O
8O
'ZP
K
0J
S
J
mY
`
c
MK
0
0 0
S J
0
−1
1
0
0;K
S
1
0 1
dis
s
−1
„
x
S
0J
6N
5J
O
dis
−1
0
d = ws − c00 w0 − c0 w1 .
0
€ç Ó %âIáâ†æ¬Ù‹Ø3Ó,ًá {Ú%ßmÑãÒ{× c ՄÒ{Û c IÓ Õ„Ò ÔUâ*Û{âIØåÑãä„âIÛ Ô ÑãÒg߀âI׋؀Õ~ßmÑãÒ{× ß %â
Û{Ñ GâIØåâIÒßmюՄàðâ gÚTÕoßmюلҩÙ~æEß {â {؀ًÔ%àŽâIáæ¬Ø€Ù‹á 0 mß Ù ∞ ߀ÙÇلÔ%ß]ՄÑãÒ
k
J
DP
ML
6N
0
0
5J ~P
Z
∞
[K
0J
0
(f (x) − λ(x)c)dx = D(0)cx (0) − v(0)c(0).
{юçâ gÚTÕ~߀юًÒÓՄÒÔUâÛ%юç€Ó,؀â9ßmÑ ,âIۥ߀ٔ׋Ѥä‹âYًÒ{â¨áÇًØåâ¨àãюÒ{âIՄسâ gÚTÕ~߀юًÒÑŽÒ c Õ~Ò{Û
юҩՄÛ{Û%ÑãßmÑãًÒ=ßmÙ´ß {â‡àŽâ,æŠß³ÔUًÚ{Ò%ÛTÕ„Ø ”ÓIًÒ%Û{Ñã߀юًÒ
c
^ J
0
6N
µ·
6N
5J
K
0
0
8O
0
Ac0 + Bc00 = G.
لØ"Û{â,ßmՄюàãç Yâ Ø€â9æ¬âIØ"ß %âYØåâՄÛ%âIØ"ßmÙ ‚Î
® )± ~® ± 3² ,° •² #µC² #® ²
{â {ØåًÔ{àŽâ,á âÓIًÒ%ç€ÑŽÛ%âIØ¢Ñãç¢Õ~ç1æ¬Ù‹àãàŽÙ ç ‡Ñ¤ä‹â,Ò3Õ¨ç€Õ„á %àŽÑŽÒ%×YÙ~æðß {âç€Ù‹àãÚ%ßmÑãÙ‹Ò c(x)
لæGß {â"ç Kç–ßmâIá Ï !Õ~ß n ä~ՄØåюًÚ%ç GلюÒßmç Gًçåç€ÑãÔ{à Ñãß Ò%ًюçåâ #ՄÒ%ÛÇÕ~àŽà {ՄØmՄáâ,߀âIØåç
â ËÓIâ %ß D(x) {ßmÙe؀â,ÓIÙaä‹â,Ø“Õ„Ò©Õ %؀٠ËюáÇÕ~ßmÑãًҔßmÙ D(x) Î
ÐËÚ Gلç€â‡ß TÕ~ß c(x) ç€Ù„àãä‹â,ç£ß {âYç Kçå߀âIá Lc = f ߀ً׋â,ß {âIØ Ñ¤ß ß {âYÔGلÚ{Ò{ÛTՄØ
ÓIًÒ{Û%ÑãßmÑãًÒ{ç,Î qÒ ß {â=çåâ,ßåßmюÒ%×لæÕ„Ò ÑãÒgä„âIØåç€â {؀لÔ{àŽâ,á âՄØåâ=Ú{çåÚTՄàŽà †×‹Ñãä„âIÒ ß %â
ç€Ù‹àãÚ%ßmÑãÙ‹Ò c(x) Ô UًюÒß ÑŽçåâ•áâՄçåÚ{؀â,áÇâ,Òg߀ç d {ÑŽÓ *áÇÕ TÕä‹âeÒ{لюç€âeÕ~ç â,àŽà‚Î
‘æß {â+Ù UâI؀Õ~ßmÙ‹Ø H ؀â {؀â,ç€âIÒ߀ç UًюÒß ÑŽçåâ0â9ä„Õ~àŽÚTÕ~ß€ÑŽÙ‹Ò gß {âIÒ3ß {â‡Õ {ØåÙ {ØåћÕ~߀â0Ù
âIØmÕoßmًØ"æ¬Ù‹Ø"ÑãÒgä„âIØåç€ÑŽÙ„Ò©Ñãç
Ù
0J
S
Ü
ˆŠ‰‹
‚AŒI ŽF
^ J P
5J
'
S
K
P
\
O
XPlP
 ~A
]
ÝI ²Þ
;
5J
ݒxA ‚”
MK
S
HP
O S J
¥P
0J
5J
3]
5J
Y S
P
‰ …
rP
K
0J
P
_A
S 6ßQÛ
P
\
ÃP
.PlP
[KàP
5J
Ž
0J
àT
T
Fn|%q
Y S
áO S
J
XP
S
0J
0J
K
mK
0J
3KáJ
O 5J
S
5J
.PlP
P
PZY
F (D) = d = Hc = HL−1 (f )
ՄÒ{Û â Õ~ÒgߣßmÙeçåًàãä„â = d æ¬Ù„Øß {â TՄ؀Մáâ,ßmâ,Ø D Î NâYՄçåç€Ú{áâ+ß {â‡Û{ÑãØ€â,Ó,ß
{؀ًÔ%àŽâIáюç âIàŽà GًçåâIÛ Fç€(D)
Ù3ß TÕ~ß ÑŽç âIàŽà#Û{â TÒ%âIÛðÎ ç‡Ú{çåÚTՄà qюÒä‹â,Øå߀юÒ{× F юç
S
P
0J ~P
S
S
QP
8O
5J
Ù
¢f
S
b
|
k
0J
°OÌâ
"ã
Õ„Ò ÑãàŽà Uًç€â,Û {؀لÔ{àŽâ,á 5çåÙ âe؀âIçåًØåß‡ß€Ù©ß {âeçåß]Õ~Ò{ÛTՄØåÛ ÑãÖ %ًÒ{Ùaäu؀â,׋Ú{àŽÕ„Ø€Ñ Õ~߀юًÒ
ßmâIÓ %Ò{Ñ gÚ{â¨Õ„Ò{Û©ÓՄç–ß³ß {â {ØåًÔ{àŽâ,á ÑãÒß {â+æ¬Ù‹Ø€á
ÑãÒ{юáÑ ,âß {â+æ¬Ú{Ò{Ó,߀юًÒ{Մà
cYjP
J
ÏP
áO
µN
0J ~P
d
µ·
^
5J
S
5J
J
M·
Fß
5J
Tα (D) =
1
kF (D) − dk2 + α kP (D)k2 .
