10678245-c-3-3.pdf

477
Polymers
3.3. Polymers
The tables and figures include the physical and physicochemical properties of the most important polymers,
copolymers, and polymer blends. “Most important” here
means that these materials are widely used for scientific applications and in industry. The values in the
3.3.1 Structural Units of Polymers ................ 480
3.3.2 Abbreviations..................................... 482
3.3.3 Tables and Figures..............................
3.3.3.1 Polyolefines............................
3.3.3.2 Vinyl Polymers ........................
3.3.3.3 Fluoropolymers .......................
3.3.3.4 Polyacrylics and Polyacetals......
3.3.3.5 Polyamides ............................
3.3.3.6 Polyesters...............................
3.3.3.7 Polysulfones and Polysulfides ...
3.3.3.8 Polyimides
and Polyether Ketones .............
3.3.3.9 Cellulose ................................
3.3.3.10 Polyurethanes ........................
3.3.3.11 Thermosets.............................
3.3.3.12 Polymer Blends .......................
483
483
489
492
497
501
503
506
508
509
511
512
515
References .................................................. 522
shear rate, and creep modulus versus time. However, other physical properties are also included.
Additionally, the most relevant applications of the
materials are given.
main tables are given for room temperature, that is,
≈25 ◦ C; otherwise, the temperature is given in parentheses. The tables and figures include the following physical
properties:
Melting temperature Tm : heating rate 10 K/min (ISO 11357).
Enthalpy of fusion ∆Hu : the amount of enthalpy (given per monomer unit of the polymer) needed for the transition of
the polymer from the solid state to the molten state.
Entropy of fusion ∆Su : amount of entropy (given per monomer unit of the polymer) which is needed for the transition
of a polymer from the solid state to the molten state.
Heat capacity cp = (∂H/∂T ) p ≈ ∆H/∆T ; ∆H = quantity of heat per mass unit, ∆T = temperature increase.
Enthalpy of combustion ∆Hc : amount of enthalpy released in flaming combustion per unit mass of the polymer.
Glass transition temperature Tg : heating rate 10 K/min (ISO 11357).
Vicat softening temperature : TV 10/50, force 10 N, heating rate 50 K/h; TV 50/50, force 50 N,
heating rate 50 K/h (ISO 306).
Part 3 3
The physical properties of polymers depend not
only on the kind of material but also on the
molar mass, the molar-mass distribution, the
kind of branching, the degree of branching,
the crystallinity (amorphous or crystalline), the
tacticity, the end groups, any superstructure,
and any other kind of molecular architecture. In
the case of copolymers, the physical properties
are additionally influenced by the type of
arrangement of the monomers (statistical,
random, alternating, periodic, block, or graft).
Furthermore, the properties of polymers are
influenced if they are mixed with other polymers
(polymer blends), with fibers (glass fibers,
carbon fibers, or metal fibers), or with other
fillers (cellulose, inorganic materials, or organic
materials).
The tables and figures include the physical
and physicochemical properties of those polymers,
copolymers, and polymer blends which are widely
used for scientific applications and in industry.
The figures include mainly the following physical
properties: stress versus strain, viscosity versus
478
Part 3
Classes of Materials
Part 3 3
Thermal conductivity λ: dq/ dt = Aλ dT/ dx; dq/ dt = heat flux, A = area, dT/ dx = temperature gradient.
Density = m/V (ISO 1183).
Coefficient of expansion α = (1/V0 )(∂V/∂T ) p : T = 23–55 ◦ C (ISO 11359).
Compressibility κ = −(1/V)(∂V/∂ p)T .
Elastic modulus E = σ/ε (σ = stress, ε = strain (elongation)); elongation rate 1 mm/min (ISO 527).
Shear modulus G = τ/γ (τ = shear stress, γ = shear angle).
Poisson’s ratio µ = 0.5[1 − (E/σ)(∆V/V)]; ∆V/V = relative volume change.
Stress at yield σy , strain (elongation) at yield εy : see Fig. 3.3-1; elongation rate 50 mm/min (ISO 527).
Stress at 50% strain (elongation) σ50 : see Fig. 3.3-1; elongation rate 50 mm/min (ISO 527).
Stress at fracture σb , strain (elongation) at fracture εb : see Fig. 3.3-1; elongation rate 5 mm/min (ISO 527).
Impact strength, and notched impact strength (Charpy) (ISO 179).
Sound velocity vs , longitudinal (long) and transverse (trans).
Shore hardness A, D (ISO 868).
Volume resistivity ρe , surface resistivity σe : contact electrodes, voltage 500 V (DIN 0303 T30, ISO 93, IEC 60093).
Electric strength E B : specimen of thickness 1.0 ± 0.1 mm (ISO 10350, IEC 60243).
Relative permittivity εr , dielectric loss (dissipation factor) tan δ (IEC 60250).
Refractive index n D , temperature coefficient of refractive index dn D / dT .
Steam permeation: 20–25 ◦ C, 85% relative humidity gradient (DIN 53122, ISO 15106).
Gas permeation: 20–25 ◦ C, reduced to 23 ◦ C, 1 bar (ISO 2556, DIN 53380, ISO 15105).
Melt-viscosity–molar-mass relation.
Viscosity–molar-mass relation: [η] = K M a means [η]/[η0 ] = K(M/M0 )a , where [η0 ] = 1 cm3 /g, M0 = 1 g/mol,
and [η] = intrinsic viscosity number at concentration C = 0 g/cm3 [3.1] (DIN 53726, DIN 53727).
Stress σ(ε, T ); ε = strain (elongation), T = temperature (ISO 527).
Viscosity η( dγ/ dt, T ); dγ/ dt = shear rate, T = temperature (ISO 11443).
Creep modulus E tc (t, p, T ); t = time, p = pressure, T = temperature; E tc = σtc /ε(t) (σtc = creep stress,
ε(t) = creep strain (creep elongation)); strain ≤ 0.5% (ISO 899).
For selected polymers, the temperature dependence
of some physical properties is given. Additionally, the
most relevant applications of the materials are given.
The tables and figures include the physical properties
given in the table below (see [3.1–3]).
As the physical and physicochemical properties of
each polymer vary with its molecular architecture, the
tables show the ranges of the physical and physicochemical properties, whereas the diagrams show the
functional relationships for a typical species of the polymer, copolymer, or polymer blend. The table on page
479 shows the selected 77 polymers, copolymers and
polymer blends.
Stress σ
σb
σy
σ50
εb
εy
50% Strain ε
Fig. 3.3-1 Stress σ as a function of the strain ε for different
kinds of polymers (see page 478)
Polymers
Part 3 3
3.3.3.1 Polyolefines
Polyolefines I
Polyethylene: high density HDPE, medium density MDPE, low density LDPE, linear low density LLDPE, ultra high
molecular weight UHMWPE
Polyolefines II
Poly(ethylene-co-vinylacetate) EVA, Polyethylene ionomer EIM, Cycloolefine copolymer COC [Poly(ethylene-conorbornene)], Poly(ethylene-co-acrylic acid) EAA
Polyolefines III
Polypropylene PP, Polybutene-1 PB, Polyisobutylene PIB, Poly(4-methylpentene-1) PMP
3.3.3.2 Vinylpolymers
Vinylpolymers I
Polystyrene PS, Poly(styrene-co-butadiene) SB, Poly(styrene-co-acrylonitrile) SAN
Vinylpolymers II
Poly(vinyl carbazole) PVK, Poly(acrylonitrile-co-butadiene-co-styrene) ABS,
Poly(acrylonitrile-co-styrene-co-acrylester) ASA
Vinylpolymers III
Poly(vinyl chloride): unplastisized PVC-U, plastisized (75/25) PVC-P1, plastisized (60/40) PVC-P2
3.3.3.3 Fluoropolymers
Polytetrafluoroethylene PTFE, Polychlorotrifluoroethylene PCTFE, Poly(tetrafluoroethylene-co-hexafluoropro- pylene)
FEP, Poly(ethylene-co-tetrafluoroethylene) ETFE, Poly(ethylene-co-chlorotrifluoroethylene), ECTFE
3.3.3.4 Polyacrylics, Polyacetals
Poly(methyl methacrylate) PMMA; Poly(oxymethylene) POM-H, Poly(oxymethylene-co-ethylene) POM-R
3.3.3.5 Polyamides
Polyamide 6 PA6, Polyamide 66 PA66, Polyamide 11 PA11, Polyamide 12 PA12, Polyamide 610 PA610
3.3.3.6 Polyesters
Polycarbonate PC, Poly(ethylene terephthalate) PET, Poly(butylene terephthalate) PBT, Poly(phenylene ether) PPE
3.3.3.7 Polysulfones, Polysulfides
Polysulfon PSU, Poly(phenylene sulfide) PPS, Poly(ether sulfone) PES
3.3.3.8 Polyimides, Polyether ketones
Poly(amide imide), PAI; Poly(ether imide), PEI; Polyimide, PI; Poly(ether ether ketone), PEEK
3.3.3.9 Cellulose
Cellulose acetate CA, Cellulose propionate CP, Cellulose acetobutyrate CAB, Ethyl cellulose EC, Vulcanized fiber VF
3.3.3.10 Polyurethanes
Polyurethane PUR, Thermoplastic polyurethane elastomer TPU
3.3.3.11 Thermosets
Thermosets I
Phenol formaldehyde PF, Urea formaldehyde UF, Melamine formaldehyde MF
Thermosets II
Unsaturated polyester UP, Diallylphthalat DAP, Silicone resin SI, Epoxy resin EP
3.3.3.12 Polymer Blends
Polymer Blends I
Polypropylene + Ethylene/propylene/diene-rubber PP + EPDM, Poly(acrylonitrile-co-butadiene-co-styrene) +
Polycarbonate ABS + PC, Poly(acrylonitrile-co-butadiene-co-styrene) + Polyamide ABS + PA, Poly(acrylonitrileco-butadiene-co-acrylester) + Polycarbonate ASA + PC
479
480
Part 3
Classes of Materials
Polymer Blends II
Poly(vinyl chloride) + Poly(vinylchloride-co-acrylate) PVC + VC/A, Poly(vinyl chloride) + chlorinated Polyethylene
PVC + PE-C, Poly(vinyl chloride) + Poly(acrylonitrile-co-butadiene-co-acrylester) PVC + ASA
Polymer Blends III
Polycarbonate + Poly(ethylene terephthalate) PC + PET, Polycarbonate + Liquid crystall polymer PC + LCP, Polycarbonate + Poly(butylene terephthalate) PC + PBT, Poly(ethylene terephthalate) + Polystyrene PET + PS, Poly(butylene
terephthalate) + Polystyrene PBT + PS
Polymer Blends IV
Poly(butylene terephthalate) + Poly(acrylonitrile-co-butadiene-co-acrylester) PBT + ASA, Polysulfon +
Poly(acrylonitrile-co-butadiene-co-styrene) PSU + ABS, Poly(phenylene ether) + Poly(styrene-co-butadiene)
PPE + SB, Poly(phenylene ether) + Polyamide 66 PPE + PA66, Poly(phenylene ether) + Polystyrene PPE + PS
Part 3 3.1
3.3.1 Structural Units of Polymers
The polymers given in this chapter are divided into polyolefines, vinyl polymers, fluoropolymers, polyacrylics,
polyacetals, polyamides, polyesters, polysulfones, polysulfides, polyimides, polyether ketones, cellulose,
polyurethanes, and thermosets. The structural units of
the polymers are as follows:
Poly(acrylonitrile), PAN:
CH2 CH
CN
Poly(vinyl acetate), PVAC:
CH2 CH
O
CO
CH3
Polyolefines
Polyethylene, PE:
Poly(vinyl chloride), PVC:
CH2 CH
Cl
CH2 CH2
Polypropylene, PP:
CH2 CH
CH3
Poly(butene-1), PB:
CH2 CH
CH2
CH3
Poly(isobutylene), PIB:
Poly(4-methylpentene-1), PMP:
CH3
CH2 C
CH3
CH2 CH
CH2
H3C CH
CH3
Poly(vinyl carbazole), PVK:
Fluoropolymers
Poly(tetrafluoroethylene), PTFE:
Poly(1,4-butadiene), BR:
Vinyl Polymers
Polystyrene, PS:
Poly(hexafluoropropylene):
Poly(acrylic acid), PAA:
Poly(oxymethylene), POM:
Polyamides
Polyamide 6, PA6:
CFCl CF2
CF2 CF
CF3
Polyacrylics and Polyacetals
Poly(methyl methacrylate), PMMA:
CH2 CH CH CH2
CH2 CH
CF2 CF2
Poly(chlorotrifluoroethylene), PCTFE:
Polynorbornene:
CH CH
CH2 CH
N
CH3
CH2 C
COOCH3
H
CH2 C
COOCH2 O
CO (CH2)5 NH
Polymers
Polyamide 66, PA66:
Polyamide 11, PA11:
CO (CH2)10 NH
Polyamide 12, PA12:
CO (CH2)11 NH
O
C
N
C
O
NH (CH2)6 NH CO (CH2)8 CO
Polyimide, PI:
Polyamide 612, PA612:
CH3
C
CH3
O
Polyamide 610, PA610:
NH (CH2)6 NH CO (CH2)10 CO
O
O
C
N
C
O
O
C
N
C
O
O
OR
ROH2C
Poly(butylene terephthalate), PBT:
C O CH2 4O
O
CH3
Poly(phenylene ether), PPE:
O
O
Cellulose acetate, CA:
R = −COCH3
Cellulose propionate, CP:
R = −COCH2 CH3
Cellulose acetobutyrate, CAB: R = −COCH3 and
O
CH3
Polysulfones and Polysulfides
Polysulfone, PSU:
CH3
C
CH3
O
OR
C O CH2 CH2 O
O
C
O
O
Cellulose
Poly(ethylene terephthalate), PET:
C
O
C
O
O C
O
Part 3 3.1
CH3
C
CH3
O
O
O
S
O
Poly(phenylene sulfide), PPS:
Poly(ether sulfone), PES:
Ethyl cellulose, EC:
O H
H O
C N R N C
R = −CH2 CH3
Polyurethanes
Polyurethane, PUR, TPU:
O
S
O
S
O
R = −COCH2 CH2 CH3
CO NH (CH2)6 NH CO O (CH2)4 O
Thermosets
Phenol formaldehyde, PF:
OH
OH
CH2
O
Urea formaldehyde, UF:
CH2 N
C O
N CH2
Melamine formaldehyde, MF:
H2C N CH2
C
N
N
N C
C N
N
Polyimides and Polyether Ketones
Poly(amide imide), PAI:
C
O
O
C
N
C
O
Poly(ether ether ketone), PEEK:
Polyesters
Polycarbonate, PC:
N
481
Poly(ether imide), PEI:
NH (CH2)6 NH CO (CH2)4 CO
O
C
3.1 Structural Units of Polymers
O
C
N R
C
O
482
Part 3
Classes of Materials
3.3.2 Abbreviations
The following abbreviations are used in this chapter. The
abbreviations are in accordance with international rules.
