5Cmartinez.pdf

Jenam Granada
Instituto de Astrofísica de Canarias
& IMaX team
Valentín Martínez Pillet
The Imaging Magnetograph
eXperiment
09/2004
Jenam Granada
Domingo,V., Fabregat, J., Gasent, J.L., Rodríguez, P.
Álvarez-Herrero, A., Belenguer, T., Heredero, R.L., Menéndez, M.,
Ramos, G., Reina, M., Pastor, C., Sabau, D., Sánchez, A., Villanueva, J.
09/2004
del Toro Iniesta, J.C., López Jiménez, A.C., Castillo Lorenzo, J., Herranz, M.,
Jerónimo, J.M., Mellado, P., Morales, R., Rodríguez, J.
Martínez Pillet, V., Bonet, J.A., Collados, M., Jochum, L., Mathew, S.,
Medina Trujillo, J.L., Ruiz Cobo, B.
IMaX team
Jenam Granada
5.- The future ahead: VIM-Solar Orbiter
4.- IMaX status & schedule
3.- IMaX instrument concept
2.- The Imaging Magnetograph eXperiment
1.- The SUNRISE project
Summary
09/2004
Jenam Granada
Gondola test flight in TX 2005
Circular trajectories for 15 days
Summer flights always Sun pointing
35-40 Km surface (99% atmosphere)
Antarctica NASA-LDB balloon 2007/2008
• Mission facts
Leaded by MPS Germany, USA & Spain.
`The SUN at the numerical resolution´
SUNRISE (NASA-Solar Lite)
• 1 m aperture solar telescope on space
1.- The SUNRISE project
09/2004
Jenam Granada
Magnetic Connectivity (all layers)
Uninterrupted Observations (days)
High Spatial Resolution (<100 Km)
How does the magnetic field provide energy to
heat the upper solar atmosphere?
How is the magnetic field brought & removed
from the solar surface?
What are the origins and the properties of the
intermittent magnetic structure?
• Key science questions:
1.- The SUNRISE project
Cattaneo, 99
09/2004
Jenam Granada
Structural elements (pressurized and open compartments) and
FE analysis.
Grupo de Astronomía y Ciencias del Espacio (Valencia)
Optical, thermal, mechanics and optomechanics design. AIV
phase in INTA.
Instituto Nacional de Técnica Aeroespacial (Madrid)
Control and acquisition electronics (CCDs), actuators, onboard software, power supplies.
Instituto de Astrofísica de Andalucía (Granada)
PI institution, management & systems engineering, scientific
requirements, user interface, GSE.
Instituto de Astrofísica de Canarias (Tenerife)
• IMaX consortium (funded by PNE):
2.- The Imaging Magnetograph eXperiment
09/2004
Jenam Granada
IMaX
Ion assisted deposition multilayer
coatings to distribute the light
ISLiD
→Diffraction limited
→Spectrometer
→Polarimeter
• SUNRISE Instrument Platform (ISLiD):
IMaX:
2.- The Imaging Magnetograph eXperiment
09/2004
Jenam Granada
• SUNRISE + IMaX components
2.- The Imaging Magnetograph eXperiment
09/2004
Jenam Granada
Lenses and mirrors
(±
±0.05 oC)
Double pass sealed
etalon chamber
IMaX pupil
Phase
Diversity
• Focal Plane concept
SUNRISE focus
Pressurized
CCDs
3.-IMaX Instrument Concept
(±
±0.5 oC)
Collimator lens
LCVRs
Prefilter (±
±0.5 oC)
IMaX focal plane
09/2004
Beamsplitter
Camera lens
Jenam Granada
Made in Spain
Vector & Longitudinal: no cost
Longitudinal: ρ→360, σ→90,270
Vectorial: |cσ|=|sσ sρ |=|sσ cρ|
Polarization efficiencies: ≥ 0.5
IAC-TECDIS ROCLIs
• IMaX as a polarimeter
3.-IMaX Instrument Concept
LCVR σ
sσ = sin σ
s ρ = sin ρ
cσ = cos σ ,
cρ = cos ρ ,
09/2004
Linear Polarizer
I D = I + cσ Q + sσ s ρU − sσ cρV
LCVR ρ
Jenam Granada
Applied Kilovolts bipolar (± 3000 V)
HV power supply in pressurized enclosure
Pressurized enclosure made by ACPO
Raw etalon for faster tuning (3000 V/s)
Tuning time is: 135 ms/50 mÅ
Double pass through etalon: 60 mÅ
Solid, robust solution for space
275 µm ± 0.001 µm (λ/600)
1 LiNbO3 etalon in double pass
• IMaX as a spectrometer
3.-IMaX Instrument Concept