2
0â Ò{Ù {ØåÙËÓ,âIâ,Û=ßmٕÛ{Ñãç€Ó,؀â,ß€Ñ ,â£ß {юç1Ù Gâ,ØmÕ~ß€Ù‹Ø T {â“ç€â,áÇÑ qÑãÒ TÒ{Ѥßmâ³ÑŽÒßmâ,Øåä~Մà
Gلç€âIç³ç Gâ,ÓIћÕ~à[Û{Ñ ÇÓ,Ú{àã߀юâ,ç %çåюÒ{Ó,â“ß {â+Ó,ÙËل؀Û{ÑãÒTÕ~߀âIç"لæCß %â T؀ç–ߣՄÒ{Ûç€â,ÓIًÒ{Û
(0, ∞)
ßmâIØåáœÙ„æß {â ÑãÖ %ًÒ{Ùaä3æ¬Ú{Ò{Ó9ßmюلÒTՄàðÕ~؀â gÚ{Ñã߀â+Û{Ñ GâIØåâIÒߣюÒÒTÕ~߀Ú{؀â~Î
ÈK¸CïTй Ègº~Å P (D) â"Ó {ÙËلç€â³ßmهÛ{â {Ò{â"ß {â UâIÒTՄà¤ß •æ¬Ú{Ò{Ó9ßmÑãًÒeюҕßmâ,؀áç
لæ[ß {âÛ%â TÒ{ÑãÒ{×YÓIًÒ{ç–ßmѤßmÚ{â,Òg߀ç1Ù~æ5Շç€Ù‹àãÚ%ßmÑãًҴلæ[ß {â£Û{юØåâIÓ,ß {ØåًÔ{àãâIá ՄÒ%Û”Õ Gلç€ç€ÑãÔ{àŽâ
Ò{Ù‹Ò ,âI؀Ùeä~ՄàŽÚ%â+Õ~ß"ÑãÒ TÒ{Ñ¤ß ‹Î gÚ{ç³Ù‹Ú{Øæ¬Ú{àãà[áÙËÛ%âIàGæ¬Ù„Ø D(x) юÒÕ~ÒTՄàŽÙ„× Ñãß 3ß {â
ç€Ù‹àãÚ%ßmÑãÙ‹Ò c(x) لæß {â‡Û{ÑãØ€âIÓ9ß {؀ًÔ%àŽâIá 1Ñãç
f
P
S
P
P
m`
^
0J
ä
5J
¹ ^ J
P
6O
~N
f
æ
b
l·
Xb
0J b
ML
J
b
0J …P
5J
jK
ËP
~P
^ J
jK
0J
cY Xb
α
0J
J
¸
'å
5J
µ·
UP
.K
\
ƒ]
e
D(x) = D(x)
+ D 0 (0)q0 (x) + D(0)q1 (x) + D(∞)q2 (x),
0J
S
5J
{âIØåâ ՄØåâeՄç‡Õ„ÔUÙwä„â CՄÒ%Û
Î ç+ю҆ÐËâ,Ó
ßmюل҆ÍË΍Íq ð,ß q{â´ÓIՄ؀Û{ÑãÒTÕ„àæ¬Ú{Ò{Ó,߀юًÒ%ç+qՄ؀(0)â´Ó %=ًç€0,â,Ò q ÑãÒu(0)ç€Ú{=Ó N0,Õ q (∞)
Õ ß T=Õ~ß 1 {â,ً؀â,á ÍËΤÏ
Õ {àãюâIç•߀Ùß {âØåâIÛ{Ú{Ó,âIÛ æ¬Ú{Ò{Ó,ß€ÑŽÙ‹Ò e Î {юçeՄáًÚ{Ò߀ç•ßmÙ†Õ„Ò Õ„ÒTՄà gßmюÓ,Ñãß †Ø€â
çåßmØåюÓ9ßmÑŽÙ„Ò Ù‹Ò D(z) ÑŽÒ ß %â3Û{ًáÇÕ„ÑŽÒ D(x)
{ÑŽÓ 8юÒ%ÓIàŽÚ%Û{âIç•ß {â Gلç€Ñã߀Ñãä„â xhÕ ËÑãç لæ
D
{âIًØåâIá™ÍËΤϋΠ£âIÒ{Ó,â â¨Û%â TÒ{â+ß {â Gâ,ÒTՄàãß ”æ¬Ú{Ò{Ó,߀юًÒ
S J
.O
0
O 0J
.PlP
1
2
0
2
J
S ;K
^ J
0J
0J
^ J
2
J
oç
b
S
\
S J
5J ~P
J
k
'Y
^ J
5J
mK
jK
Y %
5J xP
Y
]
jK
2
2
e
e 0
P (D) = a1 |D (0)| + a2 |D(0)| + a3 |D(∞)| + a4 D + a5 D
.
2
2
0
2
2
{юçAæ¬Ú{Ò{Ó,߀юًÒÛ{Ñãç€ÓIØåâ,ß€Ñ Iâ,ç1ä„âIØ ÇÒ{ÑãÓIâIà ՄÒ{Û=ÐËюÒ{Ó³ß %âIÙ‹Ø ÇÓIՄҔÔUâ0Ú%ç€âIÛÇßmÙ•Õ {؀٠ËÑ
á”Õ~߀â£ß {â£à›Õ„ç–ßAß Ù߀âI؀áçAâ GلÒ{âIÒßmюՄàŽà ´Õ„Ó,ÓIÚ{؀Õ~ßmâ,à Kß TՄÒ{Ögç1߀ÙًÚ%Ø1Õ~ç€ç€Ú%á %߀юًÒ%ç
ՄÔGلÚ%ß D Î qÒ {؀ՄÓ,߀юÓIâ %ß %â+ÓIÙKâ ÓIÑãâIÒߣلæ D(∞) ßmâIÒ%Û{çßmÙeÔUâ+Ú{Ò{юá UًØåßmՄÒߨ€â,à›Õ
ßmÑãä„â1ß€Ù£ß {â¢Ù„ß {âIØåç ~â ËÓIâ %ß!æ¬Ù‹Ø5ß %â1æŒÕ„Ó9ßEß TÕ~ßÑãßCßmâ,Ò{Û{ç#߀ÙÙaä„âI؀à YÛTՄá Yß {â¢çåًàŽÚ%߀юًÒ
{âIÒà›Õ„Øå׋âIØ¢ä~ՄàãÚ{âIç"Ù~æß {â‡Ø€â,׋Ú{à›Õ~Ø€Ñ IÕ~ßmÑãÙ‹Ò {ՄØmՄáâ,߀âIØ Î âIÒ%ÓI⠟ÑãÒ=ß {âYՄÔ{çåâIÒ{Ó,â
لæÕ„Û{Û{ѤßmÑãًÒTՄàTÑãÒ%æ¬Ù‹Ø€áÇÕ~ß€ÑŽÙ‹Ò â0ß {ÑãÓՄàãà ´ß]Õ~քâ+ՄàãàŸÓIÙKâ αÓIÑãâIÒßmç¢ß€Ù•ÔUâ 1 â ËÓIâ Ëß a
{ÑŽÓ ©ÑŽç"Ó {لç€âIÒßmÙeÔGâ‡çåá”Õ„àãà KçmÕ a = 0.001 Î
½¸E¾„¹w¿¬»U¸ï{ ÈgºoÅ {â•ßmâ,؀á kF (D) − dk Ñãç“áÇل؀â %؀ًÔ{àãâIáÇÕ~ßmÑãÓçåюÒ{Ó,â
ß {â‡çmÕ~á {àãâIÛ3ä~ՄàŽÚ%âIç
Մ؀âÒ{لߨÒ{âIÓ,âIçåçmՄØåюà Õ~ß‡ß {â”çåюÒ{ÓdÒ{ÙK≈Û{âI[c(x
ç ÑãÒ )]æŒÕ„Ó9ß EՄàŽáًçå߇Ó,âIؖß]ՄÑãÒ{à uÒ%Ù„ß ‹â9ߕÑãÒ
ß {â©àŽÑãáÇÑ¤ß¨ß {юç´ßmâ,؀á ç {ًÚ{àãÛ {ØåÙaäËÑãÛ{â׋àŽÙ„ÔTՄàÑãÒ%æ¬Ù‹Ø€áÇÕ~ß€ÑŽÙ‹Ò Õ~ÔGًÚËß D Ѥßmç€â,àãæhÎ â