THF
trans
tetrahydrofuran
transverse
am
amorphous
C
chlorinated
DSC
differential scanning calorimetry
co
copolymer
DTA
differential thermal analysis
cr
crystalline
Part 3 3.2
DOP
dioctyl phthalate
HI
high impact (modifier)
iso
isotactic
long
longitudinal
LCP
liquid crystal polymer
mu
monomer unit
pcr
partially crystalline
syn
syndiotactic
str
strained
Abbreviated notations for polymer names
ABS
Poly(acrylonitrile-co-butadiene-co-styrene)
ASA
Poly(acrylonitrile-co-styrene-co-acrylester)
CA
Cellulose acetate
CAB
Cellulose acetobutyrate
COC
Cycloolefine copolymer
CP
Cellulosepropionate
DAP
Diallylphthalat
EAA
Poly(ethylene-co-acrylic acid)
EC
Ethylcellulose
ECTFE Poly(ethylene-co-chlorotrifluoroethylene)
EPDM Ethylene/propylene/diene-rubber
EIM
Polyethylene ionomer
EP
Epoxide; epoxy
ETFE Poly(ethylene-co-tetrafluoroethylene)
EVA
Poly(ethylene-co-vinylacetate)
FEP
Poly(tetrafluoroethylene-co-hexafluoropropylene)
HDPE High density polyethylene
LDPE Low density polyethylene
LLDPE Linear low density polyethylene
MDPE Medium density polyethylene
MF
Melamine formaldehyde
CFa
carbon fiber content = a mass%, e.g.
PS-CF20 means polystyrene with 20%
carbon fiber
GBa
content of glass beads, spheres, or
balls = a mass%, e.g. PS-GB20 means
polystyrene with 20% glass beads
GFa
glass fiber content = a mass%, e.g. PS-GF20
means polystyrene with 20% glass fiber
MeFa
metal fiber content = a mass%
PEI
PES
PET
PF
PI
PIB
PMMA
PMP
POM
PP
PPE
PPS
PTFE
PVC-P
PVC-U
PVK
PS
PSU
PUR
SAN
SB
Poly(ether imide)
Poly(ether sulfone)
Poly(ethylene terephthalate)
Phenol formaldehyde
Polyimide
Poly(isobutylene)
Poly(methyl methacrylate)
Poly(4-methylpenten-1)
Poly(oxymethylene)
Polypropylene
Poly(phenylene ether)
Poly(phenylene sulfide)
Poly(tetrafluoro ethylene)
Poly(vinyl chloride), plastisized with DOP
Poly(vinyl chloride), unplastisized
Poly(vinyl carbazole)
Polystyrene
Polysulfone
Polyurethane
Poly(styrene-co-acrylonitrile)
Poly(styrene-co-butadiene)
Polymers
PA
PAI
PB
PBT
PC
PCTFE
PE
PEEK
Polyamide
Poly(amide imide)
Polybutene-1
Poly(butylene terephthalate)
Polycarbonate
Poly(trifluorochloroethylene)
Polyethylene
Poly(ether ether ketone)
SI
TPU
UF
UHMWPE
UP
VC/A
VF
3.3 Tables and Figures
483
Silicone resin
Thermoplastic polyurethane elastomer
Urea formaldehyde
Ultra high molecular weight polyethylene
Unsaturated polyester
Poly(vinyl chloride-co-acrylate)
Vulcanized fiber
Part 3 3.3
3.3.3 Tables and Figures
The following tables and diagrams contain physical
and physicochemical properties of common polymers,
copolymers, and polymer blends. The materials are arranged according to increasing number of functional
groups, i. e. polyolefines, vinyl polymers, fluoropolymers, polyacrylics, polyacetals, polyamides, polyesters,
and polymers with special functional groups [3.2–16].
Stress σ (MPa)
30
3.3.3.1 Polyolefines
Polyethylene, HDPE, MDPE. Applications: injection
molding for domestic parts and industrial parts; blow
molding for containers and sports goods; extrusion
for pressure pipes, pipes, electrical insulating material,
bags, envelopes, and tissue.
Viscosity η (Pa s)
B = fracture (break) point
23 ˚C
40 ˚C
60 ˚C
B
200 ˚C
240 ˚C
280 ˚C
103
20
B
B
10
0
102
0
2
4
6
8
10
12
Strain ε (%)
Fig. 3.3-2 Polyethylene, HDPE: stress versus strain
100
101
102
103
104
Shear rate dγ/dt (s –1)
Fig. 3.3-3 Polyethylene, HDPE: viscosity versus shear rate
484
Part 3
Classes of Materials
Table 3.3-1 Polyethylene: high-density, HDPE; medium-density, MDPE; low-density, LDPE; linear low-density, LLDPE;
ultrahigh-molecular-weight, UHMWPE
Melting temperature Tm
(◦ C)
HDPE
MDPE
LDPE
LLDPE
UHMWPE
126–135
120– 125
105–118
126
130– 135
Enthalpy of fusion ∆Hu (kJ/mol) (mu)
3.9–4.1
3.9–4.1
Entropy of fusion ∆Su (J/(K mol)) (mu)
9.6–9.9
9.6–9.9
Heat capacity c p (kJ/(kg K))
Temperature coefficient dc p / dT (kJ/(kg K2 ))
2.1–2.7
2.1–2.5
Enthalpy of combustion ∆Hc (kJ/g)
−46.4
−46.5
Glass transition temperature Tg (◦ C)
−110
−110
Vicat softening temperature TV 50/50
(◦ C)
1.7–1.8
−46.5
−110
−110
Part 3 3.3
60–80
45–60
Thermal conductivity λ (W/(m K))
0.38–0.51
0.32–0.40
Density (g/cm3 )
0.94–0.96
0.925– 0.935
0.915–0.92
≈ 0.935
0.93– 0.94
Coefficient of thermal expansion
α (10−5 /K) (linear) (296 –328 K)
14–18
18– 23
23–25
18– 20
15 –20
0.3–0.7
0.7–0.8
Compressibility κ (10−4 /MPa) (cubic)
74
0.41
2.2
Elastic modulus E (GPa)
0.6–1.4
0.4–0.8
0.2–0.4
Shear modulus G (GPa)
0.85
0.66
0.16–0.25
18–30
11– 18
8 –10
20– 30
≈ 22
Strain at yield εy (%)
8–12
10– 15
≈ 20
≈ 15
≈ 15
Stress at fracture σb (MPa)
18–35
8 –23
Strain at fracture εb (%)
100–1000
300–1000
62
Poisson’s ratio µ
Stress at yield σy (MPa)
Stress at 50% strain σ50 (MPa)
Impact strength (Charpy) (kJ/m2 )
13–25
Notched impact strength (Charpy) (kJ/m2 )
3 –5
Sound velocity vs (m/s) (longitudinal)
2430
Sound velocity vs (m/s) (transverse)
950
Shore hardness D
58–63
45– 60
45–51
38– 60
Volume resistivity ρe (Ω m) > 1015
> 1015
> 1015
> 1015
> 1015
Surface resistivity σe (Ω)
> 1014
> 1014
> 1014
> 1014
> 1014
Electric strength E B (kV/mm)
30–40
30– 40
30–40
30– 40
30 –40
Relative permittivity εr (100 Hz)
2.4
2.3
2.3
2.3
2–2.4
Dielectric loss tan δ (10−4 ) (100 Hz)
1–2
2
2 –2.4
2
2
Refractive index n D (589 nm)
Temperature coefficient dn D / dT (10−4 /K)
1.53
1.51–1.42
Steam permeation (g/(m2 d))
0.9 (40 µm)
1 (100 µm)
700 (N2 )
1800 (O2 )
10 000 (CO2 )
1100 (air)
700 (N2 )
2000 (O2 )
10 000 (CO2 )
1100 (air)
Gas permeation
23 ◦ C, 100 µm
(cm3 /(m2
d bar)),
2400
1150
Melt viscosity–molar-mass relation
Viscosity–molar-mass relation
[η] = 62 × 10−3 M 0.70 (decalin, 135 ◦ C)
[η] = 51 × 10−3 M 0.725 (tetralin, 130 ◦ C)
Polymers
3.3 Tables and Figures
485
Table 3.3-2 Polyethylene, HDPE: heat capacity, thermal conductivity, and coefficient of thermal expansion
Temperature T (◦ C)
−200
Heat capacity c p (kJ/(kg K))
−150
0.55
Thermal conductivity λ (W/(m K))
Coefficient of thermal expansion
4.5
−100
−50
0.84
1.10
0.62
0.56
6.8
9.5
0
1.34
1.64
0.50
0.44
20
50
100
2.05
0.38
12.4
16.9
150
2.86
0.32
33.0
0.25
69.0
α (10−5 /K) (linear)
Table 3.3-3 Polyethylene, LDPE: heat capacity and thermal conductivity
Temperature T (◦ C)
−200
Heat capacity c p (kJ/(kg K))
−150
0.55
−50
0
20
50
1.10
1.43
1.90
2.73
0.36
0.38
0.38
0.35
0.31
Creep modulus Etc (MPa)
100
0.24
150
0.25
Shear modulus G (MPa)
0.5 MPa
1.0 MPa
1.5 MPa
2.0 MPa
2.5 MPa
3.0 MPa
4.0 MPa
5.0 MPa
800
600
10 3
10 2
400
200
10 0
10 1
10 2
10 3
10 4
Time t (h)
Fig. 3.3-4 Polyethylene, HDPE: creep modulus versus
time, at 23 ◦ C
30
– 50
0
50
100
150
Temperature T (˚C)
Fig. 3.3-5 Polyethylene, HDPE: shear modulus versus
temperature
Viscosity η (Pa s)
10 4
Stress σ (MPa)
– 40 ˚C
– 20 ˚C
0 ˚C
23 ˚C
40 ˚C
20
10 1
–100
150 ˚C
210 ˚C
270 ˚C
10 3
10 2
10
10 1
0
0
1
2
3
4
Strain ε (%)
Fig. 3.3-6 Polyethylene, LDPE: stress versus strain
10 0 –1
10
10 0
10 1
10 2
10 3
10 4
10 5
Shear rate dγ /dt (s–1)
Fig. 3.3-7 Polyethylene, LDPE: viscosity versus shear rate
Part 3 3.3
Thermal conductivity λ (W/(m K))
−100
0.84
486
Part 3
Classes of Materials
Creep stress σ tc (MPa)
6
Creep modulus Etc (MPa)
300
0.6 MPa
1.2 MPa
1.8 MPa
2.4 MPa
3.0 MPa
3.6 MPa
4.8 MPa
6.0 MPa
5
250
4
200
3
2
10 h, 23 ˚C
100 h, 23 ˚C
1 000 h, 23 ˚C
10 000 h, 23 ˚C
100 000 h, 23 ˚C
1
Part 3 3.3
0
0
1
2
3
4
5
6
Creep strain ε (%)
150
100 1
10
10 2
10 3
10 4
10 5
Time t (h)
Fig. 3.3-8 Polyethylene, UHMWPE: isochronous stress
Fig. 3.3-9 Polyethylene, UHMWPE: creep modulus ver-
versus strain
sus time
Polyethylene, LDPE. Applications: all kinds of
sheeting, bags, insulating material, hollow bodies, bottles, injection-molded parts.
