TMHP51 Servomechanisms (HT2012) Lecture 06 Block Diagram of Model Characteristics in Frequency Domain Magnus Sethson [email protected] 1 1 Block Diagram [email protected] 2 2 Block Diagram 8 2 P A B sX F = M s Xp > L p p p L t > < Q = Ap sXp + 14 Vet sPL > > : Q = K q X v K c PL Start Kc FL Xv Kq 4 e Vt s Ap 1 Mt s 2 + B p s Xp Ap s [email protected] 3 3 Block Diagram 8 2 P A B sX F = M s Xp > L p p p L t > < Q = Ap sXp + 14 Vet sPL > > : Q = K q X v K c PL Final FL Kc + Vt s 4 e Ap Xv [email protected] Kq s h⇣ s !h ⌘ 1 Ap + 2 h !h s +1 i Xp 4 4 Transfer Function Xp = Kq Ap X v s h Kc A2p s2 2 !h ⇣ + 1+ 2 h !h s Vt s 4 e Kc +1 i ⌘ FL = Kq Ap X v s !s = h Kc A2p s2 2 !h + ⇣ 1+ 2 h !h s s !s +1 ⌘ i FL f 4 e Kc (System Sti↵ness Frequency) Vt “An integrator, a resonant spring-mass system and a frequency dependent disturbance” [email protected] 5 5 Position transfer function amplitude 50 40 30 |Xp(s)| [dB] 20 10 0 −10 −20 −30 1 10 2 3 10 10 4 10 Frequency [rad/s] Position transfer function phase −80 −100 −120 Phase(Xp(s)) −140 −160 −180 −200 −220 −240 −260 −280 1 10 2 3 10 10 4 10 Frequency [rad/s] Stiffness Amplitude 155 150 145 |(FL(s)| [dB] 140 135 130 125 120 115 110 105 1 10 2 3 10 10 4 10 Frequency [rad/s] [email protected] 6 6 % This is an example of ploting a frequency transfer function % Basic parameters D=0.050; % Piston diameter d=0.020; % Rod diameter L=0.8; % Cylinder length V0=0.002; % Dead volume Cq=0.67; % Flow ratio coefficient rho=790; % Oil density Ps=210e5; % Supply pressure betae=1.5e9; % Bulk modulus Mt=5; % Load mass Bp=10; % Load Damping % Operating point xv0=0.0005; % Valve displacement pL0=140e5; % Load pressure % Intermediates wv=pi*d; % Valve area gradient Kq=Cq*wv*sqrt((Ps-pL0)/rho); % Flow coefficent Kc=Cq*wv*xv0/(2*sqrt(rho*(Ps-pL0))); % Pressure coefficient Ap=0.25*pi*(D*D-d*d); % Piston area Vt=Ap*L+V0; % Cylinder volume ws=4*betae*Kc/Vt; % System stiffnes frequency wh=sqrt(4*betae*Ap*Ap/(Vt*Mt)); % System resonance dh=Kc/Ap*sqrt(betae*Mt/Vt)+0.25*Bp/Ap*sqrt(Vt/(Mt*betae)); % System damping % frequency vector w=10:0.5:3000; f=w/(2*pi); s=w*i; Gx=(ones(size(s))*Kq/Ap)./(s.*(s.*s/(wh*wh)+2*dh*s/wh+1)); Gf=(s.*(s.*s/(wh*wh)+2*dh*s/wh+ones(size(s))))./(Kc/(Ap*Ap)*(ones(size(s))+s/ws)); % Plot subplot(3,1,1); semilogx(w,20*log10(abs(Gx))); grid; xlabel('Frequency [rad/s]'); ylabel('|Xp(s)| [dB]'); title('Position transfer function amplitude'); subplot(3,1,2); semilogx(w,unwrap(angle(Gx)/pi*180)); grid; xlabel('Frequency [rad/s]'); ylabel('Phase(Xp(s))'); title('Position transfer function phase'); subplot(3,1,3); semilogx(w,20*log10(abs(Gf))); grid; xlabel('Frequency [rad/s]'); ylabel('|(FL(s)| [dB]'); title('Stiffness Amplitude'); [email protected] 7 7 Block Diagram Communities [email protected] 8 8 Block Diagram in Simulation Programs Transfer Function Power-Ports (Bond Graphs) Sub-System Matlab/Simulink Flowmaster (Flowmaster Connectors represent information flow Connectors represent energy flow Amesim (LMS Connectors represent physical relations Three Different “Communities” [email protected] 9 9 Next Lecture: 13:15, Friday 2012-11-16, P34 Magnus Sethson [email protected] 10 10
© Copyright 2026 Paperzz