Ó {ÙËلç€âß {âçåюá {àŽâ,çåß Gًçåç€ÑãÔ{àŽâYюÒßmâ,Ø {Øåâ,ßmÕ~ßmÑãÙ‹Ò 1ß TÕ~ß F (D) − d юç0Õ √ ËâIÛä„âIÓ9ßmًØ
لæ'ä„Õ~àŽÚ{â,ç+ՄÒ{Û â´ç€ÑŽá {à Ú%ç€â•ß %â 'Ú%ÓIàŽÑãÛ{âÕ~ÒuÒ{ً؀á çåÓՄàãâIÛuÔ
{âIØåâ
юçß {âÛ%юáâIÒ{çåюًҩلæ!ß {â¨ä„âIÓ,߀ًؓçåÙ3Մç߀Ù=Õ {؀٠ËюáÇÕ~ßmâYюÒ߀âI׋؀ՄàŽç³1/ÑŽÒ©ß n{âàŽÑŽáÑãßلnæ
ًÒ3ß {Ñãç TՄØåß³Ù~æEß {â ÑŽÖ {ًÒ{Ùaä=æ¬Ú%Ò{Ó,߀юًÒTÕ~à‚Î
n
^ J
µ·
5J
5J
5J
mK
'ZP
S
ÃT HP
K
mK
"O 0J
`
P
0J
6O '
S J
J
J
0J
¸
æ
rP
mK
ƒP
MK
J
5J
J
DP
]
3
…P
5J
n
k=1
;O
\
5P
6P
O
MK
8ß 5J
0J e€
±J
p
]OŒK
éf
.PXP
^

WP
2
1
2
5J
0J
0J
;K
tP
DP mK
S
5J
5J
3
^ J
¥P
.O
%Y
`
5J
5J
DP
oç
MK
k
0J
; mY
rP
5J
jKP
°O
è
"PlP
MK.O 5J
µ·
8O S
K
DP
5J
S J
0J
;
\
DbX
[K
O S J
0J
O
α = 1, β = 1 d = π/3
h
|e(0)|
ke(xk )k∞
Ï Í‹mÍ %Î è ϋΠ~â ‹Ü Ü%Î Ü „â ‹Ü
Ü‹Í è %Î ÜÍ è{Î „â „è ËÎ „è‹â „è
~è
%ÎÝÍ‹Í ÍËÎÝÍ ~â ÍËÎ „â
ÏwÍ Ïè %Î¤Ï Ï‹Î „â ϋÎÝÍ „â
ՄÔ{àãâ´Ï ÓIÓ,Ú{ØmÕ„Ó Ù„æ'ÐKюÒ{Ó‡Õ {؀٠ËюáÇÕ~ßmÑãًҔæ¬Ù‹Ø %Մá {àŽâ´Ï„Î
0Ñãç€Ó,؀â,ß€Ñ IÕ~ßmÑãÙ‹Ò ÑŽç3Ò%Ù ä‹â,Ø ç–ßmØmÕ~ÑŽ× ß€æ¬Ù„Ø Õ„Ø€Û {ØåÙ %Ñãá”Õoßmâ L (f ) Ù‹Ò Õ
ç€ÑŽÒ%Ӵ׋؀ÑãÛ Gß {âIÒ*Ú{çåâeÕ {؀٠åâ,Ó,߀юًÒuáÇÕ~ßmØåÑ H ßmٔâ,ä~ՄàŽÚ{Õ~ßmâß {âeÕ %؀٠ËюáÇÕ~ßmâ¨ç€ÑŽÒ%Ó
ç€Ù‹àãÚ%ßmÑãÙ‹Ò Õoß©ß {â†çmՄá {àŽÑãÒ{× Ò{ÙKÛ{âIç,Î gÚ{ç ‡Ñãæ¨ß {â,؀â Մ؀â m çåюÒ{ӆÒ{ÙKÛ{âIçՄÒ{Û n
çmՄá {àŽÑãÒ{ׇÒ{ÙKÛ{âIç L (f ) юçAÛ{юçåÓI؀â9ßmÑ IâIÛßmÙ¨ÕYä„âIÓ,ß€Ù‹Ø v = [v ] ՄÒ%ÛÇß %â0Û{Ñãç€ÓIØåâ,߀â
ä‹âIØåç€ÑãًÒÙ~æ F (D) − d Ñãç
Mx
;p
ê
p
"u
y
ë.u
ê
[u
ß k
^
ê
8O 5J
3p
pì Yêu
.u Yêp
;
…€Q
k PlP
8ß
S
^ J
5J
6O
.PlP
−1
;
0J
M·
−1
DP
;
m
DP
O
Yê
ë.u Yê[|
J
%v
| ê
ë Yê[|
.PXP
K
¶P
ì Yê
uì Yê
ê
S
DP
ë| Yê
'K
µ·
5J
±|
[ê
0J
m
j j=1
Fn (D) − d = Hv − d.
³² µ
Nâuç TՄàŽà£ÑŽàãàŽÚ{ç–ßm؀Õ~ßmâß {â¥áÇâ9ß {ÙKÛ Ô çåâ,ä‹â,ØmՄà0â %Մá {àŽâ,çIÎ {âIçåâuâ %Մá {àŽâ,ç3ՄØåâ
ç€Ù‹áâ TÕoßYՄØåß€Ñ TÓ,ћՄàCюÒß {â´ç€â,Ò{ç€â´ß TÕ~ß“ß {â´â %ՄÓ9ßYՄÒ{ç âI؇Ñãç“ÖgÒ{Ù Ò ÑãÒ*ՄÛ%ä~ՄÒ{Ó,â
ՄÒ{Ûuюç0â,ä‹â,Ò Ú%ç€âIÛu߀Ù=׋âIÒ%âIØmÕoßmâ TՄ؀Մáâ,ßmâ,؀ç“Ù~æAß {â {ØåًÔ{àãâIá©Î ًÒ{â9ß {â,àŽâ,ç€ç 5çåÚ{Ó
ՄÒ=Õ {؀ÙÕ~Ó ”ÑŽç'Ò{â,âIÛ{â,۔ßmÙYç€Ñãá•Ú{àŽÕ~ßmâß {âׄâIÒ{â,ØmÕ~߀юًÒلæðÛ{Õ~ß]ÕYՄÒ{ÛßmÙYâ,ä~ՄàŽÚ{Õ~ßmâ"ß %â
ՄÓIÓ,Ú{ØmÕ„Ó Ù„æß {âYՄàã×‹Ù‹Ø€Ñ¤ß {á©Î
í0îðïTÅNÉEÂŒÈ ¶ {â´Û{ÑãØ€â,Ó,߇Մàã׋ًØåÑãß %áœÑŽç“ÑãàŽàãÚ{çå߀ØmÕ~߀âIÛ¥Ô ©ß {â•æ¬Ù„àŽàŽÙ ÑãÒ{×Çâ %Մá
{àŽâ {ÑŽÓ *юçß]ՄÖ~âIÒ*æ¬Ø€Ù‹á ‚Î ¢Ù‹Ò{ç€ÑãÛ{âIØ“ß {â´çå߀âÕ„Û ‘çåßmÕ~ßmâeÓIلÒgä„âIÓ9ßmÑŽÙ„Ò qÛ{Ñ [Ú%ç€ÑŽÙ„Ò
{؀ًÔ%àŽâIá
í

îðïxñ
f
’
‰
J
0J
S J
0J
Mb
[K
5J
'
5J
5J
'
²P
.PXP
"O S J
0J
Ú
6O
J
0J
0J
º¹
P
DP
S
5J
0J
'
S
5J hP
J
'K
^ J
DP
^ J
J
0J
[K
Ýn|q hò
5J
0J
S
ZK±Y

ZY
eY
mL
P
−((1 − 0.5e−2x )cx )x + cx + c = f (x),
c(0) − 0.5cx (0) = 1
c(∞) = 0.