Polyethylene, LLDPE. Applications: foils, bags,
waste bags, injection-molded parts, rotatory-molded
parts.
Polyethylene UHMWPE, Applications: mechanical
engineering parts, food wrapping, commercial packaging, textile industry parts, electrical engineering parts,
paper industry parts, low temperature materials, medical
parts, chemical engineering parts, electroplating.
Poly(ethylene-co-vinyl acetate), EVA. Applications:
films, deep-freeze packaging, laminates, fancy leather,
food packaging, closures, ice trays, bags, gloves, fittings,
pads, gaskets, plugs, toys.
Polyethylene ionomer, EIM. Applications: transparent tubes for water and liquid foods, transparent films,
bottles, transparent coatings, adhesion promoters.
Cycloolefine copolymer, COC. Applications: precision optics, optical storage media, lenses, medical and
labware applications.
Poly(ethylene-co-acrylic acid), EAA. Applications:
packaging foils, sealing layers, tubing.
Polypropylene, PP. Applications: injection molding for domestic parts, car parts, electric appliances,
packing materials, and pharmaceutical parts; blow
Table 3.3-4 Poly(ethylene-co-vinyl acetate), EVA; polyethylene ionomer, EIM; cycloolefine copolymer, COC (poly-
(ethylene-co-norbornene)); poly(ethylene-co-acrylic acid), EAA
Melting temperature Tm
(◦ C)
EVA
EIM
90–110
95 –110
COC
EAA
92– 103
Enthalpy of fusion ∆Hu (kJ/mol) (mu)
Entropy of fusion ∆Su (J/(K mol)) (mu)
Heat capacity c p (kJ/(kg K))
2.2
Temperature coefficient dc p / dT (kJ/(kg K2 ))
Enthalpy of combustion ∆Hc (kJ/g)
Glass transition temperature Tg (◦ C)
Vicat softening temperature TV 50/50
66
(◦ C)
80– 180
63–96 VST/A50
Thermal conductivity λ (W/(m K))
0.28–0.35
0.24
0.16
Density 0.93–0.94
0.94 –0.95
1.02
0.925–0.935
≈ 25
10 –15
6–7
≈ 20
(g/cm3 )
Coefficient of thermal expansion α (10−5 /K) (linear)
Polymers
3.3 Tables and Figures
487
Table 3.3-4 Poly(ethylene-co-vinyl acetate), EVA; polyethylene ionomer, EIM; . . . , cont.
EVA
EIM
COC
EAA
Elastic modulus E (GPa)
0.03–0.1
0.15– 0.2
2.6–3.2
0.04–0.13
Shear modulus G (GPa)
0.04–0.14
7–8
66
4–7
> 20
3.5–10
> 20
Compressibility κ
(10−4 /MPa)
(cubic)
Poisson’s ratio µ
Stress at yield σy (MPa)
5 –8
Strain at yield εy (%)
4 –9
Stress at fracture σb (MPa)
16–23
21 –35
66
Strain at fracture εb (%)
700
250– 500
3–10
Impact strength (Charpy) (kJ/m2 )
13– 20
Notched impact strength (Charpy) (kJ/m2 )
1.7–2.6
Part 3 3.3
Stress at 50% strain σ50 (MPa)
Sound velocity vs (m/s) (longitudinal)
Sound velocity vs (m/s) (transverse)
Shore hardness D
34–44
Volume resistivity ρe (Ω m)
> 1014
> 1015
> 1013
> 1014
Surface resistivity σe (Ω)
> 1013
> 1013
1014
> 1013
Electric strength E B (kV/mm)
30–35
40
Relative permittivity εr (100 Hz)
2.5–3
≈ 2.4
2.35
2.5–3
20–40
30–130
Dielectric loss tan δ
(10−4 )
30–40
≈ 30
0.2
Refractive index n D (589 nm)
Temperature coefficient dn D / dT (10−4 /K)
1.51
1.53
Steam permeation (g/(m2 d)) (25 µm)
25
1–1.8
Gas permeation
(cm3 /(m2
(100 Hz)
d bar)) (25 µm)
9300 (O2 )
Melt viscosity–molar-mass relation
Viscosity–molar-mass relation
6
Viscosity η (Pa s)
Stress σ (MPa)
170 ˚C
200 ˚C
230 ˚C
5
10 3
4
3
2
10 2
1
23 ˚C
0
0
10
20
30
40
50
Strain ε (%)
Fig. 3.3-10 Poly(ethylene-co-vinylacetate), EVA: stress
versus strain
10 2
10 3
10 4
Shear rate dγ /dt (s–1)
Fig. 3.3-11 Poly(ethylene-co-vinylacetate), EVA: viscosity
versus shear rate
488
Part 3
Classes of Materials
Table 3.3-5 Polypropylene, PP; polybutene-1, PB; polyisobutylene, PIB; poly(4-methylpentene-1), PMP
PP
PB
Melting temperature Tm (◦ C)
160– 170
126
Enthalpy of fusion ∆Hu (kJ/mol) (mu)
7–10
Entropy of fusion ∆Su (J/(K mol)) (mu)
15– 20
Heat capacity c p (kJ/(kg K))
1.68
PIB
PMP
230–240
Temperature coefficient dc p / dT (kJ/(kg K2 ))
Enthalpy of combustion ∆Hc (kJ/g)
−44
Glass transition temperature Tg (◦ C)
0 to −10
78
Vicat softening temperature TV 50/50
(◦ C)
−45
−70
Part 3 3.3
60– 102
108–113
Thermal conductivity λ (W/(m K))
0.22
0.22
0.12– 0.20
0.17
Density 0.90– 0.915
0.905–0.920
0.91– 0.93
0.83
12–15
13
8–12
12
(g/cm3 )
Coefficient of thermal expansion α (10−5 /K) (linear)
Compressibility κ
(10−4 /MPa)
(cubic)
Elastic modulus E (GPa)
2.2
1.3–1.8
0.21–0.26
Stress at yield σy (MPa)
25– 40
16–24
Strain at yield εy (%)
8–18
24
1.1–2.0
Shear modulus G (GPa)
Poisson’s ratio µ
Stress at 50% elongation σ50 (MPa)
Stress at fracture σb (MPa)
Strain at fracture εb (%)
Impact strength (Charpy)
> 50
(kJ/m2 )
30–38
2–6
25–28
300–380
> 1000
10–50
1950
2180
60– 140
Notched impact strength (Charpy) (kJ/m2 )
3–10
Sound velocity vs (m/s) (longitudinal)
2650
Sound velocity vs (m/s) (transverse)
1300
Shore hardness D
69– 77
Volume resistivity ρe (Ω m)
> 1014
Surface resistivity σe (Ω)
> 1013
Electric strength E B (kV/mm)
Relative permittivity εr (100 Hz)
1080
> 1014
> 1013
30– 70
18–40
23– 25
2.3
2.5
2.3
2.1
Dielectric loss tan δ (10−4 ) (100 Hz)
2.5
20–50
<4
15
Refractive index n D (589 nm)
1.50
Temperature coefficient dn D / dT (10−4 /K)
Steam permeation (g/(m2 d)) (40 µm)
Gas permeation (cm3 /(m2 d bar)) (40 µm)
2.1
430 (N2 )
1900 (O2 )
6100 (CO2 )
700 (air)
Melt viscosity–molar-mass relation
Viscosity–molar-mass relation
[η] = 20 × 10−3 M 0.67 (PIB, toluene, 30 ◦ C)
> 1014
1.46
Polymers
3.3 Tables and Figures
489
Table 3.3-6 Polypropylene, PP: heat capacity, thermal conductivity, and coefficient of thermal expansion
Temperature T (◦ C)
−200
−150
−100
−50
0
20
50
100
Heat capacity c p (kJ/(kg K))
0.46
0.77
1.03
1.28
1.57
1.68
1.92
2.35
Thermal conductivity λ (W/(m K))
2.3
0.17
0.19
0.21
0.22
0.22
0.22
0.20
5.8
6.9
7.6
19.1
19.4
14.3
22.6
Coefficient of thermal expansion
150
29.4
α (10−5 /K) (linear)
30
Viscosity η (Pa s)
10 4
Stress σ (MPa)
23 ˚C
40 ˚C
60 ˚C
80 ˚C
100 ˚C
120 ˚C
25
Part 3 3.3
20
200 ˚C
240 ˚C
280 ˚C
10 3
15
10 2
10
5
10 1
0
0
1
2
3
4
Strain ε (%)
Fig. 3.3-12 Polypropylene, PP: stress versus strain
Creep modulus Etc (MPa)
0.8 MPa
1.6 MPa
3.2 MPa
4.8 MPa
6.4 MPa
8.0 MPa
600
500
400
300
200
10 0
10 1
10 2
10 3
10 4
Shear rate dγ /d t (s–1)
Fig. 3.3-13 Polypropylene, PP: viscosity versus shear rate
Polybutene-1, PB. Applications: tubing, pipes, fittings, hollow bodies, cables, foils, packing.
Polyisobutylene, PIB. Applications: adhesives, sealing compounds, electrical insulating oils, viscosity
improvers.
Poly(4-methylpentene-1), PMP. Applications:
glasses, light fittings, molded parts, foils, packing, rings,
tubes, fittings, cable insulation.
3.3.3.2 Vinyl Polymers
100
0
10 1
10 –1
10 2
10 3
10 4
10 5
Time t (h)
Fig. 3.3-14 Polypropylene, PP: creep modulus versus time,
at 23 ◦ C
molding for cases, boxes, and bags; pressure molding for blocks and boards; tissue coating; extrusion
for pressure pipes, pipes, semiproducts, flexible tubing, textile fabrics, fibers, sheets; foamed polymers
for sports goods, boxes, cases, handles, and domestic
parts.
Polystyrene, PS. Applications: packaging, expanded
films, toys, artificial wood, food holders, housings,
plates, cases, boxes, glossy sheets, containers, medical
articles, panels.
Poly(styrene-co-butadiene), SB. Applications: flameretardant articles, housings.
Poly(styrene-co-acrylnitrile), SAN. Applications:
food holders, cases, shelves, covers, automotive and
electrical parts, sheets, profiles, containers, plastic
windows, doors, cosmetic items, medical items, pharmaceutical items, fittings, components, musical items,
toys, displays, lighting, food compartments, cassettes,
tableware, engineering parts, housings.
