Heat transfer in penumbral magnetic flux tubes Origin of dark-cored penumbral filaments Basilio Ruiz Cobo† & Luis R. Bellot Rubio‡ †Instituto Astrofísica de Canarias ‡Kiepenheuer Institut für Sonnenphysik Penumbral dark cores • • • • Scharmer et al (2002) Nature Penumbral grains Dark cores in bright filaments Sütterlin et al (2004) New Swedish 1m Solar Telecope 12/05/2005 Ruiz Cobo & Bellot Rubio Penumbral dark cores • • • • Scharmer et al (2002) Nature Penumbral grains Dark cores in bright filaments Sütterlin et al (2004) New Swedish 1m Solar Telecope 12/05/2005 Ruiz Cobo & Bellot Rubio 160 km Penumbral dark cores • • • • Scharmer et al (2002) Nature Penumbral grains Dark cores in bright filaments Sütterlin et al (2004) New Swedish 1m Solar Telecope 12/05/2005 Ruiz Cobo & Bellot Rubio The model: magnetic field • Cylindrical tube, radius R, in a stratified background atmosphere • Magnetohidrostatic eq. • Stationary diffusion eq. Bb γ b Bt γ t • Schlichenmaier et al (1998) simulation of emerging bright tubes with small and more horizonal magnetic field embedded in a stronger and more vertical one 12/05/2005 Ruiz Cobo & Bellot Rubio The stationary diffusion equation ∇[− k r ∇T − Λkc (∇T − (dT dz )ad )] = S Radiative flux Convective flux S = j2 σ Kopecký & Kuklin σ = σ long (1969) 2D: No dependence with Y direction (along the tube) Known: Pg(x,z)=Pg(x=0,z) Hydrostatic equilibrium B(x,z) + Horizontal balance total pressure Free: T(x,z) 12/05/2005 Ruiz Cobo & Bellot Rubio Straight tube Bb = 2000G γ b = 30º Bt = 500G γ t = 85º Rt = 80km δ = 2km σ = 0.1σ long 12/05/2005 Ruiz Cobo & Bellot Rubio Straight tube Bb = 2000G γ b = 30º Bt = 500G γ t = 85º Rt = 80km δ = 2km σ = 0.1σ long 12/05/2005 Ruiz Cobo & Bellot Rubio Straight tube Bb = 2000G γ b = 30º Bt = 500G γ t = 85º Rt = 80km δ = 2km σ = 0.1σ long 12/05/2005 Ruiz Cobo & Bellot Rubio Straight tube Bb = 2000G γ b = 30º Bt = 500G γ t = 85º Rt = 80km δ = 2km σ = 0.1σ long 12/05/2005 Ruiz Cobo & Bellot Rubio Straight tube Bb = 2000G γ b = 30º Bt = 500G γ t = 85º Rt = 80km δ = 2km σ = 0.1σ long 12/05/2005 Ruiz Cobo & Bellot Rubio Straight tube Bb = 2000G γ b = 30º Bt = 500G γ t = 85º Rt = 80km δ = 2km σ = 0.1σ long 12/05/2005 Ruiz Cobo & Bellot Rubio Straight tube Bb = 2000G γ b = 30º Bt = 500G γ t = 85º Rt = 80km δ = 2km σ = 0.1σ long 12/05/2005 Ruiz Cobo & Bellot Rubio Straight tube Bb = 2000G γ b = 30º Bt = 500G γ t = 85º Rt = 80km δ = 2km σ = 0.1σ long 12/05/2005 Ruiz Cobo & Bellot Rubio Straight tube Bb = 2000G γ b = 30º Bt = 500G γ t = 85º Rt = 80km δ = 2km σ = 0.1σ long 12/05/2005 Ruiz Cobo & Bellot Rubio Straight tube Bb = 2000G γ b = 30º Bt = 500G γ t = 85º Rt = 80km δ = 2km σ = 0.1σ long 12/05/2005 Ruiz Cobo & Bellot Rubio 12/05/2005 Ruiz Cobo & Bellot Rubio Evershed flow • Material flow (speed 6 km/s) flowing along our horizontal tubes. • Evershed flow produces flux of energy (from entropy eq) r r FE = ρ cVVE ⋅ [∇T − (dT dz )ad uz ] • This flux is introduced as a source in the diffusion equation ∇[− k r ∇T − Λkc (∇T − (dT dz )ad )] = j 2 σ + FE 12/05/2005 Ruiz Cobo & Bellot Rubio Evershed flow axis at –150 km axis at –50 km axis at 0 km axis at +75 km 12/05/2005 Ruiz Cobo & Bellot Rubio Evershed flow Bb = 2000 − 1400G γ b = 30º −60º Bt = 1000G γ t = 40º −90º Rt = 80km δ = 2km σ = 0.01σ long 12/05/2005 Ruiz Cobo & Bellot Rubio Evershed flow Bb = 2000G γ b = 30º Bt = 500G γ t = 40º −90º Rt = 15km δ = 2km σ = 0.1σ long 12/05/2005 Ruiz Cobo & Bellot Rubio Conclusions • Horizontal weak tubes block thermal flux • Dark-cored penumbral filaments: τ=1 cuts heated layers at the walls & shadow regions on the top of filaments • Evershed flow heats penumbral filaments, increasing brightness of dark cores. It also generates penumbral grains • Radius of around 80 km are required in order to explain observations with this model 12/05/2005 Ruiz Cobo & Bellot Rubio Muchas gracias
© Copyright 2025 Paperzz