x>0
âIØåâYß {âYç€Ù‹àãÚ%ßmÑãًÒ=ß TÕoßׄâIÒ{â,ØmÕ~߀âIÛß {â {؀لÔ{àŽâ,áœÑŽç c(x) = e ΢ÐËًáâYØåâIçåÚ{àã߀ç
Մ؀â©ß]ՄÔ{Ú%à›Õ~߀âIÛ ÔUâIàãÙ Î<ÐËÑãáÇÑãà›Õ„ØØ€âIçåÚ{àã߀ç=ՄØåâæ¬Ù‹Ú%Ò{Û Ùaä‹â,Ø3Õ Ø€Õ„Ò{׋âلæ+â %Մá {àãâIçIÎ
{â TՄØmÕ~áÇâ9ßmâIØåç α, β, d {àŽÕ ”ß %â+çmՄáâ+؀ًàãâ+Մç {â,ً؀â,áÍËΤϋΠًØáًçåß³ÑãÒgä„âIØåç€â
{؀ًÔ%àŽâIáç'ß TÕ~ß â TÕä‹â0ÓIًÒ{çåюÛ{â,؀â,Û {ÕYç€ÑŽÒ%Óç Ëç–ßmâ,áلæðً؀Û{â,Ø m ÔUâ,ß âIâ,Ò m = 40
ՄÒ{Û m = 80 ç€Ú ÓIâ,çIÎ
í0îðïTÅNÉEŒÈ*À ¢Ù‹Ò{ç€ÑãÛ{âIØ³ß %â¨Û{ÑãØ€â,Ó,ß {؀ًÔ%àŽâIá {ÑŽÓ Ó,ًÒ{ç–ßmÑã߀Ú%ßmâ,ç %Մá {àŽâeϋÎ
ÐËÚ Uًç€âß TÕ~ß â³Õ„Øåâ׋Ñãä„âIÒeՓç€Õ„á %àŽÑŽÒ%×لæŸß {â¢ßmØåÚ{âçåًàŽÚ%߀юًҕÕ~ß â KÚ{ՄàŽà ¨ç TՄÓ,âIÛ
Ò{ÙËÛ%âIç â gÚTՄàç {ՄÓIÑãÒ{הÑãçÒ{Ù~ߓը€â gÚ{ÑãØ€â,áÇâ,ÒgßÔ{Ú%ß0ÕÇÓ,ًÒä‹â,Ò{юâ,Ò{ÓInâ {â,؀â 9Î Õ~քâ•Õ~ç
ç
5J
0J
S
5J ~P
^ J ~P
P
0J
\
5J
6N
;K
^ J
0J
S VJ
X`
8¹ ò
lPlP
P
S
5P
−x2 /4
8O
0J
'
K
¥P
rP
S
S J
J
V€Q
5J
6N
N
²J
ë
DP
Ù
DP
mK
;]
P
^
n
4
20
40
؀؀لØ
€
α
0.01 0.00048
0.0047 0.00022
0.0047 0.00022
óôËõDö
95
113
108
Ò%ًюçåâ
3]
m \ 10 ÷
'Øå؀ًØ
€
óôËõrö
4
20
40
74
96
90
α
0.00083
0.001
0.00083
0.02
0.014
0.038
„Õ Ô{àŽâ¨Í ¢Ù„á {ÚËß]Õ~߀юًÒ{ç1æ¬Ù‹Ø {Õ~á {àãâYÍËÎ
çåß]Õ~ØåßmÑãÒ{× GًÑãÒß¨ß {âÇÓ,ًÒ{ç–ß]ՄÒßæ¬Ú%Ò{Ó,߀юًÒ
ՄÒ{ÛNçåюÒ{Óç Kç–ßmâIá ç€Ñ Iâ
Î
Nâ´ç€Õ„á %àŽâß {â•ßmØåÚ{â´ç€Ù‹àãÚ%ßmÑãًÒuÔUÙ„ß Ñ¤ßD*Մ=Ò{Û 2 Ñ¤ß {ًÚËß+Ò{ًÑãç€âeÕ~ß+â9ä‹â,Ò{à umç T=ՄÓ,40âIÛ
GًÑãÒßmçAՄÓIØåًç€çAß {â£ÑŽÒ߀âIØåä~Մà 2.4] Î {â0ØåâՄçåًÒÇæ¬Ù‹Øß {юç'Ó {ًÑãÓIâ£ÑŽçß {Õ~ßAًÒ{â£ÓՄÒ
ç€âIâÙ‹Ò â %ՄáюÒTÕ~ß€ÑŽÙ‹Ò Ù~æ“ÓIل[0.2,
á {ÚËßmâIÛ ç€Ù‹àãÚ%ßmÑãًÒ{ç•ß TÕ~ßeß {â©ç€Ù„àŽÚ%ß€ÑŽÙ‹Ò ä~ՄÒ{Ñãç {â,çä„âIØ
ØmÕ {ÑãÛ{à „Î qÒ {ØmÕ~Ó,ßmÑãÓՄà'áâՄçåÚ{؀â,áÇâ,ÒßmçلÒ{â ًÚ{àãÛ â UâIÓ,ߕâI؀Øåً؇ßmÙç Մá Nä„âIØ
ç€áÇՄàŽà!ä~ՄàãÚ{âIç {âIÒ%ÓIâ=ѤߨÑãç %؀â,æ¬â,ØmՄÔ%àŽâeßmÙ©çmՄá {àŽâeÑãÒN؀â,׋юلÒ{ç {âIØåâ”ß {âeæ¬Ù‹Ø ՄØåÛ
ç€Ù‹àãÚ%ßmÑãًÒ=юç¢ÓIàŽâIՄ؀à Ò{Ù‹Ò ,âI؀Ù%Î qÒß {â“ÓIՄç€â+لæÒ{لюç€â â‡Õ„çåç€Ú{áâ+ՕØåâIà›ÕoßmÑãä„â“âIØå؀ًآلæ
Õ~ߣáÇًç–ß 10 Û{Ú{â+ßmÙÕeÚ{Ò{Ѥæ¬Ù‹Ø€á Û{юç–ßmØåюÔ{Ú%߀юًÒ[Î
{âÒgÚ{á•ÔUâIØeلæ£ä~Մ؀юՄÔ{àãâIç•ÑãÒ ß {â ÑŽÖ {لÒ{Ùaä æ¬Ú{Ò{Ó9ßmюلÒTՄà¢ä~ՄØåюâIÛ æ¬Øåًá 87 ߀Ù
ÑŽÒ ß {юç¨â %Մá {àŽâ~Î áÇÙKÛ{Ñ {âIÛ â ߀ًÒ
áÇâ9ß {ÙKÛ Ñ¤ß Ø€áÑ åÙàŽÑŽÒ%â
123
ç€âÕ~Ø€Ó *Õ %àŽÑŽâ,Û߀ÙÇß %â ÑŽÖ {لÒ{Ùa䩿¬Ú%Ò{Ó,߀юًÒTÕ~à %؀Ùaä‹â,ÛßmÙ=ÔUâØåâՄçåًÒTՄÔ{à â GâIÓ9ßmÑãä„â
ՄÒ{Û Õaä„Ù‹ÑŽÛ%âIÛß {â*â UâIÒ%ç€âNÙ~æYæ¬Ú%àŽà £âIç€çåÑ›Õ„Ò ÓÕ~àŽÓIÚ%à›Õ~߀юًÒ{ç,Î {â*ØåâIç€Ú%àãßmç3Ù~æÙ‹Ú%Ø
ÓՄàãÓIÚ{àŽÕ~ßmÑãًÒ{çAՄ؀â£Û{Ñãç {àŽÕ „âIÛ=ÑãÒ Õ„Ô{àãâ“Í+æ¬Ù‹Ø1ÓIՄç€â,çلæ5â %ՄÓ,ß"Û{Õ~ß]ըՄÒ{۔Û{Õ~ß]Õ Ñ¤ß Çلæ
ÕYÚ{Ò%Ñãæ¬Ù‹ØåáÇà Û{Ñãçå߀؀юÔ%Ú%ßmâ,ÛØ€Õ„Ò{Û{Ù„á ØåâIà›ÕoßmÑãä„â !âIØå؀ًØÙ~æ5Õ~ßAáًçåß Î {â£ÒKÚ%á•ÔGâ,Ø
لæÑã߀âI؀Õ~ßmÑãًÒ{ç"юç³àãюçå߀âIÛюÒß %â YЩÓ,ًàŽÚ{áÒðÎ {ââ,؀ØåًسÛ{юç {10à›Õ ‹â,Û¥Ñãç³ß {â
яΠâ~Î Aß {â©Õ %؀٠ËюáÇÕ~ßmâ Ò{ل؀á لæ − c (x) %âI؀â c (x)
