TMHP51 Servomechanisms (HT2012) Lecture 02 Governing Mathematical Model Stationary Model Dynamic Model Magnus Sethson [email protected] 1 1 Servo System Model [email protected] 2 2 Servo System [email protected] 3 3 Stationary [email protected] 4 4 Mathematical Model (Stationary) Orifice r 2 q1 = Cq wxv (Ps p1 ) (Positive chamber) ⇢ r 2 q2 = Cq wxv (p2 Pt ) (Negative chamber) ⇢ Continuity qin qout = 0 (Non-moving piston) dV qout = (Moving piston) dt qin Force Balance p 1 A1 p 1 A1 [email protected] p 2 A2 p2 A2 = FL (Non-moving piston) FL = BL ẋp (Moving piston) 5 5 Dynamic Model [email protected] 6 6 Dynamic Mathematical Model Principle Orifice r 2 q = Cq wxv (Pa ⇢ Pb ) Continuity qin qout dV V dp = + dt e dt Force Balance p 1 A1 [email protected] P2 A 2 FL BL ẋp = Mt ẍp 7 7 Simplified Hydraulic Linear Actuator (cont.) r 2 (Ps ⇢ r 2 q2 = Cq wxv (p2 ⇢ A1 = A2 = Ap q1 = Cq wxv q1 = q2 = q p1 ) Pt ) r 2 q = Cq wxv (Ps p1 ) ⇢ r 2 q = Cq wxv (p2 Pt ) ⇢ Pt ⇡ 0 (Tank pressure) ) p2 = (Ps pL ⌘ p 1 Orifice p1 ) p2 (Definition when A1 = A2 ) p2 = p1 Ps + p1 = 2p1 Ps ) Ps + p L p1 = 2 Ps + p L Ps p L p 2 = Ps p 1 = Ps = 2 2 s s 2 Ps + p L (Ps pL ) q = (q1 ) = Cq wxv (Ps ) = Cq wxv ⇢ 2 ⇢ s s 2 Ps p L (Ps pL ) q = (q2 ) = Cq wxv ( ) = Cq wxv ⇢ 2 ⇢ p L = p1 [email protected] 8 8 Simplified Hydraulic Linear Actuator (cont.) dV1 V1 dp1 q1 = + dt e dt dV2 V2 dp2 + - q2 = dt e dt q1 = q2 (From previous) Continuity V1 ⇡ V2 (Simplifying assumption) V1 + V 2 = V t dV1 = Ap ẋp dt dV2 = Ap ẋp dt Ps + p L p1 = 2 Ps p L p2 = 2 dp1 1 dpL ) = (Ps = const.) dt 2 dt dp2 1 dpL ) = dt 2 dt 1 Vt dpL q = (q1 ) = +Ap ẋp + 4 e dt 1 Vt dpL q = (q2 ) = Ap ẋp 4 e dt [email protected] 9 9 Simplified Hydraulic Linear Actuator Force Balance p 1 A1 p 2 A2 Bp ẋp FL = Mt ẍp A1 = A2 = Ap and p1 p L Ap [email protected] Bp ẋp FL = MT ẍp p2 = pL ) 10 10 Dynamic Mathematical Model Non-linear model 8 p A B ẋ F = M ẍ > L p p p L t p > > < q = Ap ẋp + 41 Vet ṗL > q > > : q = Cq wxv 1 (Ps pL ) ⇢ xv : Input signal xp : Output signal FL : External disturbance xp , ẋp , pL : Internal states [email protected] 11 11 ✓ 8 pL Ap Bp ẋp FL = Mt ẍp > > > < q = Ap ẋp + 41 Vet ṗL > q > > : q = Cq wxv 1 (Ps pL ) ⇢ Now what? f [email protected] Two options t 12 12 Engineering tasks involving the model • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Predict stationary stiffness Predict system gain Predict resonance frequencies Estimate internal damping Calculate energy consumption Design a suitable regulator Identify unstable operating conditions Regulator stability margins Step response Saturation effects Identify limit cycle conditions Dynamic response Bandwidth limits Rise time Predict overall system stability Temperature effects Wear predictions Damage spectrum Viscosity effects Bulk modulus effects Obliteration Cavitation Noise Overload conditions Supply requirements Modal analysis Fatigue analysis Service interval estimation Condition monitoring Operational life estimation Duty cycle [email protected] 13 13 Frequency and Time domains f t Frequency Time Classical Analytical Algebraic General behavior Linearized Well-defined application Almost always stable “Pen & Paper” Limited complexity [email protected] Modern Computerized Numerical Detailed behavior Non-linear Implicit models Unlimited application Stability always an issue “Hacking” Virtually unlimited complexity Real-time 14 14 Next Lecture: Wednesday 7 October, 13:15, P34 Magnus Sethson [email protected] 15 15
© Copyright 2026 Paperzz