Monte Carlo Radiative Transfer: Application to the Minkowski’s Footprint envelope Gilles Niccolini Javier Alcolea Valentin Bujarrabal [email protected] Observatorio Astronómico Nacional Granada - 14/09/2004 (Prosper/LATEX) – p.1 Summary • Introduction • Monte Carlo Radiative Transfer • The particular case of M1-92: a dust envelope model WARNING: work in progress • Conlusion & Perspectives Granada - 14/09/2004 (Prosper/LATEX) – p.2 Hertzprung-Russel diagram log (L?) Stars with 1 M M 8 M 95 % of the stars follow this evolutionary track (e.g. Lattanzio et al., 1997) frag replacements log (Teff ) Granada - 14/09/2004 (Prosper/LATEX) – p.3 Hertzprung-Russel diagram log (L?) post-AGB BD we start from something rather spherical . . . AGB HB frag replacements de Laverny, P., Mauron, N., Lopez, B. RGB MS WD log (Teff ) Granada - 14/09/2004 (Prosper/LATEX) – p.3 Hertzprung-Russel diagram log (L?) post-AGB BD and we end up with . . . AGB HB frag replacements RGB MS Sahai et al. ApJ, 1998 WD log (Teff ) Granada - 14/09/2004 (Prosper/LATEX) – p.3 Hertzprung-Russel diagram frag replacements log (L?) post-AGB BD • The reasons of this change are still undetermined. • We need to determine the structure of the nebula to constrain the models (interaction between 2 winds, magnetic field, binary star . . . ?). AGB HB RGB MS WD log (Teff ) Granada - 14/09/2004 (Prosper/LATEX) – p.3 Integral form of the RT equation ˆ Iλ (~r, n b) = Iλ (~r0 , n b) e−τλ (~r0 ,~n,s) + Zs 0 ˆ ˆ ηλ (~r0 +s0 n b, n b) e− τλ (~r0 ,~n,s)−τλ (~r0 ,~n,s ) ds0 + 0 τλ (~r0 , n b, s) = ηλ (~r, n b) = Zs 0 0 0 κext (~ r + s n b ) ds . 0 λ κabs r ) Bλ λ (~ T (~r) + ZZ 1 sca gλ (~r, n b0 , n b) Iλ (~r, n b 0 ) d2 n b0 . + κλ (~r) 4π Granada - 14/09/2004 (Prosper/LATEX) – p.4 Integral form of the RT equation ˆ Iλ (~r, n b) = Iλ (~r0 , n b) e−τλ (~r0 ,~n,s) + Zs 0 ˆ ˆ ηλ (~r0 +s0 n b, n b) e− τλ (~r0 ,~n,s)−τλ (~r0 ,~n,s ) ds0 + NO ! 0 τλ (~r0 , n b, s) = ηλ (~r, n b) = Zs 0 0 0 κext (~ r + s n b ) ds . 0 λ κabs r ) Bλ λ (~ T (~r) + ZZ 1 sca gλ (~r, n b0 , n b) Iλ (~r, n b 0 ) d2 n b0 . + κλ (~r) 4π Granada - 14/09/2004 (Prosper/LATEX) – p.4 Radiative transfer b) [W m−2 µm−1 str−1] ? Iλ(~r, n n b b) = source Iλ(~r0, n ~r O PSfrag replacements ~r0 considered volume sca [cm−1] κabs , κ λ λ Granada - 14/09/2004 (Prosper/LATEX) – p.5 Radiative transfer code Description • Based on the work of Lopez, B., Mékarnia, D., Lefèvre, J., 296, 752, A&A(1995) • Geometry (2D) (axi-symmetry) • Temperature independent opacities (κabs , κsca ) λ λ • Coupling with dust formation (Berlin: P. Woitke) • Parallel version (OpenMP) • . . . see Niccolini, G., Woitke, P., Lopez, B., A&A, 703, 716, 2003 Granada - 14/09/2004 (Prosper/LATEX) – p.6 Monte Carlo radiative transfer τλ • We only consider the most probable trajectories. • The probability for a photon to cross an optical depth τλ is proportional to e−τλ . • The probability to be scattered in a particular direction n b is proportional to gλ (~r, n b0 , n b), • etc. . . . PSfrag replacements star envelope Granada - 14/09/2004 (Prosper/LATEX) – p.7 M1-92: ID Quantities Units Values Teff L∗ d R? α∗ Mdisc Mshell K L kpc m rad M M 2 × 104 104 2.5 5.8 × 109 7.5 × 10−11 0.2 0.7 structure of the nebulae determined from CO spectral data. (Bujarrabal & Alcolea, ApJ, 1998), IRAM Plateau de Bure Granada - 14/09/2004 (Prosper/LATEX) – p.8 M1-92: the model • our goal: to determine the structure of the nebular environment. • our tool: the Monte Carlo Radiative transfer code • our constraints: HST image (0.55 µm) and photometry. • dust grain opacities: Mie Theory. • optical properties of silicate from Suh, K.-W., MNRAS, 304, 389, 1999. • size distribution function ∝ aβ . • this distribution does not depend on location (though it is possible). • The mass is given by the CO data. • We “played” around to finally end up with the density law on the left . . . density law (best model to date) Granada - 14/09/2004 (Prosper/LATEX) – p.9 M1-92: The fits HST image Model Bujarrabal et al., A&A, 331, 361, 1998 Granada - 14/09/2004 (Prosper/LATEX) – p.10 M1-92: The fits scattering dark lane PSfrag replacements Granada - 14/09/2004 (Prosper/LATEX) – p.10 M1-92: The (preliminary) results • The mass determined by the CO data is compatible with the dust model (gas to dust ratio of 100). • The disc is flared, which could not be told by the CO observations (disc not resolved). This could be tested with the MIDI VLTI instrument or ALMA. • A single size for dust grains cannot reproduced the observations. ◦ on one hand we need small grains to get “isotropic scattering”. ◦ on another hand the 20 µm emission implies large grains • the best model size distribution ranges from 0.01 µm up to 3 µm with f (a) ∝ a−4 . Granada - 14/09/2004 (Prosper/LATEX) – p.11 Conclusion & Perspectives Conclusions • We tested the validity of the density structure determine from CO data. • We determined a possible geometry for the disc. • We determined dust grain parameters. Perspectives • Looking at other wavelengths (2.2 µm, 800 µm, mm . . . ) • unfortunately, the best model for the SED and the image do not coincide ! • Radiative Transfer: we are developping a 3D code which is being tested (1D benchmarks from Ivezic et al., MNRAS, 291, 121, 1997), based on the Monte Carlo method and using an adaptative grid. Granada - 14/09/2004 (Prosper/LATEX) – p.12 Conclusion & Perspectives 3 stars and a few photons . . . Granada - 14/09/2004 (Prosper/LATEX) – p.12
© Copyright 2025 Paperzz