юçß {â•çåًàŽÚ%߀юًÒßmÙÇß {â•Û%ю؀â,Ó,ß {L؀ًÔ%àŽâIá لÔ%ß]Մc(x)
ÑãÒ{âIÛ¥Ô Ú{çåюÒ{×”ß {âÓ,ًá {Ú%ßmâ,Ûä~ՄàŽÚ{â
لæ!ß %â TՄ؀Մáâ,ßmâ,Ø D(x) юÒß {âYÛ{юØåâIÓ,ß {؀لÔ{àŽâ,áՄÒ{Û c(x) юç³ß %ââ %ՄÓ9ß+ç€Ù„àŽÚ%߀юًÒðÎ
ÐËюÒ{Ó gÚTՄÛ{؀Õ~ßmÚ%؀â”Ñãç‡Ú{ç€â,ÛNßmÙâIçå߀юáÇÕ~ßmâ´ß {юçYÒ{ًØåáÎ àŽçåÙàãюçå߀âIۆюç‡ß {âÓ {ًÑãÓIâÇلæ
؀âIׄÚ{à›Õ„ØåÑ IÕ~ßmÑãÙ‹Ò TՄØmÕ~áÇâ9ßmâIØ'çåÚ{׋׋â,çåßmâ,Û3Ô L‘ÓIÚ{ؖä‹â“Õ~ÒTՄà KçåюçIΠل߀â£ß TÕ~ß c (x)
юçØåâՄçåًÒTՄÔ%à ÓIàŽÙ„ç€â”߀٠c(x) Î 0æ³Ó,ًÚ{؀çåâ 'ÓIàãًç€â,Ò{âIçåç´Ù„æ c (x) ߀٠c(x) юç¨Ò{Ù
׋ÚTՄ؀ՄÒßmâIâ•ß TÕ~ß“ß {â´ÓIلá {ÚËßmâIÛä~ՄàãÚ{â D (x) юàŽàÔUâ•ç€ÑãáÇÑãà›Õ„Øåà 3Ó,àŽÙ‹çåâßmÙ=ß {â
â %ՄÓ,ߕÛ{Ñ GÚ{ç€ÑãًÒNÓ,ÙËâ ÓIюâ,Òß D(x) Î ‡Ø€Õ {ç¨Ù„æ³â %ՄÓ9ßeՄÒ{Û Ó,ًá {Ú%ßmâ,ÛNä~ՄàŽÚ%âIç¨æ¬Ù„Ø
ß {â TՄ؀Մáâ,ßmâ,Ø D(x) Õ~؀â {ØåâIç€â,ÒßmâIÛ¥ÑŽÒ ÑŽ×„Ú{؀â•Ï„Î
{â†Ó {ًÑãÓIâ*Ù„æØ€âIׄÚ{à›Õ„ØåÑ IÕ~ßmÑãÙ‹Ò TՄ؀Մáâ,ßmâ,Ø α юç©Õ Ó,ًá {àŽâ юçåç€Ú{â {ÑãÓ ÑŽç
ÓIًá {àŽÑãÓÕ~߀âIÛ´Ô ß {â"æŒÕ„Ó,ßß TÕ~ßلÚ{Ø {؀لÔ{àŽâ,á юç#Ò{Ù‹Ò ‘àŽÑŽÒ%âՄØ,Î qÒ´ß %âIç€â³â {Õ~á {àãâIç â
Ú{ç€â,Û©ß {â LqÓ,Ú{Øåä„â¨Õ {Ø€Ù‹Õ„Ó ðÎ Ù â,ä„âIØ â‡Ú{ç€â“ß {â UâIÒTՄà¤ß ”æ¬Ú{Ò%Ó,ßmÑãًÒTՄà J(D) ÑãÒ
{à›Õ„Ó,â"لæ kDk ç€ÑãÒ{ÓIâß {â"à›Õo߀ßmâ,Ø#ßmâ,؀á¯ÑŽç!Ò{Ù~ß'â,ä‹â,ÒÇÛ%â TÒ{â,ÛÇÑãÒ•ß {â߀ØmՄÛ%ÑãßmÑãًÒTՄàgçåâIÒ{çåâ
{юàãâ ç€â,Øåä„âIç•Õ~ç‡ÕçåÚ{Ô{ç–ßmÑã߀Ú%ßmâ•æ¬Ù„؇ÕÒ%ً؀á©Î ‘߇Ñãç â,àŽàÖgÒ{Ù Ò*ß TÕ~ß+ß {â L
ÓIÚ{ؖä‹â³ç€J(D)
â,àŽâIÓ9ßmÑãًҴáÇâ9ß {ÙKەÒ{â,âIÛeÒ{لß!ÔGâ³Õ0Ó,ًÒä‹â,؀׋â,Ògß1çå߀ØmÕ~߀âI× çåâIâ"Þ'ً׋â,à #â,ä„âIÒ
æ¬Ù‹Ø'àŽÑŽÒ%âՄØ!ÑãÒä‹âIØåç€â {؀لÔ{àŽâ,áÇç,Î Nâ³Ú{çåâ£ß {â LqÓIÚ%Øåä‹â0ՄçAՓßmÙKًà{ßmÙ {â,à Ú{çAÕ„Ó {юâ9ä‹âÕ
ÔTՄà›Õ~Ò{ÓIâ¨ÔGâ9ß â,âIÒ*؀â,׋Ú{à›Õ~Ø€Ñ IÕ~ßmÑãًҩՄÒ{ÛØåâIçåюÛ{ÚTÕ~àEßmâ,؀áçIÎ {âIØåâ,æ¬Ù‹Øåâ ðÑãØ€ØåâI׋Ú{àŽÕ„؀ѤßmÑãâIç
ÑŽÒ‡ß {â'ÔUâ TÕäKюًØCلæËß {â LqÓ,Ú{Øåä„âՄØåâ'Ò{لßEÕ£áÇÕ~ßåßmâIØ5Ù~æ%ç Gâ,ÓIћÕ~àÓIًÒ{Ó,âIØåÒðÎ qÒ {ØmՄÓ9ßmÑãÓIâ
^
FP
f
ZßËò
rP
…€Q
5J
rP
K
5J
P
0J
S
0J
'
.P
0J
0
^ J
5J
wP
mK
l·
'
k
DP
.PlP
Mb
^
0J
0J
±J
MO 0J
.PlP
ŽP
VP
0J WP
^ J
P
2
Y
approx
}Û
.PlJ
J
µ·
DP
[K
5J
5J
Y
P
S
ZY
6O S
WT
5J
Y
^ J
µ·
0J
Y
P
u
S
.O
S
0J
S
.K
Qf

J
0J
0J
S
0J
S J
rP
jK
b
S J
6J
5J

ŒT
5J P
5J
0J
MK
DP
DP
¢P
J oç
UP
approx
approx
ðP
5J
"PlP
J
5J
Ù
RP
^ J
'
Ú
S
'
approx
DP
0J
MK
rP
0J ~P
5J
.O
'`
5J ƒÀ.©Ä½«'®
0J
i
ML
÷
0J
S
^ J
k
5J
'
;K
VP
[K
5J
L
O S J
approx
±K
eP
5J
úv
mK
3]
DN
MK
k
0J
S
^ J
\
5J
µ·
0J
óôËõDö
;
0J
S

† Ù Û
0J
5J
S
^
3K
K
±J
Rç
mK
½'Ä'Ä0¯%ÄO
^
Ú
XP
5P
DP
S
0J
S J
K
S
0J
5J
5J
'ZP
5J
P
0J
DP
¢T
÷
^ J
J
0J
S
ùÃJ
MK
5J
rP
M·
0J
S
MK HT øP
J
rP
\
5J
Y
8nëq,]
~J
µP
J
.O
ÃT ‚P
.O
Exact D(x)
Initial Estimate
Final Estimate (m = 4)
Final Estimate (m = 20)
Final Estimate (m = 40)
2
Exact D(x)
Initial Estimate
Final Estimate (m = 4)
Final Estimate (m = 20)
Final Estimate (m = 40)
2
1.5
1.5
1
1
0.5
0.5
ŽÑ ׋Ú{Øåâ•Ï {؀٠ËюáÇÕ~߀юًÒ{ç1ßmÙ TՄØmÕ~áÇâ9ßmâIØ D(x) ÑãÒ %Մá {àŽâYÍKÎ