490
Part 3
Classes of Materials
Table 3.3-7 Polystyrene, PS; poly(styrene-co-butadiene), SB; poly(styrene-co-acrylonitrile), SAN
PS
Part 3 3.3
SB
SAN
1.3
1.3
−36 to −38
90–95
80–110
0.18
1.05–1.06
8 –10
−36 to −38
110
105–120
0.18
1.07–1.08
7 –8
2.0–2.8
0.6
3.5–3.9
1.5
Melting temperature Tm (◦ C)
Enthalpy of fusion ∆Hu (KJ/mol) (mu)
Entropy of fusion ∆Su (J/(K mol)) (mu)
Heat capacity c p (kJ/(kg K))
Temperature coefficient dc p / dT (kJ/(kg K2 ))
Enthalpy of combustion ∆Hc (kJ/g)
Glass transition temperature Tg (◦ C)
Vicat softening temperature TV 50/50 (◦ C)
Thermal conductivity λ (W/(m K))
Density (g/cm3 )
Coefficient of thermal expansion α (10−5 /K) (linear)
> 243.2 (iso), > 287.5 (syn)
8.682 (iso), 8.577 (syn)
16.8 (iso), 15.3 (syn)
1.2–1.4
4.04 × 10−3 (323 K)
−41.6
95– 100
80– 100
0.16
1.05
6–8
Compressibility κ (10−4 /MPa) (cubic)
Elastic modulus E (GPa)
Shear modulus G (GPa)
Poisson’s ratio µ
Stress at yield σy (MPa)
Strain at yield εy (%)
Stress at 50% elongation σ50 (MPa)
Stress at fracture σb (MPa)
Strain at fracture εb (%)
Impact strength (Charpy) (kJ/m2 )
Notched impact strength (Charpy) (kJ/m2 )
Sound velocity vs (m/s) (longitudinal)
Sound velocity vs (m/s) (transverse)
Shore hardness D
2.2
3.1–3.3
1.2
0.38
50
30– 55
1.5–3
13– 25
3–5
2400
1150
78
26–38
25–60
50–105
5 –10
65–85
2.5–5
Volume resistivity ρe (Ω m)
Surface resistivity σe (Ω)
Electric strength E B (kV/mm)
Relative permittivity εr (100 Hz)
Dielectric loss tan δ (10−4 ) (100 Hz)
> 1014
> 1014
30– 70
2.4–2.5 (am); 2.61 (cr)
1–2
> 1014
> 1013
45–65
2.4–2.6
1 –3
1014
1014
30–60
2.8–3
40–50
Refractive index n D (589 nm)
Temperature coefficient dn D / dT (10−4 /K)
Steam permeation (g/(m2 d)) (100 µm)
Gas permeation (cm3 /(m2 d bar)) (100 µm)
1.58–1.59
−1.42
12
2500 (N2 )
1000 (O2 )
5200 (CO2 )
η = 13.04M 3.4 (217 ◦ C)
[η] = 11.3 × 10−3 M 0.73 (PS, toluene, 25 ◦ C)
Melt viscosity–molar-mass relation
Viscosity–molar-mass relation
25–45
1.1–2.5
2 –4
1.57
Table 3.3-8 Polystyrene, PS: heat capacity, thermal conductivity, and coefficient of thermal expansion
Temperature T (◦ C)
−200
−150
−100
−50
0
Heat capacity c p (kJ/(kg K))
0.89 1.09
Thermal conductivity λ (W/(m K))
0.13
0.14
0.14 0.16
Coefficient of thermal expansion
3.9
5.1
6.1
6.7
α (10−5 /K) (linear)
20
0.16
7.1
50
1.34
0.16
10.0
100
150
200
1.68
2.03
2.19
0.16
0.16
17.6
18.0
17.4
Polymers
80
3.3 Tables and Figures
491
Viscosity η (Pa s)
10 5
Stress σ (MPa)
Y = yield point, B = break point
70
– 40 ˚C
0 ˚C
60
23 ˚C
40 ˚C
50
60 ˚C
80 ˚C
40
180 ˚C
230 ˚C
280 ˚C
Y
10 4
Y
Y
B
10 3
B
30
10 2
20
10 1
10
0.5
1.0
1.5
2.0
2.5
Strain ε (%)
Fig. 3.3-15 Polystyrene, PS: stress versus strain
10 0 –1
10
10 1
10 2
Creep modulus Etc (MPa)
60
3000
50
Stress σ (MPa)
Y = yield point
– 40 ˚C
0 ˚C
23 ˚C
40 ˚C
40
60 ˚C
80 ˚C
30
2500
2000
1500
2 MPa
4 MPa
6 MPa
8 MPa
12 MPa
16 MPa
20 MPa
1000
500
0 1
10
10 2
10 3
10 4
10 5
Shear rate dγ /dt (s–1)
Fig. 3.3-16 Polystyrene, PS: viscosity versus shear rate
3500
Y
Y
Y
Y
20
Y
Y
10
10 3
10 4
10 5
Time t (h)
Fig. 3.3-17 Polystyrene, PS: creep modulus versus time, at
23 ◦ C
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Strain ε (%)
Fig. 3.3-18 Poly(styrene-co-butadiene), SB: stress versus
strain
Viscosity η (Pa s)
Creep modulus Etc (MPa)
190 ˚C
220 ˚C
250 ˚C
104
2000
1500
103
1000
102
500
101
10 0
100
101
102
103
104
Shear rate dγ /dt (s–1)
Fig. 3.3-19 Poly(styrene-co-butadiene), SB: viscosity versus shear rate
10 1
2.0 MPa
3.2 MPa
4.4 MPa
5.6 MPa
6.8 MPa
8.0 MPa
9.2 MPa
10.4 MPa
11.6 MPa
12.5 MPa
10 2
10 3
10 4
10 5
Time t (h)
Fig. 3.3-20 Poly(styrene-co-butadiene), SB: creep modulus versus time
Part 3 3.3
0
0.0
492
Part 3
Classes of Materials
Viscosity η (Pa s)
10 5
Stress σ (MPa)
120
Y = yield point, B = break point
– 40 ˚C
100
– 20 ˚C
0 ˚C
23 ˚C
80
40 ˚C
60 ˚C
80 ˚C
60
B
B
10 4
B
Y
10 3
Y
40
Y
20
Part 3 3.3
0
190 ˚C
220 ˚C
250 ˚C
B
10 2
0
1
2
3
Fig. 3.3-21 Poly(styrene-co-acrylonitrile),
10 –1
4
Strain ε (%)
SAN: stress
versus strain
60
Stress σ (MPa)
0 ˚C
23 ˚C
40 ˚C
60 ˚C
80 ˚C
100 ˚C
3000
40
0
10 1
10 2
10 3
10 4
Shear rate dγ /dt (s–1)
Fig. 3.3-22 Poly(styrene-co-acrylonitrile), SAN: viscosity
50
1000
10 1
versus shear rate
Creep modulus Etc (MPa)
4000
2000
10 0
8.0 MPa
10.7 MPa
13.4 MPa
16.1 MPa
18.8 MPa
21.5 MPa
24.2 MPa
26.9 MPa
29.6 MPa
32.0 MPa
10 2
Y
Y
Y
30
Y
20
Y
10
Y
10 3
10 4
10 5
Time t (h)
Fig. 3.3-23 Poly(styrene-co-acrylonitrile), SAN: creep
0
0
1
2
Y = yield point
3
4
Strain ε (%)
modulus versus time
Fig. 3.3-24 Poly(acrylonitrile-co-butadiene-co-styrene),
ABS: stress versus strain
Poly(vinyl carbazole), PVK. Applications: electrical
insulating materials.
Poly(acrylonitrile-co-butadiene-co-styrene), ABS.
Applications: housings, boxes, cases, tools, office equipment, helmets, pipes, fittings, frames, toys, sports
equipment, housewares, packaging, panels, covers,
automotive interior parts, food packaging, furniture,
automobile parts.
Poly(acrylonitrile-co-styrene-co-acrylester), ASA.
Applications: outdoor applications, housings, covers, sports equipment, fittings, garden equipment,
antennas.
Poly(vinyl chloride), PVC-U. Applications: extruded profiles, sealing joints, jackets, furniture,
claddings, roller shutters, fences, barriers, fittings,
injection-molded articles, sheets, films, plates, bottles,
coated fabrics, layers, toys, bumpers, buoys, car parts,
cards, holders, sleeves, pipes, boxes, inks, lacquers,
adhesives, foams.
Poly(vinyl chloride), PVC-P1, PVC-P2. Applications: flexible tubes, technical items, compounds for
insulation and jacketing, joints, seals, pipes, profiles,
soling, tubes, floor coverings, wall coverings, car undersealing, mastics, foams, coatings, cap closures,
Polymers
3.3 Tables and Figures
493
Table 3.3-9 Poly(vinyl carbazole), PVK; poly(acrylonitrile-co-butadiene-co-styrene), ABS; poly(acrylonitrile-costyrene-co-acrylester), ASA
PVK
Melting temperature Tm
ABS
ASA
1.3
1.3
(◦ C)
Enthalpy of fusion ∆Hu (kJ/mol) (mu)
Entropy of fusion ∆Su (J/(K mol)) (mu)
Heat capacity c p (kJ/(kg K))
Temperature coefficient dc p / dT (kJ/(kg K2 ))
Enthalpy of combustion ∆Hc (kJ/g)
−35
Glass transition temperature Tg (◦ C)
100
95 –105
90– 102
0.18
0.18
1.03– 1.07
1.07
1.19
8.5–10
9.5
3.5
2.2–3.0
2.3–2.9
0.7–0.9
0.7–0.9
Stress at yield σy (MPa)
45 –65
40– 55
Strain at yield εy (%)
2.5–3
3.1–4.3
(◦ C)
Thermal conductivity λ (W/(m K))
0.29
Density (g/cm3 )
(10−5 /K)
Coefficient of thermal expansion α
(linear)
Compressibility κ (1/MPa) (cubic)
Elastic modulus E (GPa)
Shear modulus G (GPa)
Poisson’s ratio µ
Stress at 50% elongation σ50 (MPa)
Stress at fracture σb (MPa)
20 –30
Strain at fracture εb (%)
15 –30
55 –80
Impact strength (Charpy) (kJ/m2 )
Notched impact strength (Charpy)
40 –1000
105– 118
(kJ/m2 )
Sound velocity vs (m/s) (longitudinal)
2040– 2160
Sound velocity vs (m/s) (transverse)
830– 930
Shore hardness D
Volume resistivity ρe (Ω m)
> 1014
1012 – 1013
1012 – 1014
Surface resistivity σe (Ω)
1014
> 1013
1013
Electric strength E B (kV/mm)
30 –40
Relative permittivity εr (100 Hz)
Dielectric loss tan δ (10−4 ) (100 Hz)
Refractive index n D (589 nm)
6–10
2.8–3.1
3.4–4
90 –160
90– 100
1.52
Temperature coefficient dn D / dT (1/K)
Steam permeation (g/(m2 d)) (100 µm)
Gas permeation
(cm3 /(m2
d bar)) (100 µm)
27 –33
30– 35
100– 200(N2 )
60– 70 (N2 )
400– 900 (O2 )
150– 180 (O2 )
6000– 8000 (CO2 )
Melt viscosity–molar-mass relation
Viscosity–molar-mass relation
Part 3 3.3
80 –110
Vicat softening temperature TV 50/50
173
494
Part 3
Classes of Materials
Creep modulus Etc (MPa)
2500
Viscosity η (Pa s)
10 4
230 ˚C
255 ˚C
280 ˚C
10 3
2000
1500
10 2
1000
10 1
Part 3 3.3
10 0 0
10
10
1
10
2
10
3
4
5
6
10
10
10
Shear rate dγ /dt (s–1)
Fig. 3.3-25 Poly(acrylonitrile-co-butadiene-co-styrene),
500 1
10
1.6 MPa
3.2 MPa
