Distance Determination to M31 Using Cepheids and Eclipsing Binaries: The Catalog Vilardell, F.a; Ribas, I.b; Jordi, C.a,b; Guinan, E.F.c; Giménez, Á.d,e aDepartament d’Astronomia i Meteorologia, Universitat de Barcelona, Spain bInstitut d’Estudis Espacials de Catalunya (CSIC), Spain cDepartment of Astronomy & Astrophysics, Villanova University, USA dResearch and Scientific Support Department, ESA, the Netherlands eLaboratorio de Astrofísica Espacial y Física Fundamental, Spain Index 1. Introduction 2. Our project 3. Data reduction 4. The Catalog 5. Distance determination targets 6. Preliminary results on Cepheids 7. Conclusions & future work 1 Introduction: The Cosmic Distance Ladder • The Cosmic Distance Ladder extends from our Solar System to the most distant galaxies B H0!! • This implies scales ranging from ~1011 m (AU) to ~1026 m (a few Gpc) B 15 orders of magnitude! • No single distance calibrator can cover such huge interval B The Cosmic Distance Ladder is built rung by rung Observable universe Distant galaxies Local Group/nearby galaxies 100 Mpc 1 Mpc Milky Way 10 kpc Nearby stars 100 pc Solar System 0.0001 pc Introduction: Local Group Galaxies • An accurate distance to Local Group galaxies is therefore a critical stepping stone for the entire distance scale • Once a Local Group galaxy's distance is known, all of its various stellar populations are available as potential “standard candles” Galaxy Type mv-Mv (mag) LMC Sm... 18.4 SMC Im 18.8 M31 Sb 24.3 IC1613 dG 24.4 M33 Sc 24.5 Sext A I... 26.1 NGC 300 Sd 26.1 DDO 216 dG 26.2 NGC 2403 Sc 27.6 6 magnitudes!! 2 Introduction: LMC vs M31 LMC: • Closest galaxy B Traditionally used for this purpose • Possible irregular geometry • Low metallicity (~50% solar) • Limited stellar population M31: • Simple geometry • Chemical composition similar to Milky Way • Large and diverse stellar population Image: http:/seds.lpl.arizona.edu/ messier/Jpg/m31.jpg Introduction: Distances to M31 Great number of distance determinations: Method Still large Differences (10-20%) Distance (kpc) Distance (m-M) References Cepheids 690±40 24.20±0.14 Baade & Swope (1963) Cepheids 710±30 24.26±0.08 Welch (1986) RR Lyrae 740±50 24.34±0.15 Pritchet & van den Berg (1987) Novae 710±70 24.27±0.20 Capaccioli et al. (1989) Cepheids 740±40 760±30 820±50 24.33±0.12 24.41±0.09 24.58±0.12 Freedman & Madore (1990) Carbon stars 745±10 24.36±0.03 Brewer et al. (1995) GC dynamical models 640±60 24.03±0.23 Ostriker & Gnedin (1997) RGB 780±30 24.47±0.07 Holland (1998) Cepheids 752±17 24.38±0.05 Freedmant et al. (2001) Cepheids 790±40 24.29±0.11 Joshi et al. (2003) 3 Introduction: Eclipsing Binaries Eclipsing binaries can be used as distance tracers because the components’ physical properties are determined to great accuracy… LMC example: The method HV 982 (V=14.6) Physical properties rA=RA/a rB=RB/a TeffB/TeffA LB/LA Orbital properties P i e ω Light curve: Radial velocity curve: Physical properties MAsin3i MBsin3i Orbital properties a sin i vγ (P,e,ω) Introduction: Eclipsing Binaries …and also the distance. The method R f⊕ = A d λ 2 2 RB λ λ FA + FB × 10 −0.4 E ( B −V )[ k ( λ −V ) + R (V )] RA LMC example: HV 982 (V=14.6) UV+optical+IR photometry UV/optical spectrophotometry FOS+STIS TeffA [m/H] Aλ RA/d 4 Index 1. Introduction 2. Our project 3. Data reduction 4. The Catalog 5. Distance determination targets 6. Preliminary results on Cepheids 7. Conclusions & future work Our Project: Observational system Main goal Determine accurate (direct) distances to M31 using Eclipsing Binaries • Precise photometric data: 2.5m Isaac Newton Telescope (La Palma, Spain) WFC: 6000×6000 pixels CCD mosaic (34’×34’) • Multi-object spectroscopy Image: www.ing.iac.es/ PR/int_sun.gif 8m Gemini Telescope (Hawaii) GMOS: multi-object spectrograph Image: www.brouhaha.net/ bytemarks/gemini.html • Temperatures/absorption determination GALEX: UV spectrophotometry/photometry IR/optical photometry Image: http://spaceflightnow.com/pegasus/galex/images/galexart.jpg Accurate distances using Cepheids too! 5 Our Project: and DIRECT Project to locate Eclipsing binaries and