ß {â LqÓIÚ%Øåä‹âAç€â,âIáç߀ٳÔGâAÕ"ä‹âIØ ‡â GâIÓ9ßmÑãä„âA߀ÙËلà‚Î ًØCÕ³Û{â,ßmՄюàãâIÛYՄÒTՄà Kç€ÑŽç5Ù~æËä~ՄØåюًÚ{ç
çåßm؀Õ~ßmâ,׋юâ,ç”æ¬Ù‹ØÓ {ًÑãÓIâلæYÕ Ø€âIׄÚ{à›Õ„ØåÑ IÕ~ßmÑãÙ‹Ò TՄØmÕ~áÇâ9ßmâIØÇç€â,â £â„Î<×{Î +юàãáÇâ,ØÇÕ~Ò{Û
âÕ„Ø Ü CًØ"ß {â+ßmâ Kß CÔ 3Þ'ً׋â,à‚Î Nâ‡Ó,ًÒ{ç€â,Øåä~Õ~߀Ñãä‹â,à Ó {ÙKًçåâYß {â‡à›Õ„Øå׋âIç–ß α
Õ~ß {ÑãÓ eÕçåю׋Ò{Ñ TÓÕ~Ògß#ÓIًØåÒ{âIØEÙËÓ,ÓIÚ{ØåçIÎ qÒáÇًç–ß!ÓIՄç€â,ç#ß {Ñãç#ÑãçE×‹Ø€Õ {ÑãÓՄàãà +لÔgäKÑãًÚ{ç
Մàãß {ًÚ{× ‡ÑãÒ¨Õæ¬â ÓÕ~ç€âIçCß %⠑ÓIÚ{ؖä‹â ՄçCçåÙçåáÇÙKÙ„ß +ß TÕ~ßÕ hÓ,ً؀Ò{â,Ø Õ„çCÛ{Ñ ÇÓ,Ú{àãß
ßmÙuюÛ%âIÒßmÑ¤æ ‹Î qÒ çåÚ{Ó ÓIՄç€â,ç L âÕ {؀٠ËюáÇÕ~߀âIÛNß {â=ÓIÚ%Øåä~Õ~ßmÚ%؀â=ÒgÚ{áâIØåюÓÕ~àŽà †Õ~Ò{Û
ç€âIàãâIÓ9ßmâIÛÇß {â UًюÒß'لæ[á”Õ ËÑãá•Ú{á ÒgÚ{áâIØåюÓIՄà{ÓIÚ%Øåä~Õ~ßmÚ%؀â„Î qÒÇÕ+æ¬â Ù„ß {âIØ'ÓIՄç€â,ç1ß %â
‘ÓIÚ{ؖä‹â Õ~çâ,؀ØmÕoßmюӇÕ~Ò{Ûç€â,ä„âI؀ՄàCÓ {ًюÓ,âIç³æ¬Ù‹Ø³Õ hÓ,ً؀Ò{â,Ø â,؀â Gًçåç€ÑãÔ{àŽâ~Î
L
í0îðïTÅNÉEÂŒÈ•Ì “Ú{Ø {ÒTՄàKçåßmâIÕ„Û qç–ß]Õ~߀âÓIلÒgä„âIÓ9ßmÑŽÙ„Ò qÛ{Ñ [Ú%ç€ÑŽÙ„Ò {ØåًÔ{àŽâ,á â {ÑãÔ{Ñã߀ç
ç€ÑŽÒ%׋Ú{à›Õ~؀Ñã߀юâ,çюҔÔUÙ„ß ”ß {âÓIÙKâ ÓIÑãâIÒßmçՄÒ{Û”ß {â0çåًàŽÚ%ß€ÑŽÙ‹Ò c(x) = x e %ÑŽÓ 3юç
Ú{ç€â,ÛßmÙe׋â,Ò{âI؀Õ~ßmâ+ß {â‡Ø€ÑŽ× gß {ՄÒ{Û©ç€ÑŽÛ%â“æ¬Ú{Ò{Ó,߀юًÒÑãÒß {â‡ç Kçå߀âIá
0
1
2
3
4
5
ß k l
P P
Ù
6
8
;
K
S J
5J
Kin %q
0J
J
mb
J
1
0J
0J …P
ûP
MK
S
0J
;
B¹ 
5J
0J
5J
wâ
6O
ã S
m`
`
5J
S
‚P
ã S
ZY mL
5J
3
c = f (x),
4x2
c(0) − cx (0) = 0
c(∞) = 0.
0J
WP
'ZJ
5J
.J …J
−cxx + cx +
3/2 −x S
K
J
J
x>0
{â çåюÒ{ׄÚ{à›Õ„ØåÑã߀юâIç”á”Õ„Ö~âuß {â {ØåًÔ{àŽâ,á ç€Ù„áÇâ TÕ~ß©áÇل؀â*юÒßm؀ՄÓ,ßmՄÔ{àãâß TÕ„Ò ß %â
{؀â9äËÑãًÚ{ç³â %Մá {àãâ„Î qÒ3ß {Ñãç {؀لÔ{àŽâ,á æŒÕ„ÑãØ€à ”Ó,ًÒ{ç€â,Øåä~Õ~߀Ñãä‹â‡Ó {لюÓIâ,ç³Ù„æCß {â‡ç€ÑãÒ{Ó TÕ
ØmՄáâ,߀âI؀ç α = 1 β = 1 d = π/3 ß {âç€Õ„áâ0Մç1ÑŽÒ {Õ~á {àãâ¨Ï ًØåÖØåâՄçåًÒTՄÔ%à
â,àŽà‚Î +Ú%Ø1ØåâIç€Ú%àãßmç¢Õ„Ø€âç€Ú{ááÇÕ„Ø€Ñ IâIÛÑŽÒ Õ~Ô{àŽâÜՄÒ%Û Ñã׋Ú{؀â0͇æ¬Ù„ØAß {â0ç€Õ„áÇâ³ß Gâ,ç
لæ#â,؀ØåًأՄÒ{ÛáÇâIՄç€Ú%؀âIáâIÒ߀ç0Մç³ÑãÒ %Մá {àãâYÍËÎ
ÒTÕ~ßmÚ%ØmՄàKç UâIÓ,Ú{à›Õ~߀юًҕՄÔGلÚ%ß#ß {âIçåââ %Մá {àŽâ,ç!юçß TÕoß!ç€ÑãÒ{Ó¢Ò%ÙËÛ{â,ç!áÑŽ× ß ËÑãâIàãÛ
ÔGâ9߀ßmâ,ؓ؀â,ç€Ú{à¤ßmç£ß TՄÒß {â¨â gÚTՄàãà ©ç TÕ~ÓIâIÛuÒ%ÙËÛ{â,ç“Ú{çåâIÛuÑŽÒ {Õ~á {àãâIç“͔ՄÒ{ÛuÜËÎ Ù
ÓIًá TՄØåâØåâIçåÚ{àã߀ç âÇØåâ,äKюçåÑãß %Մá %àŽâÇÍ©Õ~Ò{ÛNØåâ {àŽÕ„ÓIâeâ gÚTÕ~àŽà ç TՄÓ,âIÛ Ò{ÙËÛ%âIçYÔ
ç€ÑŽÒ%ÓYÒ%ÙËÛ{â,çIÎ qҥًØåÛ{âIØ"æ¬Ù‹Øß {â¨Ó,ًá TՄ؀Ñãç€Ù‹Ò3߀ÙÔUâ‡æŒÕ„ÑŽØ âá•Ú{ç–ߣçmՄá {àŽâ+Ò%ÙÇáً؀â
Ò{ÙËÛ%âIç'ß TÕ„Ò â£Û%Ù¨ÑãÒeß {â³â gÚTՄàãà ´ç TՄÓ,âI۔ÓIՄç€â~Î {â£ÒgÚ{á•ÔUâIØ'لæðç€Õ„á {àŽâ UًюÒ߀ç n
юçAç€â,ßâ gÚTՄàŸßmÙYß {âÒKÚ%á•ÔGâ,آلæðç€ÑŽÒ%Ó0Ò{ÙKÛ{âIç m {ÑãÓ =ÓIلÒ{çå߀ØmՄÑãÒ{çAß {â Uًçåç€ÑŽÔ%юàŽÑ¤ßmÑãâIç
^ J
0J
P
'
DP
¢T
0J
O
S
ÿâ
MK
MK
XK[Y
5J
5J
.PlJ
¢T
Œb
7
mO…ü
5J
J
S
6
DP
J
0J
S
"PlP
5
.O
¢f
Y
%
4
mK
ÃT
J
3
á€Q
µ·
S
2
Ù
 hnþu"q [K
K ÏT
Y
0
L
J
²ý „
9
DP
Y
0J
7
P
S J
gP
