W E R C ‐ (WERC) S A T Ryan Hahn and Joshua Thomas Introduc on Assessing Human Stress Via Voice Analysis EEG for Emo on Recogni on WirelessEnabledRemoteCo‐Presence(WERC)isasystem thatwillallowasinglelifecoachorpersonalassistanttore‐ motelymonitorandcommunicatewithmultipleparticipants whohavecognitiveorbehavioralchallenges.Therecipientof theseassistiveserviceswearsalanyardsuspendedsmartphone thatisinterfacedwithvariousbio‐sensorstoassessthestress levelofaparticipant(seeFig.1).Thiswillallowforvoluntary orautomaticinterventionswhentheparticipantbecomes stressedincertainsituations.Thegoalisfortherecipientof theseservicestohavemoreindependenceandsenseofpur‐ poseintheirjobsettingand/orlivingenvironments. VoiceAnalysisistheWERCwareprocessofusingarti icialintelligentmeanstoanalyzethe slightcharacteristicchangesofaperson’svoiceinordertodetectnegativestress.Inoursys‐ tem,aJavaprogramwaswrittentoaccept ive‐secondsound ilespreviouslyharvestedfrom thesmartphone’sinternalmicrophone.Datamanipulationandcalculationtechniques, suchasaFastFourierTrans‐ form(FFT),normalization,and averagefrequencybandenergy collection,areappliedtothesig‐ naldatatopresentitinadiffer‐ entform.A32‐inputArti icial NeuralNetwork(ANN)isthen createdandself‐trainedbythe Backpropagationalgorithm(see Fig.2).Oncetrained,theANNis abletopredicthumanstressin realtime,theresultofwhichis senttothesmartphoneasa1 (stressed)or0(notstressed). Electroencephalography(EEG)isamethodofmeasuringbrainwavesignalfrequen‐ cies,usuallyusingaheadsetwithbio‐potentialsensorscapableofdetectingtheelectrical impulsesofthebrain.TheWERCteamhasbeentestinga5‐channelheadsetbyEmotiv alongwithprocessingmetricsandadisplaytoolthatrevealslevelsofemotionalstates overtime.Wehopetolearnhowtorecognizehumanstressdirectlyfromthesebrainwave patterns,soastohaveknowledgeofthestressstatusofaWERCwareconsumerduring non‐verbalmoments,otherwiseundetectablebyourVoiceAnalysissubsystem. Figure2.Anexampleofa32‐inputBackpropagationANN Results 90%Accuracy!! TotesttheANN,60sound ilesweresplitintopreliminary data(40 iles)andexperimental data(20 iles).TheANNwas trainedonthepreliminary iles andthentestedinrealtimeon theexperimental iles.Asthe trainingerroroftheANNwasin‐ creasedbysmallincrements,the accuracyoftheANNinpredicting stressremainedat80‐90%until a2.5‐3%error,whereitde‐ creasedto~50‐75%(seeFig.3). Overtraining(trainingerrortoo Figure3.AGraphdepictingtheaccuracyoftheANN low)causesdecreasedeffective‐ withregardtoitstrainingerror nesswithexperimentalsamples. Figure1.TheDesignoftheWERCsystem Thebio‐sensorelementoftheWERCsystemisintendedtoen‐ ableanautomaticinterventionalcalltothelifecoachtriggeredby thedetectionofelevatedhumanstress.GalvanicSkinResponse (GSR)wasusedinpastyears,butduetoitsinabilitytodistinguish negativefrompositivestressindicators,otheroptionswereex‐ plored.TheWERCteamhasidenti iedandexploredtwoother negativestressmeasuringtechnologiestobeusedinconjunction withGSR:VoiceAnalysis(VA)andElectroencephalography(EEG). Clients Further Informa on TheclientfortheWirelessEnabledRemote Co‐presence(WERC)projectisCurtByers. Curtisalifecoachwhocurrentlyworkswith individualswhohavemental,social,orcognitivechallenges.He isanintegralpartoftheWERCprojectandhasbeenproviding essentialfeedbackregardingtechnologicalrecommendations, theprojecthistoryandscope,anddetailsaboutthetarget community. MoreinformationonArti icialNeuralNetworks: DataMining:PracticalMachineLearningToolsandTechniquesbyIanH.Witten&EibeFrank http://www.natureofcode.com/book/chapter‐10‐neural‐networks/ MoreinformationonEEG: https://emotiv.zendesk.com/hc/en‐us/articles/208378593‐Frequency‐Bands‐what‐are‐they‐ and‐how‐do‐I‐access‐them‐ Figure4.Agraphdepictingemotionlevelsderivedfrombrainwaves Figure4aboveshowswhattheoutputofananalyzedEEGsignallookslike.Weuseda programdevelopedbyEmotivtoqualitativelytesttheabilitiesoftheheadsetinemotion detection.Theapplicationprocessestherawfrequencyoutputwaves,Theta,Gamma,Beta, andAlpha,incombinationwiththeamplitudeofeachtodetermineanemotionstate.Since Emotivcurrentlyretainstheproprietaryrightstotheseemotionstatealgorithms,the WERCteamwillneedtolearnhowtodevelopalgorithmsforprocessingthesesignalsso astodetecthumanstress.SomeconcernswiththecurrentEEGheadsetincludephysical discomfortafterlongperiodsofuseandrelativelyshortbatterylife.WeexpectEmotivto addresstheseconcernswithimprovementsintheirheadsetproductgoingforward. Conclusions and Future Work OurresultssuggestthatVoiceAnalysishaspromiseasaviablemeansofdetermining negativestressinrealtime.MoreresearchandtestingneedstobedonewithEEGtoseeif itiseffective.Thesetwosensortechnologieswilllikelybeusedinsomecombination alongwithGalvanicSkinResponse(GSR)soastovalidatethedetectionofnegativehu‐ manstressmorereliablyandunderdifferentcircumstances.Thenextstepsinvolving thesebio‐sensorsaretowriteanyextracodethatisnecessarytodeterminestressfrom thebio‐metricdataandalsotoestablishapure,reliabledatatransferconnectionwiththe AndroidapplicationonthesmartphoneviaUSBorBluetooth. Acknowledgements TheWERCteamwouldliketoacknowledgeDr.HaroldUnderwood,Dr.GeneChase,Dr. RandallFish,andMr.CurtByersfortheirsupport,leadership,andadvice.
© Copyright 2026 Paperzz