4.8 MPa
6.4 MPa
8 MPa
9.6 MPa
11.2 MPa
12.8 MPa
14.4 MPa
16 MPa
10 2
10 3
10 4
10 5
Time t (h)
Fig. 3.3-26 Poly(acrylonitrile-co-butadiene-co-styrene),
ABS: creep modulus versus time
ABS: viscosity versus shear rate
Viscosity η (Pa s)
10 5
Stress σ (MPa)
100
– 40 ˚C
0 ˚C
80
23 ˚C
40 ˚C
60 ˚C
60
80 ˚C
100 ˚C
40
200 ˚C
240 ˚C
280 ˚C
Y
10 4
Y
10 3
Y
Y
Y
10 2
Y
20
Y = yield point
0
0
1
2
3
4
5
Strain ε (%)
10 1 –1
10
10 0
10 1
10 2
10 3
10 4
10 5
Shear rate dγ /dt (s–1)
Fig. 3.3-27 Poly(acrylonitrile-co-styrene-co-acrylester),
Fig. 3.3-28 Poly(acrylonitrile-co-styrene-co-acrylester),
ASA: stress versus strain
ASA: viscosity versus shear rate
Creep modulus Etc (MPa)
3000
60
Stress σ (MPa)
23 ˚C
2500
50
2000
40
1500
30
1000
500
10 1
4.0 MPa
6.2 MPa
8.4 MPa
10.6 MPa
12.8 MPa
10 2
15.0 MPa
17.2 MPa
19.4 MPa
21.6 MPa
24.0 MPa
10 3
20
10
10 4
10 5
Time t (h)
Fig. 3.3-29 Poly(acrylonitrile-co-styrene-co-acrylester),
ASA: creep modulus versus time
0
0
1
2
3
4
5
6
Strain ε (%)
Fig. 3.3-30 Poly(vinyl chloride), PVC-U: stress versus
strain
Polymers
3.3 Tables and Figures
495
Table 3.3-10 Poly(vinyl chloride): unplasticized, PVC-U; plasticized (75/25), PVC-P1; plasticized (60/40), PVC-P2
PVC-U
PVC-P1
PVC-P2
0.9–1.8
0.9–1.8
85
≈ 80
≈ 80
Melting temperature Tm (◦ C)
175
Enthalpy of fusion ∆Hu (kJ/mol) (mu)
3.28
Entropy of fusion ∆Su (J/(K mol)) (mu)
Heat capacity c p (kJ/(kg K))
0.85– 0.9
Temperature coefficient dc p / dT (kJ/(kg K2 ))
Enthalpy of combustion ∆Hc (kJ/g)
−18 to −19
Glass transition temperature Tg (◦ C)
(◦ C)
≈ 42
0.16
0.15
0.15
Density 1.38– 1.4
1.24 –1.28
1.15– 1.20
7–8
18 –22
23– 25
(g/cm3 )
Coefficient of thermal expansion α (10−5 /K) (linear)
Compressibility κ (1/MPa) (cubic)
Elastic modulus E (GPa)
2.7–3.0
Shear modulus G (GPa)
0.12
2.9–37
0.07
Poisson’s ratio µ
Stress at yield σy (MPa)
50– 60
Strain at yield εy (%)
4–6
Stress at 50% elongation σ50 (MPa)
Stress at fracture σb (MPa)
40– 80
10 –25
10– 25
Strain at fracture εb (%)
10– 50
170 –400
170–400
Impact strength (Charpy)
(kJ/m2 )
13– 25
Notched impact strength (Charpy) (kJ/m2 )
3–5
Sound velocity vs (m/s) (longitudinal)
2330
Sound velocity vs (m/s) (transverse)
1070
Shore hardness D
74– 94
Volume resistivity ρe (Ω m)
> 1013
1012
1011
Surface resistivity σe (Ω)
1014
1011
1010
Electric strength E B (kV/mm)
20– 40
30 –35
≈ 25
Relative permittivity εr (100 Hz)
3.5
4–5
6–7
Dielectric loss tan δ (10−4 ) (100 Hz)
110– 140
0.05 –0.07
0.08– 0.1
Refractive index n D (589 nm)
1.52– 1.54
20
20
2126
Temperature coefficient dn D / dT (1/K)
Steam permeation (g/(m2 d)) (100 µm)
2.5
Gas permeation (cm3 /(m2 d bar)) (100 µm)
2.7–3.8 (N2 )
350 (N2 )
350 (N2 )
33– 45 (O2 )
1500 (O2 )
1500 (O2 )
120–160 (CO2 )
8500 (CO2 )
8500 (CO2 )
550 (air)
550 (air)
28 (air)
Melt viscosity–molar-mass relation
Viscosity–molar-mass relation
[η] = 14.5 × 10−3 M 0.851 (PVC-U, THF, 25 ◦ C)
Part 3 3.3
63– 82
Thermal conductivity λ (W/(m K))
Vicat softening temperature TV 50/50
496
Part 3
Classes of Materials
Table 3.3-11 Poly(vinyl chloride), PVC-U: heat capacity and thermal conductivity
Temperature T (◦ C)
−150
−100
−50
0
20
Heat capacity c p (kJ/(kg K))
0.47
0.61
0.75
0.92
Thermal conductivity λ (W/(m K))
0.13
0.15
0.15
0.16
50
0.16
100
1.04
1.53
0.17
0.17
Viscosity η (Pa s)
180 ˚C
190 ˚C
200 ˚C
103
Part 3 3.3
102
102
103 Shear rate dγ /dt (s–1) 104
Fig. 3.3-31 Poly(vinyl chloride), PVC-U: viscosity versus
protective clothes, cable insulation, fittings, leads, films,
artificial leathers.
3.3.3.3 Fluoropolymers
Polytetrafluoroethylene, PTFE. Applications: molded
articles, foils, flexible tubing, coatings, jackets, sealings, bellows, flasks, machine parts, semifinished goods,
printed networks.
Polychlorotrifluoroethylene, PCTFE. Applications:
fittings, flexible tubing, membranes, printed networks,
bobbins, insulating foils, packings.
Poly(tetrafluoroethylene-co-hexafluoropropylene),
FEP. Applications: cable insulation, coatings, coverings, printed networks, injection-molded parts, packaging foils, impregnations, heat-sealing adhesives.
shear rate
Table 3.3-12 Polytetrafluoroethylene, PTFE; polychlorotrifluoroethylene, PCTFE; poly(tetrafluoroethylene-co-hexafluoro-propylene), FEP; poly(ethylene-co-tetrafluoroethylene), ETFE; poly(ethylene-co-chlorotrifluoroethylene), ECTFE
Melting temperature Tm (◦ C)
PTFE
PCTFE
FEP
ETFE
ECTFE
325–335
210–215
255–285
265 –270
240
1.2
24.3
0.9
1.12
Enthalpy of fusion ∆Hu (kJ/kg)
Entropy of fusion ∆Su (J/(kg K))
Heat capacity c p (kJ/(kg K))
Temperature coefficient dc p / dT
(kJ/(kg K2 ))
1.0
Enthalpy of combustion ∆Hc (kJ/g)
−5.1
Glass transition temperature Tg
(◦ C)
0.9
127
Vicat softening temperature TV 50/50 (◦ C)
110
Thermal conductivity λ (W/(m K))
0.25
0.22
0.25
0.23
Density (g/cm3 )
2.13–2.23
2.07–2.12
2.12–2.18
1.67 –1.75
1.68– 1.70
Coefficient of thermal expansion
α (10−5 /K) (linear)
11–18
6–7
8 –12
7–10
7–8
0.40–0.75
1.30–1.50
0.40–0.70
0.8–1.1
1.4–1.7
134
Compressibility κ (1/MPa) (cubic)
Elastic modulus E (GPa)
Shear modulus G (GPa)
Poisson’s ratio µ
Stress at yield σy (MPa)
Strain at yield εy (%)
11.7
25 –35
15 –20
Polymers
3.3 Tables and Figures
497
Table 3.3-12 Polytetrafluoroethylene, PTFE; polychlorotrifluoroethylene, PCTFE; . . . , cont.
PTFE
PCTFE
FEP
ETFE
ECTFE
Stress at fracture σb (MPa)
25–36
32 –40
22 –28
35–54
Strain at fracture εb (%)
350–550
120– 175
250– 330
400–500
Stress at 50% elongation σ50 (MPa)
Impact strength (Charpy)
(kJ/m2 )
Notched impact strength (Charpy) (kJ/m2 )
1410
Sound velocity vs (m/s) (transverse)
730
Shore hardness D
50–60
78
55 –58
67–75
Volume resistivity ρe (Ω m)
> 1016
> 1016
> 1016
> 1014
> 1013
Surface resistivity σe (Ω)
> 1016
> 1016
> 1016
> 1014
1012
Electric strength E B (kV/mm)
48
55
55
40
Relative permittivity εr (100 Hz)
2.1
2.5–2.7
2.1
2.6
2.3–2.6
Dielectric loss tan δ (10−4 ) (100 Hz)
0.5–0.7
90 –140
0.5–0.7
5–6
10– 15
Refractive index n D (589 nm)
Temperature coefficient dn D / dT (10−5 /K)
1.35
1.43
1.344
1.403
Steam permeation (g/(m2 d))
0.03 (300 µm)
0.4–0.9 (25 µm)
0.6 (25 µm)
9 (25 µm)
Gas permeation (cm3 /(m2 d bar))
60–80 (N2 )
160– 250 (O2 )
450– 700 (CO2 )
80– 100 (air)
39 (N2 )
110– 230 (O2 )
250–620 (CO2 )
470 (N2 )
1560 (O2 )
3800 (CO2 )
150 (N2 )
39 (O2 )
1700 (CO2 )
Melt viscosity–molar-mass relation
Viscosity–molar-mass relation
Table 3.3-13 Polytetrafluoroethylene, PTFE: heat capacity, thermal conductivity, and coefficient of thermal expansion
Temperature T (◦ C)
−200
−150
−100
−50
Heat capacity c p
(kJ/(kg K))
Thermal conductivity λ
(W/(m K))
Coefficient of thermal
expansion α (10−5 /K) (linear)
3.4
0
150
1.06
1.10
1.15
0.25
0.25
0.26
0.26
0.26
0.25
4.5
7.0
9.5
Poly(methyl methacrylate), PMMA. Applications: extruded articles, injection-molded parts, injection blow-
100
1.0
0.24
3.3.3.4 Polyacrylics and Polyacetals
50
0.96
0.23
Poly(ethylene-co-tetrafluoroethylene), ETFE. Applications: gear wheels, pump parts, packaging,
laboratory articles, coverings, cable insulation, blown
films.
Poly(ethylene-co-chlorotrifluoroethylene), ECTFE.
Applications: cable coverings, coverings, molded articles, packaging, printed networks, foils, fibers.
20
0.8
11.6
11.9
13.1
16.7
200
250
1.23
22.2
30.5
molded parts, houseware, medical devices, sanitary
ware, automotive components, lighting, tubes, sheets,
profiles, covers, panels, fiber optics, optical lenses, displays, disks, cards.
Poly(oxymethylene), POM-H. Applications: molded
parts, extruded parts, gears, bearings, snap-fits, fuel system components, cable ties, automotive components,
seatbelt parts, pillar loops, tubes, panels.
Poly(oxymethylene-co-ethylene), POM-R. Applications: extruded articles, injection-molded articles, gear
wheels, bushes, bearings, rollers, guide rails, tubing,
films, clips, zippers, boards, pipes.