mK
O
¢
M·
k
5P
0J
DP
0J
S
6N
MK
6N
r€Q
^
rP
Ù
H€Ã
DP
5J
'
DP
MK
O S
^ J
P
O S J
ì
jKP
J ŽK
6N
DP
^
rP
MK
5P
±K
DP
DP
J
RP %Y
MK
0J
6P
0J
0J
0J
3] S
5J
}€Q
rP
5J
5J
\
J
5J
5P
w€Q
S
ÿT
6N
0J
0J
5J VP
gP
8
9
m
4
20
40
؀؀لØ
€
α
0.12 0.00022
0.0024 0.00022
0.0028 0.00022
óôËõDö
93
103
95
Ò%ًюçåâ
3]
m \ 10 ÷
'Øå؀ًØ
€
óôËõrö
4
20
40
115
118
85
0.13
0.013
0.035
ՄÔ{àŽâYÜ ¢Ù„á {ÚËß]Õ~߀юًÒ{ç1æ¬Ù‹Ø {Õ~á {àãâ‡Ü%Î
^
XßËò
rP
…€Q
Exact D(x)
Initial Estimate
Final Estimate (m = 4)
Final Estimate (m = 20)
Final Estimate (m = 40)
2
α
0.00022
0.0004
0.00091
rP
Exact D(x)
Initial Estimate
Final Estimate (m = 4)
Final Estimate (m = 20)
Final Estimate (m = 40)
2
1.5
1.5
1
1
0.5
0.5
ŽÑ ׋Ú{Øåâ‡Í {؀٠ËюáÇÕ~߀юًÒ{ç1ßmÙ TՄØmÕ~áÇâ9ßmâIØ D(x) ÑãÒ %Մá {àŽâ‡ÜËÎ
æ¬Ù‹Ø n Î {â‡Ó {ًюÓ,âIç n = m = 20 Õ~Ò{Û n = m = 40 ÓIՄÒÔUâY׋âIÒ{â,ØmÕ~߀âIÛ©Ô 3ß]ՄÖgюÒ%×
ՄÒ{Û
K؀âIç Gâ,Ó,߀Ñãä‹â,à „Î ßmՄÔ{àŽâ£Ù„æGß {âØ€âIçåÚ{àã߀юÒ{×YÓÕ~àŽÓIÚ%à›Õ~߀юًÒ{ç'Õ~؀â
M = 15
׋Ñãä„âIÒNÑãÒ Õ„Ô{àãâÇMè%Î = 32Ó,ًá TՄ؀Ñãç€Ù‹Ò*لæ ՄÔ%àŽâIç¨Ü©Õ„Ò{ÛNèç {Ù çYß TÕ~ߨçmÕ~á {àãюÒ{שÕ~ß
ß {â‡ç€ÑãÒ{ӇÒ{ÙKÛ{âIç³Ò{â,âIÛ¥Ò%ل߳ÔGâYՄÒÙ ËßmюáÇՄàGçåßm؀Õ~ßmâ,× ‹Î
­ ®° µ 9®¨°©µ
{âYæ¬Ù„Ø€âIًׄюÒ{×eÕ~àŽ×‹Ù‹ØåÑãß {á ՄÒ{Û©â Gâ,؀ÑãáÇâ,Òg߀ç³ç€Ú{׋ׄâIçåߣçåâ,ä‹â,ØmՄàCÓ,ًÒ{ÓIàãÚ{ç€ÑãًÒ{ç
ϋΣÐËюÒ%ÓÇáâ,ß {ÙËÛ%ç {ØåÙwäKÑãÛ{â”Õ©Ú{ç€â9æ¬Ú{à1߀ÙËلà'æ¬Ù„ØYçåًàãäKÑãÒ{×¥Ó,âIØåßmÕ„ÑŽÒ Û{юØåâIÓ9ßçåюÒ{׋Ú%à›Õ„Ø
{؀لÔ{àŽâ,áÇç Ñ¤ß {Ñã× Õ„Ó,ÓIÚ{Ø€Õ„Ó „Î {â,ç€âç€Ù„àŽÚ%߀юًÒ{ç¨ÓÕ„Ò â9ä‹â,Ò â %юÔ{ѤߴáÇÑãàŽÛ
Û{âIØåÑãä~Õ~߀Ñãä‹âç€ÑŽÒ%׋Ú{à›Õ~؀Ñã߀юâ,ç“Õ~ß“ß {â´âIÒ%Û GلюÒßmç+لæAß %â´Û{ًáÇՄюÒÙ~æAß {â•æ¬Ù‹Ø ՄØåÛ
ç€Ù‹àãÚ%ßmÑãÙ‹Ò ç€Ú%Ó Õ„ç c(x) = x e Ù‹Ø TÕä‹â©ç€ÑãÒ{׋Ú{àŽÕ„Ø•Ó,ÙËâ ÇÓ,юâ,Òg߀çÇçåÚ{Ó Õ~ç
Î
λ(x) = 3/4x
Ø€Ø€Ù„Ø α m 10 Ò%ًюçåâ
'ØåØ€Ù‹Ø α
m
0
2
4
6
8
10
Zß k PlP
Ù
^ J
14
16
18
0
2
4
DP
6
8
á€Q
DP
10
J
12
14
[K
O
x
12
;
x
^
k
P
0J
k
MK
0J
^
DP
5J
P
HG ‰ E
S
0J
rP
.K
I
^ J
5J
5J
'ZP
ß
WP
P
0JéJ
S
J
^ J
K
5J
J
XJ
lP
0J
5J
1/2 −x
²J
'`
S
J
2
óôËõDö
20
40
^
103
97
€
\
3]
÷
0.0095 0.00022
0.0138 0.00022
20
40
óôËõrö
108
111
€
0.027
0.060
0.0005
0.00083
ՄÔ{àãâ+è ¢Ù‹á {Ú%ß]ÕoßmюلÒ{çæ¬Ù‹Ø %Մá %àŽâ‡Ü Ñãß ©ç€Õ„á {àŽÑãÒ{×´Õ~ߣç€ÑãÒ{Ó+Ò{ÙKÛ{âIç,Î
Ï
lßËò
DP
…€Q
rP
;ê
S
5J
DP
16
18
ÍËΣÐËюÒ%ÓIâ {Ñã× Õ„Ó,ÓIÚ{Ø€Õ„Ó ÑŽç¥Ù„Ô%ß]ՄÑãÒ{âIÛ Ñ¤ß <ØåâIàŽÕ~ßmѤä‹âIà ç€áÇՄàŽàYÛ{юçåÓIØåâ,ßmÑ Õ~߀юًÒ
ÒgÚ{á•ÔUâIØ€ç ³áÇÑãÒ{юáÑ ,âI؀çÚ{ç€â,ÛÑŽÒ çåًàãäKÑãÒ{× ÑãÒä‹âIØåç€â %؀ًÔ{àãâIáçÇâ,Ò{Û Ú Ù‹ØåÖ
юÒ{× Ñ¤ß Ø€â,à›Õ~߀Ñãä‹â,à ÇàŽÙ Û{юáâIÒ{çåюًÒ{Մà[ç Ëç–ßmâ,áÇç,Î
Ü%Î {â3áâ,ß %ÙËÛ ÑŽç¨æŒÕ~ю؀à *؀ًÔ%Ú{çåß Ñãß N؀âIç Gâ,Ó,ߴ߀ÙÒ{ًÑãç€â {؀ÙaäKюÛ{â,Û ß TÕoßß %â
ç€ÑãÒ{Ó TÕ~ØmՄáâ,߀âI؀ç TÕä‹â•ÔUâIâ,ÒÓÕ~؀â,æ¬Ú%àŽà Ó %ًç€â,Ò*æ¬Ù„Ø£ß {â¨æ¬Ù‹Ø Õ~؀Ûçåًàãä„âIؓÕ~Ò{Û
ÕçåÚ{ÑãßmՄÔ{àãâ“Ó {ًÑãÓIâ‡Ù„æE؀âIׄÚ{à›Õ„ØåÑ IÕ~ßmÑãÙ‹Ò TՄ؀Մáâ,ßmâ,Ø α юç"áÇՄÛ{â~Î