Cepheids Fields of study: M31 and M33 Instrumental characteristics: • Photometric data: two telescopes (1.2 and 1.3 meter) • Spectroscopic data: Keck II Achievements: • 89 eclipsing binaries • 332 Cepheids Our Project: Current Status Photometric data: • Five years campaign (1999-2003): 21 nights • 260 images in both B and V filters • Data reduction: done! Multi-object spectroscopy: • Target stars selected • 14 hours granted (queue mode, 2004B) 6 Index 1. Introduction 2. Our project 3. Data reduction 4. The Catalog 5. Distance determination targets 6. Preliminary results on Cepheids 7. Conclusions & future work Data reduction: DIA Difference Image Analysis technique (Wozniak, 2000) Template construction Image subtraction Differential fluxes M i = −2.5 × log( Ftemp + ∆Fi ) 7 Data reduction: DAOPHOT DAOPHOT: PSF photometry (Stetson, 1987) Instrumental magnitudes Standard stars (Landolt, 1992) Standard magnitudes Index 1. Introduction 2. Our project 3. Data reduction 4. The Catalog 5. Distance determination targets 6. Preliminary results on Cepheids 7. Conclusions & future work 8 The Catalog: Some Numbers • 236649 stellar objects identified • 37265 with σ<0.1 magnitudes • 2480 variable stars (~50% periodic) • 317 eclipsing binaries • 250 Cepheids The Catalog: Complete Sample Complete to V~22.3 & B~23.2 9 The Catalog: Complete Sample Error distribution of standard magnitudes σ ~ 0.02 mag σ ~ 0.03 mag The Catalog: Complete Sample DIRECT comparison <∆V> = 0.02 mag σV = 0.05 mag <∆B> = -0.02 mag σB = 0.05 mag Consistent with DIRECT magnitudes 10 The Catalog: Complete Sample Diverse stellar population The Catalog: Complete Sample Upper main sequence 11 The Catalog: Complete Sample Upper Red Giant Branch The Catalog: Complete Sample B – V < 0.1 mag GALEX image 12 The Catalog: Eclipsing binaries & Cepheids 317 Eclipsing binaries 250 Cepheids The Catalog: Eclipsing binaries & Cepheids 317 Eclipsing binaries 250 Cepheids 13 The Catalog: Eclipsing binaries & Cepheids P = 2.30482 d P = 6.72115 d P = 2.71215 d P = 8.45520 d Index 1. Introduction 2. Our project 3. Data reduction 4. The Catalog 5. Distance determination targets 6. Preliminary results on Cepheids 7. Conclusions & future work 14 Distance Determination Targets Generic constraints: • Precise relative radius B Deep eclipses, detached (eccentric) • Double lined spectra B Similar eclipse deepness • Accurate Teff determination B Late O/early B stars (V > 18.5 – 19) Specific constraints (Gemini + GMOS): • Radial velocity measures (±10 km/s) B S/N > 20 B 18.5 – 19.0 > V > 19.5 – 20.0 • Multiobject spectroscopy B maximum number of EB’s in 5’×5’ Distance Determination Target Stars 6 EB’s + 4 Cepheids P = 5.7526 d P = 3.5497 d 15 Index 1. Introduction 2. Our project 3. Data reduction 4. The Catalog 5. Distance determination targets 6. Preliminary results on Cepheids 7. Conclusions & future work Preliminary Results on Cepheids Bimodal frequency distribution • Two maxima: Ö ~5 days (log P ~ 0.7) Ö ~13 days (log P ~ 1.1) • Dip 8-10 days (log P ~ 0.9−1.0) • Reason not certainly known: Present study • Deficiency of F mode pulsators (Buchler et al., 1997) • Increases with the metallicity of the galaxy Antonello et al. (2002) 16 Preliminary Results on Cepheids Period – Luminosity relationship Fitted values (Sandage, 2004): V = (-2.70±0.09)×log(P) + a0 B = (-2.34±0.08)×log(P) + b0 a0 = 23.5 σV = 0.4 mag b0 = 24.1 σB = 0.5 mag µV ~ 25.0 mag µB ~ 25.3 mag E(B-V)~0.3 mag B AV~0.9 mag µ0 ~ 24.1 mag Index 1. Introduction 2. Our project 3. Data reduction 4. The Catalog 5. Distance determination targets 6. Preliminary results on Cepheids 7. Conclusions & future work 17 Conclusions • Accurate photometric data: 32000 stars • Light curves of 2480 variables have been obtained • Detected 317 eclipsing binaries + 250 Cepheids • Selection of eclipsing binaries for distance determination B GMOS Future work • Radial velocities determination • UV + IR photometry B Teff - Distance to M31 (direct) - First determinations of fundamental properties of stars in M31 (EB’s & Cepheids) • Test stellar evolution models 18
© Copyright 2025 Paperzz