Part 3 3.3
Sound velocity vs (m/s) (longitudinal)
498
Part 3
Classes of Materials
Table 3.3-14 Poly(methyl methacrylate), PMMA; poly(oxymethylene), POM-H; poly(oxymethylene-co-ethylene),
POM-R
PMMA
POM-H
POM-R
175
175
164– 172
Enthalpy of fusion ∆Hu (kJ/kg)
222
211
Entropy of fusion ∆Su (J/(kg K))
1.49
1.44
Melting temperature Tm (K)
Heat capacity c p (kJ/(kg K))
Temperature coefficient dc p / dT (kJ/(kg K2 ))
1.255
1.46
1.47
Enthalpy of combustion ∆Hc (kJ/g)
−26.2
−16.7
−17
Glass transition temperature Tg
(◦ C)
Part 3 3.3
104–105
25
Vicat softening temperature TV 50/50 (◦ C)
85– 110
160– 170
151– 162
Thermal conductivity λ (W/(m K))
0.193
0.25– 0.30
0.31
Density (g/cm3 )
1.17–1.19
1.40– 1.42
1.39– 1.41
Coefficient of thermal expansion α (10−5 /K) (linear)
7–8
11– 12
10– 11
Compressibility κ (10−4 /MPa) (cubic)
2.45
1.5
Elastic modulus E (GPa)
3.1–3.3
3.0–3.2
Shear modulus G (GPa)
1.7
0.7–1.0
50– 77
60– 75
65– 73
8–25
8–12
59
2.8–3.2
Poisson’s ratio µ
Stress at yield σy (MPa)
Strain at yield εy (%)
Stress at 50% elongation σ50 (MPa)
Stress at fracture σb (MPa)
60– 75
62– 70
Strain at fracture εb (%)
2–6
25– 70
Impact strength (Charpy) (kJ/m2 )
18– 23
180
Notched impact strength (Charpy) (kJ/m2 )
2
9
Sound velocity vs (m/s) (longitudinal)
2690
2440
Sound velocity vs (m/s) (transverse)
1340
1000
Shore hardness D
85
80
Volume resistivity ρe (Ω m)
> 1013
> 1013
> 1013
Surface resistivity σe (Ω)
> 1013
> 1014
> 1013
Electric strength E B (kV/mm)
30
25– 35
35
Relative permittivity εr (100 Hz)
3.5–3.8
3.5–3.8
3.6–4
Dielectric loss tan δ (10−4 ) (100 Hz)
500–600
30– 50
30– 50
Refractive index n D (589 nm)
Temperature coefficient dn D / dT (10−4 /K)
1.492
− 1.2
1.49
Steam permeation (g/(m2 d)) (80 µm)
12
12
2500 (N2 )
1000 (O2 )
5200 (CO2 )
5 (N2 )
24 (O2 )
470 (CO2 )
8 (air)
Gas permeation
(cm3 /(m2
d bar))
Melt viscosity–molar-mass relation
Viscosity–molar-mass relation
[η] = 10.4 × 10−3 M 0.70 (PMMA, THF, 25 ◦ C)
[η] = 11.3 × 10−3 M 0.76 (POM-H, Phenol, 90 ◦ C)
6.5
Polymers
3.3 Tables and Figures
499
Table 3.3-15 Poly(methyl methacrylate), PMMA: heat capacity, thermal conductivity, and coefficient of thermal expan-
sion
Temperature T (◦ C)
Heat capacity c p
(kJ/(kg K))
Thermal conductivity λ
(W/(m K))
Coefficient of thermal
expansion α (10−5 /K) (linear)
−200
−150
0.67
−100
0.90
−50
1.06
0
1.26
20
1.26
50
1.42
100
1.85
0.16
0.18
0.19
0.19
0.19
0.19
0.20
3.0
3.7
4.5
5.7
6.9
7.5
Stress σ (MPa)
12.0
150
200
0.19
0.18
18.4
Viscosity η (Pa s)
100
200 ˚C
220 ˚C
240 ˚C
10 4
B
B
B
10 3
40
10 2
20
0
0
1
2
3
4
Strain ε (%)
10 1
10 –1
10 0
10 1
10 2
10 3
10 4
Shear rate dγ /dt (s–1)
Fig. 3.3-32 Poly(methyl methacrylate), PMMA: stress ver-
Fig. 3.3-33 Poly(methyl methacrylate), PMMA: viscosity
sus strain
versus shear rate
Stress σ (MPa)
Creep modulus Etc (MPa)
80
2500
2000
1500 0
10
60
40
2 MPa
4 MPa
8 MPa
12 MPa
16 MPa
20 MPa
24 MPa
10 1
– 20 ˚C
0 ˚C
23 ˚C
40 ˚C
60 ˚C
120 ˚C
20
10 2
10 3
10 4
Time t (h)
Fig. 3.3-34 Poly(methyl methacrylate), PMMA: creep
modulus versus time, at 23 ◦ C
0
0
5
10
15
20
25
Strain ε (%)
Fig. 3.3-35 Poly(oxymethylene), POM-H: stress versus
strain
Part 3 3.3
B = break point
0 ˚C
–10 ˚C
80
23 ˚C
40 ˚C
60 ˚C
60
500
Part 3
Classes of Materials
Table 3.3-16 Poly(oxymethylene), POM-H: heat capacity, thermal conductivity, and coefficient of thermal expansion
Temperature T (◦ C)
Heat capacity c p
(kJ/(kg K))
Thermal conductivity λ
(W/(m K))
Coefficient of thermal
expansion α (10−5 /K) (linear)
−200
0.47
−150
0.65
−100
0.82
−50
1.08
0
1.27
0.47
0.45
0.43
0.42
20
50
1.46
100
1.85
150
200
0.41
9.0
9.5
10.0
16.5
41.0
23.0
Stress σ (MPa)
100
Viscosity η (Pa s)
103
195 ˚C
215 ˚C
235 ˚C
8×102
Part 3 3.3
6×102
Y
Y
80
Y
4×102
Y
60
Y
– 40 ˚C
– 20 ˚C
0 ˚C
23 ˚C
40 ˚C
60 ˚C
80 ˚C
100 ˚C
Y
40
Y
Y
2×102
20
10
3
10
Shear rate dγ /dt (s–1)
4
Fig. 3.3-36 Poly(oxymethylene), POM-H: viscosity versus shear rate
Viscosity η (Pa s)
103
Y = yield point
0
0
2
4
6
8
10
12
Strain ε (%)
Fig. 3.3-37 Poly(oxymethylene-co-ethylene), POM-R:
stress versus strain
3000
Creep modulus Etc (MPa)
180 ˚C
200 ˚C
220 ˚C
18 MPa
21 MPa
24 MPa
27 MPa
30 MPa
3 MPa
6 MPa
9 MPa
12 MPa
15 MPa
2000
102
1000
102
103
104
Shear rate dγ /dt (s–1)
Fig. 3.3-38 Poly(oxymethylene-co-ethylene),
viscosity versus shear rate
POM-R:
10 0
10 1
10 2
10 3
10 4
Time t (h)
Fig. 3.3-39 Poly(oxymethylene-co-ethylene), POM-R:
creep modulus versus time at 23 ◦ C
Polymers
3.3.3.5 Polyamides
Polyamide 6, PA6; polyamide 66, PA66; polyamide 11,
PA11; polyamide 12, PA12; polyamide 610, PA610. Ap-
3.3 Tables and Figures
501
plications: technical parts, bearings, gear wheels, rollers,
screws, gaskets, fittings, coverings, housings, automotive
parts,houseware,semifinishedgoods,sportsgoods,membranes, foils, packings, blow-molded parts, fibers, tanks.
Table 3.3-17 Polyamide 6, PA6; polyamide 66, PA66; polyamide 11, PA11; polyamide 12, PA12; polyamide 610, PA610
PA6
PA66
PA11
PA12
PA610
220– 225
255–260
185
175–180
210–220
Heat capacity c p (kJ/(kg K))
Temperature coefficient dc p / dT (kJ/(kg K2 ))
1.7
1.7
1.26
1.26
1.7
Enthalpy of combustion ∆Hc (kJ/g)
−31.4
−31.4
Glass transition temperature Tg (◦ C)
55
80
50
50
55– 60
Vicat softening temperature TV 50/50 (◦ C)
180– 220
195–220
180–190
140–160
205–215
Thermal conductivity λ (W/(m K))
0.29
0.23
0.23
0.23
0.23
Density (g/cm3 )
1.12– 1.14
1.13– 1.15
1.04
1.01–1.03
1.06– 1.09
Coefficient of thermal expansion
α (10−5 /K) (linear)
7–10
7–10
13
10–12
8–10
Elastic modulus E (GPa)
2.6–3.2
2.7–3.3
1.0
1.3–1.6
2.0–2.4
Shear modulus G (GPa)
1.1–1.5
1.3–1.7
0.4–0.5
0.5
0.8
Stress at yield σy (MPa)
70–90
75– 100
45–60
60– 70
Strain at yield εy (%)
4–5
4.5–5
4–5
4
Stress at fracture σb (MPa)
70–85
77– 84
56
56–65
40
Strain at fracture εb (%)
200– 300
150–300
500
300
500
Notched impact strength (Charpy) (kJ/m2 )
3–6
2–3
Sound velocity vs (m/s) (longitudinal)
2700
2710
Sound velocity vs (m/s) (transverse)
1120
1120
Shore hardness D
72
75
Volume resistivity ρe (Ω m)
> 1013
> 1012
1011
> 1013
> 1013
Surface resistivity σe (Ω)
> 1012
> 1010
1011
> 1013
> 1012
Electric strength E B (kV/mm)
30
25– 35
42.5
27–29
Relative permittivity εr (100 Hz)
3.5–4.2
3.2–4
3.7
3.7–4
3.5
Dielectric loss tan δ tan δ (10−4 ) (100 Hz)
60–150
50– 150
600
300–700
70– 150
Refractive index n D (589 nm)
Temperature coefficient dn D / dT (1/K)
1.52– 1.53
1.52– 1.53
1.52–1.53
1.52–1.53
1.53
Steam permeation (g/(m2 d)) (100 µm)
10–20
10– 20
2.4–4
2.4–4
Gas permeation (cm3 /(m2 d bar)) (100 µm)
1–2 (N2 )
2–8 (O2 )
80– 120 (CO2 )
1–2 (N2 )
2–8 (O2 )
80–120 (CO2 )
0.5–0.7 (N2 )
2–3.5 (O2 )
6–13 (CO)
0.5–0.7 (N2 )
2–3.5 (O2 )
6–13 (CO)
Melting temperature Tm
(◦ C)
Enthalpy of fusion ∆Hu (J/mol) (mu)
Entropy of fusion ∆Su (J/(K mol)) (mu)
Poisson’s ratio µ
Stress at 50% elongation σ50 (MPa)
Impact strength (Charpy) (kJ/m2 )
Melt viscosity–molar-mass relation
Viscosity–molar-mass relation
4–10
Part 3 3.3
Compressibility κ (1/MPa) (cubic)
502
Part 3
Classes of Materials
Table 3.3-18 Polyamide 6, PA6; polyamide 66, PA66; polyamide 610, PA610: heat capacity, thermal conductivity, and
coefficient of thermal expansion
Temperature T (◦ C)
−200
Heat capacity c p
(kJ/(kg K)), PA
−150
0.47
−100
−50
0
20
50
100
150
200
0.73
0.93
1.15
1.38
1.68
2.15
2.60
Thermal conductivity λ
(W/(m K)), PA6
0.29
0.31
0.32
0.32
0.29
0.27
0.25
Thermal conductivity λ
(W/(m K)), PA66
0.32
0.33
0.33
0.33
0.33
Thermal conductivity λ
(W/(m K)), PA610
0.31
0.32
0.33
0.33
0.32
5.0
6.6
8.0
Part 3 3.3
Coefficient of thermal
expansion α (10−5 /K) (linear),
PA6
40
Stress σ (MPa)
30
800
20
600
10
400
0
1
2
3
4
5
Strain ε (%)
Fig. 3.3-40 Polyamide 6, PA6: stress versus strain
Stress σ (MPa)
50
23 ˚C
200 0
10
15.1
14.0
34.6
6 MPa
7 MPa
8 MPa
9 MPa
11 MPa
1 MPa
2 MPa
3 MPa
4 MPa
5 MPa
10 1
10 2
10 3
10 4
Time t (h)
Fig. 3.3-41 Polyamide 6, PA6: creep modulus versus time
Creep modulus Etc (MPa)
1200
40
1000
30
800
20
600
2 MPa
4 MPa
6 MPa
8 MPa
10 MPa
12 MPa
14 MPa
16 MPa
18 MPa
20 MPa
400
10
0
0
40.1
Creep modulus Etc (MPa)
1000
23 ˚C
40 ˚C
60 ˚C
0
9.1
0.31
200 0
10
1
2
3
4
5
6
Strain ε (%)
Fig. 3.3-42 Polyamide 66, PA66: stress versus strain
10 1
10 2
10 3
10 4
Time t (h)
Fig. 3.3-43 Polyamide 66, PA66: creep modulus versus
time
Polymers
3.3.3.6 Polyesters
Polycarbonate, PC. Applications: injection-molded
parts, extruded parts, disks, lamp housings, electronic
articles, optical articles, houseware, foils.
Poly(ethylene terephthalate), PET. Applications:
bearings, gear wheels, shafts, couplings, foils, ribbons,
flexible tubing, fibers.
3.3 Tables and Figures
Poly(butylene terephthalate), PBT. Applications:
bearings, valve parts, screws, plugs, housings, wheels,
houseware.
