Jenam Granada Instituto de Astrofísica de Canarias & IMaX team Valentín Martínez Pillet The Imaging Magnetograph eXperiment 09/2004 Jenam Granada Domingo,V., Fabregat, J., Gasent, J.L., Rodríguez, P. Álvarez-Herrero, A., Belenguer, T., Heredero, R.L., Menéndez, M., Ramos, G., Reina, M., Pastor, C., Sabau, D., Sánchez, A., Villanueva, J. 09/2004 del Toro Iniesta, J.C., López Jiménez, A.C., Castillo Lorenzo, J., Herranz, M., Jerónimo, J.M., Mellado, P., Morales, R., Rodríguez, J. Martínez Pillet, V., Bonet, J.A., Collados, M., Jochum, L., Mathew, S., Medina Trujillo, J.L., Ruiz Cobo, B. IMaX team Jenam Granada 5.- The future ahead: VIM-Solar Orbiter 4.- IMaX status & schedule 3.- IMaX instrument concept 2.- The Imaging Magnetograph eXperiment 1.- The SUNRISE project Summary 09/2004 Jenam Granada Gondola test flight in TX 2005 Circular trajectories for 15 days Summer flights always Sun pointing 35-40 Km surface (99% atmosphere) Antarctica NASA-LDB balloon 2007/2008 • Mission facts Leaded by MPS Germany, USA & Spain. `The SUN at the numerical resolution´ SUNRISE (NASA-Solar Lite) • 1 m aperture solar telescope on space 1.- The SUNRISE project 09/2004 Jenam Granada Magnetic Connectivity (all layers) Uninterrupted Observations (days) High Spatial Resolution (<100 Km) How does the magnetic field provide energy to heat the upper solar atmosphere? How is the magnetic field brought & removed from the solar surface? What are the origins and the properties of the intermittent magnetic structure? • Key science questions: 1.- The SUNRISE project Cattaneo, 99 09/2004 Jenam Granada Structural elements (pressurized and open compartments) and FE analysis. Grupo de Astronomía y Ciencias del Espacio (Valencia) Optical, thermal, mechanics and optomechanics design. AIV phase in INTA. Instituto Nacional de Técnica Aeroespacial (Madrid) Control and acquisition electronics (CCDs), actuators, onboard software, power supplies. Instituto de Astrofísica de Andalucía (Granada) PI institution, management & systems engineering, scientific requirements, user interface, GSE. Instituto de Astrofísica de Canarias (Tenerife) • IMaX consortium (funded by PNE): 2.- The Imaging Magnetograph eXperiment 09/2004 Jenam Granada IMaX Ion assisted deposition multilayer coatings to distribute the light ISLiD →Diffraction limited →Spectrometer →Polarimeter • SUNRISE Instrument Platform (ISLiD): IMaX: 2.- The Imaging Magnetograph eXperiment 09/2004 Jenam Granada • SUNRISE + IMaX components 2.- The Imaging Magnetograph eXperiment 09/2004 Jenam Granada Lenses and mirrors (± ±0.05 oC) Double pass sealed etalon chamber IMaX pupil Phase Diversity • Focal Plane concept SUNRISE focus Pressurized CCDs 3.-IMaX Instrument Concept (± ±0.5 oC) Collimator lens LCVRs Prefilter (± ±0.5 oC) IMaX focal plane 09/2004 Beamsplitter Camera lens Jenam Granada Made in Spain Vector & Longitudinal: no cost Longitudinal: ρ→360, σ→90,270 Vectorial: |cσ|=|sσ sρ |=|sσ cρ| Polarization efficiencies: ≥ 0.5 IAC-TECDIS ROCLIs • IMaX as a polarimeter 3.-IMaX Instrument Concept LCVR σ sσ = sin σ s ρ = sin ρ cσ = cos σ , cρ = cos ρ , 09/2004 Linear Polarizer I D = I + cσ Q + sσ s ρU − sσ cρV LCVR ρ Jenam Granada Applied Kilovolts bipolar (± 3000 V) HV power supply in pressurized enclosure Pressurized enclosure made by ACPO Raw etalon for faster tuning (3000 V/s) Tuning time is: 135 ms/50 mÅ Double pass through etalon: 60 mÅ Solid, robust solution for space 275 µm ± 0.001 µm (λ/600) 1 LiNbO3 etalon in double pass • IMaX as a spectrometer 3.