09/2004
Jenam Granada
xΓ1Γ2
(i )
I
(1 − x 2 (1 − Γ1 )(1 − Γ2 ))
Two etalon passes &
incoherent reflections
I ( total ) =
Stray-light (ghost) < 1 %
Mirrors transmission (x) 30 %
Incoherent etalon
Parasitic-light is 2.5 %
Secondary peaks below 1%
Double pass etalon + prefilter
• IMaX as a spectrometer
3.-IMaX Instrument Concept
09/2004
Jenam Granada
Good polishing & low reflectivity
h=ho+ε; εrms of ~1 nm for LiNbO3
Etalon dominates WFE
Back and forth reflections
• Etalon effects (near pupil):
Phase diversity (slow thermal variations)
Etalon effects: 0.1 to go
Excluding etalon: Strehl 0.9 (tolerances)
Optical+optomechanical+thermal
WFE: telescope+ISLiD+IMaX
• A diffraction limited imager:
3.-IMaX Instrument Concept
0.1
0.2
0.3
M
O 0.6
D
U
L 0.5
A
T
I
O 0.4
N
0.7
0.8
0.9
1.0
T.B
17:58:51
4.0
8.0
POSITION 1
DIFFRACTION MTF
12.0
20.0
28.0
32.0
(.0083,.0083) DEG
(0.000,.0083) DEG
(-.008,.0083) DEG
DIFFRACTION LIMIT
(.0083,0.000) DEG
24.0
Y
X
Y
X
Y
X
Y
X
SPATIAL FREQUENCY (CYCLES/MM)
16.0
07-Mar-04
IMaX 13 Trans micro
ns CCD modificado fr
S≥0.8
WEIGHT
1
1
1
1
1
40.0
Y
X
09/2004
36.0
DEFOCUSING -0.01000
WAVELENGTH
525.1 NM
525.1 NM
525.1 NM
525.0 NM
525.0 NM
λ
4π
Jenam Granada
δ=
2π
ℜ sin δ
+
n´h
(1 − ℜ cos δ ) λ
n´h cosθ ´
φ = arctan
Reflectivity 0.9 (TBC)
Anticorrelated ε pupils
Strehl 0.9 achievable
Phase error dominates
All etalons show this
Pupil intensities and phases
Thickness maps ε (ACPO)
• A diffraction limited imager:
3.-IMaX Instrument Concept
09/2004
Jenam Granada
PS, controllers, actuators
(2 DSP+ 1 FPGA)/camera
Pentium 1GHz, 512 Mbytes
2 pressurised enclosures
• Control electronics
5 frames/sec (frame transfer)
H-IX-18-E
Logic & Analog
I/O
H-IX-20-E
PCI
Main Controller
Image Control &
Acquisition
Power Supply
H-IX-23-E
Fabry Perot Thermal Control
H-IX-19-E
Embedded
CPU
PCI
Full well > 120 ke-/pixel (filling 70-80 %)
1024 by 1024 ; 13 µm Pixels; QE >90%
Based on E2V (Marconi) CCD47-20 AIMO
Custom designed by Photonics Science (UK)
I/F Board
H-IX-10-E
H-IX-09-E
H-IX-08-E
H-IX-22-E
H-IX-21-E
H-IX-26-E
H-IX-25-E
H-IX-24-E
H-IX-07-E
H-IX-06-E
H-IX-05-E
H-IX-04-E
H-IX-03-E
H-IX-04-O
H-IX-06-O
H-IX-05-O
H-IX-09-O
• Detectors
H-IX-03-O
H-IX-07-O
H-IX-08-O
3.-IMaX Instrument Concept
H-IX-10-O
Phase
Diversity
Mechanism
ROCLIs
H-IX-17-O
H-IX-16-O
H-IX-15-O
H-IX-14-O
H-IX-13-O
H-IX-12-O
H-IX-11-O
Non Op
Thermos
09/2004
HK
sensors
Fabry-Perot Etalon
HV Power supply
O.B. Electronics Box
Proximity
Electronics
CCD Camera 2
CCD cam era 1
Jenam Granada
09/2004
IMaX needs thorough test and calibration before/after integration SUNRISE
(wavelength, polarization, MTF…). Define AIV plan.
AIV concept (INTA-Madrid, MPS-Lindau, HAO-Boulder)
Power dissipation by radiators must prove feasible.
No active focusing. Thermal environment must be under control.
Thermal concept and power dissipation: OK?
87 Kg (heavy), 1/2 Terabyte, 264 Watts peak power
Overall mass, data and power budgets
Tough but doable. CDR by subsystems.
Delivery for integration with telescope IP: end 2005
PDR end 2004
• Concept is closed ☺, PDR end 2004
4.-IMaX status & schedule
Jenam Granada
VIM~IMaX
AO in 2006
Launch 10/2013
• Solar Orbiter F mission to the Sun (ESA CV-2020)
5.- The future ahead: VIM-Solar Orbiter
09/2004
Jenam Granada
Solar Poles
Inner Heliosphere
Co-rotation (connectivity)
High Resolution
IMaX experience valid for VIM-SolO
Science is still perfectly valid
Descope RS instruments to half resolution
Industrial Studies on-going
SPC confirmed
• Solar Orbiter status
5.- The future ahead: VIM-Solar Orbiter
09/2004
Jenam Granada
END
09/2004