Viscosity η (Pa s)
10 3
Stress σ (MPa)
60
10 2
40
– 20 ˚C
0 ˚C
23 ˚C
40 ˚C
60 ˚C
90 ˚C
120 ˚C
20
0
2
4
6
10 1
10 1
8
Strain ε (%)
10 2
10 3
10 4
10 5
Shear rate dγ /dt (s–1)
Fig. 3.3-45 Polycarbonate, PC: viscosity versus shear rate
Fig. 3.3-44 Polycarbonate, PC: stress versus strain
Stress σ (MPa)
70
Creep modulus Etc (MPa)
23 ˚C
60
2000
50
40
1500
30
1000
500 0
10
5 MPa
10 MPa
15 MPa
20 MPa
25 MPa
30 MPa
35 MPa
10 1
20
10
0
10 2
10 3
10 4
Time t (h)
0
1
2
3
4
Strain ε (%)
Fig. 3.3-47 Poly(ethylene terephthalate), PET: stress ver-
Fig. 3.3-46 Polycarbonate, PC: creep modulus versus time
sus strain
Table 3.3-19 Polycarbonate, PC: heat capacity and thermal conductivity
Temperature T (◦ C)
Heat capacity c p (kJ/(kg K))
Thermal conductivity λ (W/(m K))
−200
0.34
−150
−100
−50
0
0.50
0.70
0.90
1.10
0.17
0.19
0.21
0.23
20
1.17
50
100
150
1.30
1.50
1.70
0.24
0.24
0.24
Part 3 3.3
280 ˚C
300 ˚C
320 ˚C
80
0
503
504
Part 3
Classes of Materials
Table 3.3-20 Polycarbonate, PC; poly(ethylene terephthalate), PET; poly(butylene terephthalate), PBT; poly(phenylene
ether), PPE
Part 3 3.3
PC
PET
PBT
Melting temperature Tm (◦ C)
220–260
250– 260 (pcr)
220 –225
Enthalpy of fusion ∆Hu (kJ/mol) (mu)
8.682 (iso), 8.577 (syn)
2.69
54 kJ/kg
Entropy of fusion ∆Su (J/(K mol)) (mu)
16.8 (iso), 15.3 (syn)
48.6
Heat capacity c p (kJ/(kg K))
Temperature coefficient dc p / dT (kJ/(kg K2 ))
1.17
4.04 × 10−3
1.223
Enthalpy of combustion ∆Hc (kJ/g)
−30.7
−21.6
Glass transition temperature Tg (◦ C)
150
98
60
110–150
Vicat softening temperature TV 50/50 (◦ C)
83
79
165 –180
105–132
Thermal conductivity λ (W/(m K))
0.21
0.11
0.21
0.17– 0.22
Density (g/cm3 )
1.2
1.38–1.40 (pcr)
1.33– 1.35 (am)
1.30 –1.32
1.04– 1.10
Coefficient of thermal expansion
α (10−5 /K) (linear)
6.5–7
8 (am), 7(pcr)
8–10
8–9
Compressibility κ (1/MPa) (cubic)
2.2 × 10−4
6.99 × 10−6 (melt)
Elastic modulus E (GPa)
2.3–2.4
2.1–2.4 (am)
2.8–3.1 (pcr)
2.5–2.8
2.0–3.1
Shear modulus G (GPa)
0.72
1.2
1.0
Poisson’s ratio µ
PPE
1.35
0.38
Stress at yield σy (MPa)
55–65
55 (am), 60–80 (pcr)
50 –60
45– 70
Strain at yield εy (%)
6 –7
4 (am), 5 –7 (pcr)
3.5–7
3–6
Stress at fracture σb (MPa)
69–72
30 –55
52
35– 55
Strain at fracture εb (%)
120–125
1.5–3
Stress at 50% elongation σ50 (MPa)
Impact strength (Charpy) (kJ/m2 )
15– 40
13 –25
Notched impact strength (Charpy) (kJ/m2 )
3–5
6–16
Sound velocity vs (m/s) (longitudinal)
2220
2400
2220
Sound velocity vs (m/s) (transverse)
909
1150
Shore hardness D
1000
80
Volume resistivity ρe (Ω m)
> 1014
> 1013
> 1013
1014 − 1015
Surface resistivity σe (Ω)
> 1014
> 1014
> 1014
1016 − 1017
Electric strength E B (kV/mm)
30–75
42
42
25– 35
Relative permittivity εr (100 Hz)
2.8–3.2
3.4–3.6
3.3–4.0
2.6–2.9
Dielectric loss tan δ (10−4 ) (100 Hz)
7 –20
20
15 –20
10– 40
Refractive index n D (589 nm)
Temperature coefficient dn D / dT (1/K)
1.58–1.59
−1.42 × 10−4
1.57– 1.64
1.58
Steam permeation (g/(m2 d))
4
4.5–5.5, 0.6 (str)
Gas permeation (cm3 /(m2 d bar))
680 (N2 ), 4000 (O2 )
14 500 (CO2 )
6.6 (N2 ), 30 (O2 )
140 (CO2 ), 12 (air)
9–15 (str, N2 )
80 –110 (str, O2 )
200– 340 (str, CO2 )
Melt viscosity–molar-mass relation
Viscosity–molar-mass relation
[η] = 4.25 × 10−3 M 0.69 (PET)
Polymers
1.2 × 103
Viscosity η (Pa s)
3.3 Tables and Figures
Stress σ (MPa)
280 ˚C
10 3
80
8 × 102
60
6 × 102
40
10 0
10 1
10 2
10 3
Shear rate dγ /dt (s–1)
Fig. 3.3-48 Poly(ethylene terephthalate), PET: viscosity
versus shear rate
0
0
2
4
6
Strain ε (%)
Fig. 3.3-49 Poly(butylene terephthalate), PBT: stress ver-
sus strain
Viscosity η (Pa s)
Creep modulus Etc (MPa)
2500
250 ˚C
260 ˚C
270 ˚C
5 MPa
10 MPa
15 MPa
20 MPa
25 MPa
2000
10 2
1500
1000
500
10 1 1
10
10
2
10
3
4
10
10
Shear rate dγ /dt (s–1)
5
0
10 0
10 1
10 2
Fig. 3.3-50 Poly(butylene terephthalate), PBT: viscosity
10 3
10 4
Time t (h)
Fig. 3.3-51 Poly(butylene terephthalate), PBT: creep mod-
versus shear rate
ulus versus time
Stress σ (MPa)
80
Viscosity η (Pa s)
280 ˚C
300 ˚C
320 ˚C
10 3
60
40
– 20 ˚C
0 ˚C
23 ˚C
40 ˚C
60 ˚C
80 ˚C
100 ˚C
120 ˚C
20
0
0
1
2
3
4
5
Strain ε (%)
10 2
10 2
10 3
4
Shear rate dγ /dt (s–1)10
Fig. 3.3-52 Poly(phenylene ether), PPE: stress versus
Fig. 3.3-53 Poly(phenylene ether), PPE: viscosity versus
strain
shear rate
Part 3 3.3
– 20 ˚C
0 ˚C
23 ˚C
40 ˚C
60 ˚C
80 ˚C
20
4 × 102 –1
10
505
506
Part 3
Classes of Materials
3.3.3.7 Polysulfones and Polysulfides
Creep modulus Etc (MPa)
2500
Polysulfone, PSU; Poly(ether sulfone), PES. Applications: injection-molded parts, coatings, electronic
articles, printed circuits, houseware, medical devices,
membranes, lenses, optical devices.
Poly(phenylene sulfide), PPS. Applications: injection-molded parts, sintered parts, foils, fibers, housings,
sockets, foams.
2000
1500
10.5 MPa
7 MPa
14 MPa
3.5 MPa
17.5 MPa
21 MPa
24.5 MPa
28 MPa
1000
500
Part 3 3.3
0
10 0
10 1
10 2
10 3
10 4
Time t (h)
Fig. 3.3-54 Poly(phenylene ether), PPE: creep modulus
versus time
Stress σ (MPa)
Y
100
Stress σ (MPa)
Y
Y
Y
80
Y
60
Y
Y
60
Y
Y
0 ˚C
23 ˚C
40 ˚C
60 ˚C
80 ˚C
100 ˚C
120 ˚C
140 ˚C
160 ˚C
20
Y = yield point
1
2
3
Y
– 40 ˚C
0 ˚C
23 ˚C
40 ˚C
60 ˚C
80 ˚C
100 ˚C
120 ˚C
140 ˚C
160 ˚C
Y
Y
0
0
Y
Y
Y
40
Y
Y
4
5
Strain ε (%)
Fig. 3.3-55 Polysulfone, PSU: stress versus strain
40
B
20
0
0
Y = yield point
B = break point
1
2
3
4
5
6
7
8
9
Strain ε (%)
Fig. 3.3-57 Poly(ether sulfone), PES: stress versus strain
Creep modulus Etc (MPa)
3000
Creep modulus Etc (MPa)
2500
2300
2200
2000
2100
2000
1900
1800
1700 1
10
1500
10 MPa
13.3 MPa
16.6 MPa
19.9 MPa
23.2 MPa
10 2
26.5 MPa
29.8 MPa
33.1 MPa
36.4 MPa
40 MPa
10 3
1000
10 1
10 4
10 5
Time t (h)
Fig. 3.3-56 Polysulfone, PSU: creep modulus versus time
10 MPa
14.4 MPa
18.8 MPa
23.2 MPa
27.6 MPa
10 2
32.0 MPa
36.4 MPa
40.8 MPa
45.2 MPa
50.0 MPa
10 3
10 4
10 5
Time t (h)
Fig. 3.3-58 Poly(ether sulfone), PES: creep modulus ver-
sus time
Polymers
3.3 Tables and Figures
507
Table 3.3-21 Polysulfone, PSU; poly(phenylene sulfide), PPS; poly(ether sulfone), PES
PSU
Melting temperature Tm (◦ C)
PPS
PES
285
Enthalpy of fusion ∆Hu (J/mol) (mu)
Entropy of fusion ∆Su (J/(K mol)) (mu)
Heat capacity c p (kJ/(kg K))
1.30
1.10
17
36
Temperature coefficient dc p / dT (kJ/(kg K2 ))
Enthalpy of combustion ∆Hc (kJ/g)
Glass transition temperature Tg
(◦ C)
85
225
175– 210
200
215– 225
Thermal conductivity λ (W/(m K))
0.28
0.25
0.18
Density 1.24– 1.25
1.34
1.36– 1.37
5.5–6
5.5
5–5.5
2.5–2.7
3.4
2.6–2.8
(g/cm3 )
Coefficient of thermal expansion
α (10−5 /K) (linear)
Compressibility κ (1/MPa) (cubic)
Elastic modulus E (GPa)
Shear modulus G (GPa)
Poisson’s ratio µ
Stress at yield σy (MPa)
70– 80
80– 90
Strain at yield εy (%)
5.5–6
5.5–6.5
Stress at 50% elongation σ50 (MPa)
Stress at fracture σb (MPa)
50– 100
75
85
Strain at fracture εb (%)
25– 30
3
30– 80
Impact strength (Charpy)
(kJ/m2 )
Notched impact strength (Charpy) (kJ/m2 )
Sound velocity vs (m/s) (longitudinal)
2260
Sound velocity vs (m/s) (transverse)
920
2260
Shore hardness D
Volume resistivity ρe (Ω m)
> 1013
Surface resistivity σe (Ω)
> 1015
Electric strength E B (kV/mm)
20– 30
59.5
20– 30
Relative permittivity εr (100 Hz)
3.2
3.1
3.5–3.7
Dielectric loss tan δ (10−4 ) (100 Hz)
8–10
4
10– 20
Refractive index n D (589 nm)
1.63
Temperature coefficient dn D / dT (1/K)
Steam permeation (g/(m2 d)) (25 µm)
Gas permeation
(cm3 /(m2
d bar)) (25 µm)
6
630 (N2 )
3600 (O2 )
15 000 (CO2 )
Melt viscosity–molar-mass relation
Viscosity–molar-mass relation
> 1013
1013
> 1013
1.65
Part 3 3.3
190
Vicat softening temperature TV 50/50 (◦ C)
508
Part 3
Classes of Materials
3.3.3.8 Polyimides and Polyether Ketones
Poly(amide imide), PAI. Applications: constructional
parts, wheels, rotors, bearings, housings, slip fittings,
lacquers.
Poly(ether imide), PEI. Applications: electrical
housings, sockets, microwave parts, bearings, gear
wheels, automotive parts.
Polyimide, PI. Applications: foils, semifinished
goods, sintered parts.
Table 3.3-22 Poly(amide imide), PAI; poly(ether imide), PEI; polyimide, PI; poly(ether ether ketone), PEEK
PAI
PEI
(◦ C)
Part 3 3.3
Melting temperature Tm
Enthalpy of fusion ∆Hu (J/mol) (mu)
Entropy of fusion ∆Su (J/(K mol)) (mu)
Heat capacity c p (kJ/(kg K))
Temperature coefficient dc p / dT (kJ/(kg K2 ))
Enthalpy of combustion ∆Hc (kJ/g)
Glass transition temperature Tg (◦ C)
Vicat softening temperature TV 50/50 (◦ C)
Thermal conductivity λ (W/(m K))
Density (g/cm3 )
Coefficient of thermal expansion
α (10−5 /K) (linear)
Compressibility κ (1/MPa) (cubic)
Elastic modulus E (GPa)
Shear modulus G (GPa)
Poisson’s ratio µ
Stress at yield σy (MPa)
Strain at yield εy (%)
Stress at 50% elongation σ50 (MPa)
Stress at fracture σb (MPa)
Strain at fracture εb (%)
Impact strength (Charpy) (kJ/m2 )
Notched impact strength (Charpy) (kJ/m2 )
Sound velocity vs (m/s) (longitudinal)
Sound velocity vs (m/s) (transverse)
Shore hardness D
Volume resistivity ρe (Ω m)
Surface resistivity σe (Ω)
Electric strength E B (kV/mm)
Relative permittivity εr (100 Hz)
Dielectric loss tan δ (10−4 ) (100 Hz)
Refractive index n D (589 nm)
Temperature coefficient dn D / dT (1/K)
Steam permeation (g/(m2 d)) (25 µm)
Gas permeation (cm3 /(m2 d bar)) (25 µm)
Melt viscosity–molar-mass relation
Viscosity–molar-mass relation
PI
PEEK
335– 345
1.1
240 –275
250– 270
260
0.29– 0.35
1.43
5–6
145
0.26
1.38 –1.40
3.0–3.5
215
220
0.22
1.27
5.5–6.0
4.5–4.7
2.9–3.0
3.0–3.2
4.7
0.25
1.32
4.7
0.41
5
150 –160
7–8
105
60
75– 100
88
100
50
1015
> 1016
25
3.5–4.2
10
1016
> 1016
25
3.2–3.5
10 –15
> 1014
> 1015
200
3.4
52
1014
1.66
25
94 (N2 )
390 (O2 )
700 (CO2 )
3.2
30
Polymers
Viscosity η (Pa s)
3.3 Tables and Figures
509
Stress σ (MPa)
355 ˚C
375 ˚C
395 ˚C
10 3
140
120
100
80
60
10 2
20
10 2
10 3
10 4
Shear rate dγ /dt (s–1)
Fig. 3.3-59 Poly(ether imide), PEI: viscosity versus shear
0
0
2
4
6
8
Strain ε (%)
Fig. 3.3-60 Poly(ether imide), PEI: stress versus strain
rate
Poly(ether ether ketone), PEEK. Applications: injection-molded parts, automotive parts, aircraft parts,
electronic parts, cable insulation, foils, fibers, tapes,
plates.