-IMaX Instrument Concept 09/2004 Jenam Granada xΓ1Γ2 (i ) I (1 − x 2 (1 − Γ1 )(1 − Γ2 )) Two etalon passes & incoherent reflections I ( total ) = Stray-light (ghost) < 1 % Mirrors transmission (x) 30 % Incoherent etalon Parasitic-light is 2.5 % Secondary peaks below 1% Double pass etalon + prefilter • IMaX as a spectrometer 3.-IMaX Instrument Concept 09/2004 Jenam Granada Good polishing & low reflectivity h=ho+ε; εrms of ~1 nm for LiNbO3 Etalon dominates WFE Back and forth reflections • Etalon effects (near pupil): Phase diversity (slow thermal variations) Etalon effects: 0.1 to go Excluding etalon: Strehl 0.9 (tolerances) Optical+optomechanical+thermal WFE: telescope+ISLiD+IMaX • A diffraction limited imager: 3.-IMaX Instrument Concept 0.1 0.2 0.3 M O 0.6 D U L 0.5 A T I O 0.4 N 0.7 0.8 0.9 1.0 T.B 17:58:51 4.0 8.0 POSITION 1 DIFFRACTION MTF 12.0 20.0 28.0 32.0 (.0083,.0083) DEG (0.000,.0083) DEG (-.008,.0083) DEG DIFFRACTION LIMIT (.0083,0.000) DEG 24.0 Y X Y X Y X Y X SPATIAL FREQUENCY (CYCLES/MM) 16.0 07-Mar-04 IMaX 13 Trans micro ns CCD modificado fr S≥0.8 WEIGHT 1 1 1 1 1 40.0 Y X 09/2004 36.0 DEFOCUSING -0.01000 WAVELENGTH 525.1 NM 525.1 NM 525.1 NM 525.0 NM 525.0 NM λ 4π Jenam Granada δ= 2π ℜ sin δ + n´h (1 − ℜ cos δ ) λ n´h cosθ ´ φ = arctan Reflectivity 0.9 (TBC) Anticorrelated ε pupils Strehl 0.9 achievable Phase error dominates All etalons show this Pupil intensities and phases Thickness maps ε (ACPO) • A diffraction limited imager: 3.-IMaX Instrument Concept 09/2004 Jenam Granada PS, controllers, actuators (2 DSP+ 1 FPGA)/camera Pentium 1GHz, 512 Mbytes 2 pressurised enclosures • Control electronics 5 frames/sec (frame transfer) H-IX-18-E Logic & Analog I/O H-IX-20-E PCI Main Controller Image Control & Acquisition Power Supply H-IX-23-E Fabry Perot Thermal Control H-IX-19-E Embedded CPU PCI Full well > 120 ke-/pixel (filling 70-80 %) 1024 by 1024 ; 13 µm Pixels; QE >90% Based on E2V (Marconi) CCD47-20 AIMO Custom designed by Photonics Science (UK) I/F Board H-IX-10-E H-IX-09-E H-IX-08-E H-IX-22-E H-IX-21-E H-IX-26-E H-IX-25-E H-IX-24-E H-IX-07-E H-IX-06-E H-IX-05-E H-IX-04-E H-IX-03-E H-IX-04-O H-IX-06-O H-IX-05-O H-IX-09-O • Detectors H-IX-03-O H-IX-07-O H-IX-08-O 3.-IMaX Instrument Concept H-IX-10-O Phase Diversity Mechanism ROCLIs H-IX-17-O H-IX-16-O H-IX-15-O H-IX-14-O H-IX-13-O H-IX-12-O H-IX-11-O Non Op Thermos 09/2004 HK sensors Fabry-Perot Etalon HV Power supply O.B. Electronics Box Proximity Electronics CCD Camera 2 CCD cam era 1 Jenam Granada 09/2004 IMaX needs thorough test and calibration before/after integration SUNRISE (wavelength, polarization, MTF…). Define AIV plan. AIV concept (INTA-Madrid, MPS-Lindau, HAO-Boulder) Power dissipation by radiators must prove feasible. No active focusing. Thermal environment must be under control. Thermal concept and power dissipation: OK? 87 Kg (heavy), 1/2 Terabyte, 264 Watts peak power Overall mass, data and power budgets Tough but doable. CDR by subsystems. Delivery for integration with telescope IP: end 2005 PDR end 2004 • Concept is closed ☺, PDR end 2004 4.-IMaX status & schedule Jenam Granada VIM~IMaX AO in 2006 Launch 10/2013 • Solar Orbiter F mission to the Sun (ESA CV-2020) 5.- The future ahead: VIM-Solar Orbiter 09/2004 Jenam Granada Solar Poles Inner Heliosphere Co-rotation (connectivity) High Resolution IMaX experience valid for VIM-SolO Science is still perfectly valid Descope RS instruments to half resolution Industrial Studies on-going SPC confirmed • Solar Orbiter status 5.- The future ahead: VIM-Solar Orbiter 09/2004 Jenam Granada END 09/2004
© Copyright 2026 Paperzz