è{Î {â•Õ~àŽ×‹Ù‹ØåÑãß {áÇç â TÕä‹â¨Ù‹Ú%߀àŽÑŽÒ%âIÛá”Õ %؀Ùaä‹âYßmÙÔGâ‡Ú{çåâ,æ¬Ú{àюÒ3ß %â¨Û{â,ç€Ñã׋Ò
لæ'؀âIՄàâ Gâ,؀ÑãáÇâ,Òg߀çIΠلØâ {Õ~á {àãâ â´ç€Õ ß TÕ~ß {à›Õ~ÓIâIáâIÒß0لæçmÕ~á {àãюÒ{×
Ò{ÙKÛ{âIç´Ñãá TÕ~Ó,ßmç gÚTՄàŽÑ¤ß †Ù„æ£Ø€âIçåÚ{àã߀çIÎ Ú{Øåß {âIØÑŽÒä‹â,çåßmÑã×Õ~߀юًÒ{ç¨á”Õ †ç€Ú%׋׋âIç–ß
Ù %߀юáÇՄà %à›Õ„Ó,âIáâIÒßmç,Î àãç€Ù "ß {âuюçåç€Ú{âuلæ¨Ú{Ò{Ó,âIؖß]ՄÑãÒgß ÑŽÒáâՄçåÚ{؀â,áÇâ,Òß
Õ~؀ØmÕ~Ògß€çæ¬Ú{Øåß {âIØ'çå߀Ú{Û „Î +Ú%Øâ %Մá {àŽâ,çç€Ú{׋ׄâIçåß'ß TÕ~ßAáÇل؀âÛTÕoß]Õ GلюÒßmçÑãÒ
ß {â {ØåâIç€â,Ò{ÓIâ¨Ù„æ!áâÕ~ç€Ú{ØåâIáâIÒß0â,؀Øåًسá”Õ 3Ò{Ù~ßÔUâYÔGâ9߀ßmâ,ØIÎ +Ò%â Uًçåç€ÑŽÔ%юàŽÑ¤ß
юç߀ÙÇÚ{çåâ+æ¬â âIØ£Ò{ÙËÛ%âIç Ñãß ©Øåâ UâÕ~߀âIÛ©áÇâIՄç€Ú%؀âIáâIÒ߀ç0Õ~ß³âIÕ„Ó ©Ò{ÙËÛ%â„Î
øJ
J
K
O
0J
S
MK
^ J
mK
S
0J
P
MK
J
µ·
5J
S ‚J
P
wN

k
¥P
S
rP
.O S
0J
5J
Ù
0J
0J
5J
S
VP
rP
;K
jK
'
DP
5J
RP
;K
S
5J
S
0J
S
lO 5J
XK ˁ
0J ‚P
Y
S
¶P
jK
5J
.OQP
J
;KxP
Ù
'ZP
rP
M·
lP
K
¥J
^ J
mK
ÏP
S
0J
WP
0J
S
µ·
_
6P
‚P
jK
J
² ~² E²³° ¢²³µ
¤Ï „Ù %Ò Î 'Õ~߀ًÒðÎ
sÎ â9ß Ù„Ø€Ö {â,Ù‹Ø ÑŽáÑã߀âIÛ {Í ÍKÎ
ÝÍ %Î Ú{Ò{Û ´Î Î Ó Ø–ß gÚ{Ø Î 0΢ÐËáÑãß Õ„Ò%Û ´Î Î Ù â,؀çIÎ {âç€ÑãÒ{Ó
×Õ~àŽâIØåÖgюÒáÇâ9ß {ÙKÛæ¬Ù‹Ø TՄØmÕ~áÇâ9ßmâIسÛ{â Gâ,Ò{Û{â,Ògß0ç€â,àãæ hÕ~Û åًюÒß {ØåًÔ{àãâIáçIÎ
ÝÍ ËÍËÏ GÏ %Î
Ü Î +юàãáÇâ,شՄÒ{Û Î âÕ~Ø ‹Î {ÙËلç€ÑŽÒ%× ØåâI׋Ú{àŽÕ„Ø€Ñ Õ~ß€ÑŽÙ‹Ò TՄØmÕ~áÇâ9ßmâIØåçÇÑãÒ Ñ¤ß
â,ØmÕ~߀Ñãä‹â”áÇâ9ß {ÙKÛ{çæ¬Ù‹ØÑŽàŽà Uًç€â,Û {ØåًÔ{àãâIáçIÎ ŸÍ‹Í ¤ÏwÍ ~è UÏw͋ÍKÏ {Í %ϋÎ
è %Î Ú{Ò{Û Õ„Ò%Û ´Î Ù âIØåçIÎ 9ÎAÐ
{юàŽÕ„Û{âIà {ÑŽÕ ŸÏ ÍËÎ
%Î Î ©Ú{âIàãàŽâIØðՄÒ{Û ÎwÐGÎwÐ {ً؀â,çIÎ Ò%â ç€ÑŽÒ%Ó q׋ՄàŽâ,؀Ögюғáâ,ß {ÙKۓæ¬Ù‹Ø5ÓIًÒä„âIÓ,߀юًÒ
Û{Ñ [Ú%ç€ÑŽÙ„Ò â gÚTÕoßmюلÒ{ç Ñ¤ß áÑ Ëâ,Û ÔUًÚ{Ò{ÛTÕ~Ø ÓIًÒ%Û{Ñã߀юًÒ{ç,Î
ŸÍ „Ü%Î!ßmÙÕ UâÕ~ØIÎ
ÎÐgßmâIÒ%׋âIØ,Î!
"
$#
&% $'
9Î
Ð %؀юÒ%׋âIØ ‘Þ'âIØåà›Õ„× â )( ًØåÖ 5Ï ‹Ü%Î
0Î{Þ'ًׄâIà‚Î Ù‹Ò qÓIلÒgä„âIØå׋âIÒ{Ó,â¨Ù~æß {â‡à ‘ÓIÚ{ؖä‹â+؀â,׋Ú{àŽÕ„Ø€Ñ Õ~ß€ÑŽÙ‹Ò TՄØmÕ~áÇâ9ßmâIØ¢ç€âIàãâIÓ
߀юًÒáâ,ß %ÙËÛð*Î [ÏaÜ ÝÍ ËÜ ‹Ü GÏ KÎ
0ÎÞ'ً׋â,à‚Î
+
9Î[Ð
{юàŽÕ„Û{â,à
%Ñ›Õ ŸÍ ÍËÎ
τÏ
g _A
HG
n 6q
J Ff
<€
n %q
„
ü
¥«'®°´.¿.½
ad
k
gd
0J
Ëü
†
­X´.®©°¯%ªX¨
ZT k dzO Í J
S
.PlP
Y
0J
nu"qWò
PlJ
Ú
XO
Ú
k
0J
S
%v
8O .êê
^ J
S
'Y
…P
ªº¿.½'Ä0¨3½
P
»
Ç
¯6À%¨U¬;¯%Ä
S
É
¯%ª
¯6À%¨
U´%¨3½5À
_­X´[À.Ä´.®­Ä0½H´.ª+À
'Y
¯%ª
Y
´.®=Ä©cÊ
» ª+´.Å
Ç
´.ª+À
~© ½'Ä0½'ªº®=©=´.Å
5J
Y
K
ÿ¯%¼VÂ+­Z®
Æ ©ª«r´.ª+À
» ª+´.Å %®©°«
Ç
´.®
ÉXÇ
­ª«'®©°¯%ªX¨
<O 3ìì
Y
'ªº¿.½'Ä0¨3½
É
m
5J
Ä0¯.³6ŵ½'¼W¨'O
ÿ¯%¼VÂ+­Z®°´.®=©°¯%ª+´.Å z½'®
XO "êê
XO 3ìì
J
6N
në%qWò
Æ
z½'®
MPlJ
V­Z¼ƒ½'Ä©°«5´.Å i½'®
ZP
†
M·
P
S
^
Ù
òaJ
Æ ©ª«
øü
» Â[Â+Å O .êê
Ç
np"q
,Y
„
K
„
ü
O "êê
„
mL
K
cYjP
Zß .ê
„ d
n|%q
5J
P
ÿhý „
0J
n .q
_ò
^ J
S
Ú
ëZO 3ììê
{y
» Â[Â+Å ©°« O
Ç
6O §
0J
…P
Ä0¯.³6ŵ½'¼W¨'OºpXß .ê[|
n "qWd
´.ªº­X´.Å
É
mY
Xß .uì
M·
rP
Y
ê XO 3ìì[ë
¯6À%¨Ž¬;¯%Ä ªº¿.½'Ĩ3½
Ä0¯.³6ŵ½'¼W¨
ZT k
dzO Í J
mY