Creep modulus Etc (MPa)
3000
3.3.3.9 Cellulose
2500
2000
33 MPa
38.5 MPa
44 MPa
49.5 MPa
5.5 MPa
11 MPa
16.5 MPa
22 MPa
27.5 MPa
10 0
10 1
10 2
10 3
10 4
Time t (h)
Fig. 3.3-61 Poly(ether imide), PEI: creep modulus versus
time
Cellulose acetate, CA. Applications: tool handles, pens,
combs, buckles, buttons, electronic parts, spectacles,
hollow fibers, fibers, foils, lacquers, resin adhesives,
sheet molding compounds (SMCs), bulk molding compounds (BMCs).
Cellulose propionate, CP. Applications: fibers, foils,
lacquers, resin adhesives, sheet molding compounds,
bulk molding compounds (BMC), spectacles, houseware
goods, boxes.
Table 3.3-23 Cellulose acetate, CA; cellulose propionate, CP; cellulose acetobutyrate, CAB; ethylcellulose, EC; vulcan-
ized fiber, VF
Melting temperature Tm
CA
CP
CAB
1.6
1.7
1.6
77–110
70– 100
65 –100
(◦ C)
Enthalpy of fusion ∆Hu (J/mol) (mu)
Entropy of fusion ∆Su (J/(K mol)) (mu)
Heat capacity c p (kJ/(kg K))
Temperature coefficient dc p / dT (kJ/(kg K2 ))
Enthalpy of combustion ∆Hc (kJ/g)
Glass transition temperature Tg (◦ C)
Vicat softening temperature TV 50/50 (◦ C)
EC
VF
Part 3 3.3
– 40 ˚C
0 ˚C
23 ˚C
100 ˚C
120 ˚C
180 ˚C
40
510
Part 3
Classes of Materials
Table 3.3-23 Cellulose acetate, CA; cellulose propionate, CP; cellulose acetobutyrate, CAB; . . . , cont.
CA
CP
CAB
Thermal conductivity λ (W/(m K))
0.22
0.21
0.21
EC
VF
Density (g/cm3 )
1.26– 1.32
1.17–1.24
Coefficient of thermal expansion
10 –12
11–15
1.16–1.22
1.12– 1.15
1.1–1.45
10–15
10
1.0–3.0
1.0–2.4
0.8–2.3
1.2–1.3
0.75
0.85
α (10−5 /K) (linear)
Compressibility κ (1/MPa) (cubic)
Elastic modulus E (GPa)
Shear modulus G (GPa)
Poisson’s ratio µ
Part 3 3.3
Stress at yield σy (MPa)
25 –55
20–50
20–55
Strain at yield εy (%)
2.5–4
3.5–4.5
3.5–5
Stress at fracture σb (MPa)
38
14–55
26
Strain at fracture εb (%)
3
30–100
4
Volume resistivity ρe (Ω m)
1010 – 1014
1010 –1014
1010 –1014
1011 – 1013
Surface resistivity σe (Ω)
1010 – 1014
1012 –1014
1012 –1014
1011 – 1013
Electric strength E B (kV/mm)
25 –35
30–35
32–35
≈ 30
Relative permittivity εr (100 Hz)
5–6
4.0–4.2
3.7–4.2
≈4
70 –100
50
50–70
100
1.47– 1.50
1.47–1.48
1.48
35– 40
Stress at 50% elongation σ50 (MPa)
85– 100
Impact strength (Charpy) (kJ/m2 )
Notched impact strength (Charpy) (kJ/m2 )
Sound velocity vs (m/s) (longitudinal)
Sound velocity vs (m/s) (transverse)
Shore hardness D
Dielectric loss tan δ
(10−4 )
(100 Hz)
Refractive index n D (589 nm)
Temperature coefficient dn D / dT (1/K)
Steam permeation (g/(m2 d)) (25 µm)
150– 600
Gas permeation (cm3 /(m2 d bar)) (25 µm)
470– 630 (N2 )
460–600
3800 (N2 )
13 000–15 000 (O2 )
15 000 (O2 )
14 000 (CO2 )
94 000 (CO2 )
1800– 2300 (air)
Melt viscosity–molar-mass relation
Viscosity–molar-mass relation
Cellulose acetobutyrate, CAB. Applications: fibers,
foils, lacquers, resin adhesives, sheet molding compounds, bulk molding compounds, automotive parts,
switches, light housings, spectacles.
Ethylcellulose, EC. Applications: foils, injectionmolded parts, lacquers, adhesives.
Vulcanized fiber, VF. Applications: gear wheels,
abrasive wheels, case plates.
Polymers
3.3.3.10 Polyurethanes
Polyurethane, PUR; thermoplastic polyurethane elastomer, TPU. Applications: blocks, plates, formed pieces,
cavity forming, composites, coatings, impregnations,
3.3 Tables and Figures
511
films, foils, fibers, molded foam plastics, insulation
boards, sandwich boards, installation boards, reaction
injection molding (RIM), automotive parts, houseware
goods, sports goods.
Table 3.3-24 Polyurethane, PUR; thermoplastic polyurethane elastomer, TPU
PUR
TPU
1.76
0.5
Glass transition temperature Tg (K)
15–90
−40
Vicat softening temperature TV 50/50 (◦ C)
100–180
Thermal conductivity λ (W/(m K))
0.58
1.70
Density (g/cm3 )
1.05
1.1–1.25
Coefficient of thermal expansion α (10−5 /K) (linear)
1.0–2.0
15
4.0
0.015–0.7
Melting temperature Tm
(◦ C)
Enthalpy of fusion ∆Hu (J/mol) (mu)
Entropy of fusion ∆Su (J/(K mol)) (mu)
Enthalpy of combustion ∆Hc (kJ/mol) (mu)
Compressibility κ (1/MPa) (cubic)
Elastic modulus E (GPa)
Shear modulus G (GPa)
0.006–0.23
Poisson’s ratio µ
Stress at yield σy (MPa)
Strain at yield εy (%)
Stress at 50% elongation σ50 (MPa)
Stress at fracture σb (MPa)
70–80
30– 50
Strain at fracture εb (%)
3 –6
300–500
Impact strength (Charpy) (kJ/m2 )
Notched impact strength (Charpy) (kJ/m2 )
Sound velocity vs (m/s) (longitudinal)
1550–1750
Sound velocity vs (m/s) (transverse)
Shore hardness D
60–90
30– 70
Volume resistivity ρe (Ω m)
1014
1010
Surface resistivity σe (Ω)
1014
1011
Electric strength E B (kV/mm)
24
30– 60
Relative permittivity εr (100 Hz)
3.6
6.5
Dielectric loss tan δ (10−4 ) (100 Hz)
500
300
Refractive index n D (589 nm)
Temperature coefficient dn D / dT (1/K)
Steam permeation (g/(m2 d)) (25 µm)
13– 25
Gas permeation (cm3 /(m2 d bar)) (25 µm)
550–1600 (N2 )
1000–4500 (O2 )
6000–22 000 (CO2 )
Melt viscosity–molar-mass relation
Viscosity–molar-mass relation
Part 3 3.3
Heat capacity c p (kJ/(kg K))
Temperature coefficient dc p / dT (kJ/(kg K2 ))
512
Part 3
Classes of Materials
Table 3.3-25 Polyurethane, PUR: thermal conductivity and coefficient of thermal expansion
Temperature T (◦ C)
−200
−150
Thermal conductivity λ (W/(m K))
0.20
Average coefficient of thermal
9.9
12.7
expansion α∗ (10−5 /K) (linear)a
a α∗ (T ) = (1/(T − 20)) T
T in ◦ C
T =20 α (T ) dT,
−100
0.21
16.0
Viscosity η (Pa s)
10 3
60
235 ˚C
240 ˚C
245 ˚C
−50
0.22
26.0
0
0.21
20.0
20
50
0.20
100
0.20
Stress σ (MPa)
B
50
Part 3 3.3
40
B
10 2
B
30
20
10 1
23 ˚C
80 ˚C
120 ˚C
B = break point
10
10 1
10 2
10 3
10 4
Shear rate dγ /dt (s–1)
Fig. 3.3-62 Thermoplastic polyurethane elastomer, TPU:
viscosity versus shear rate
3.3.3.11 Thermosets
Phenol formaldehyde, PF; urea formaldehyde, UF;
melamine formaldehyde, MF. Applications: molded
pieces, granulated molding compounds (GMCs), bulk
molding compounds, dough molding compounds
0
0.0
0.2
0.4
0.6
Fig. 3.3-63 Phenol formaldehyde, PF: stress versus strain
(DMCs), sheet molding compounds, plates, gear wheels,
abrasive wheels, lacquers, coatings, chipboards, adhesives, foams, fibers.
Unsaturated polyester, UP; diallyl phthalate, DAP.
Applications: molding compounds, cast resins, electronic parts, automotive parts, containers, tools, houseware goods, sports goods.
Table 3.3-26 Phenol formaldehyde, PF; urea formaldehyde, UF; melamine formaldehyde, MF
PF
UF
MF
1.30
1.20
1.20
Thermal conductivity λ (W/(m K))
0.35
0.40
0.50
Density 1.4
1.5
1.5
3–5
5 –6
5–6
Melting temperature Tm
(◦ C)
Enthalpy of fusion ∆Hu (J/mol) (mu)
Entropy of fusion ∆Su (J/(K mol)) (mu)
Heat capacity c p (kJ/(kg K))
Temperature coefficient dc p / dT (kJ/(kg K2 ))
Enthalpy of combustion ∆Hc (kJ/g)
Glass transition temperature Tg (◦ C)
Vicat softening temperature TV 50/50 (◦ C)
(g/cm3 )
Coefficient of thermal expansion α (10−5 /K) (linear)
0.8
Strain ε (%)
Polymers
3.3 Tables and Figures
513
Table 3.3-26 Phenol formaldehyde, PF; urea formaldehyde, UF; melamine formaldehyde, MF, cont.
PF
UF
MF
5.6–12
7.0–10.5
4.9–9.1
Stress at fracture σb (MPa)
25
30
30
Strain at fracture εb (%)
0.4–0.8
0.5–1.0
0.6–0.9
Impact strength (Charpy) (kJ/m2 )
4.5–10
Notched impact strength (Charpy) (kJ/m2 )
1.5–3
Compressibility κ (1/MPa) (cubic)
Elastic modulus E (GPa)
Shear modulus G (GPa)
Poisson’s ratio µ
Stress at yield σy (MPa)
Strain at yield εy (%)
Stress at 50% elongation σ50 (MPa)
Part 3 3.3
Sound velocity vs (m/s) (longitudinal)
Sound velocity vs (m/s) (transverse)
Shore hardness D
82
Volume resistivity ρe (Ω m)
109
109
109
Surface resistivity σe (Ω)
> 108
> 1010
> 108
Electric strength E B (kV/mm)
30 –40
30–40
29– 30
Relative permittivity εr (100 Hz)
6
8
9
1000
400
600
Dielectric loss tan δ
(10−4 )
(100 Hz)
Refractive index n D (589 nm)
Temperature coefficient dn D / dT (1/K)
1.63
Steam permeation (g/(m2 d)) (40 µm)
43
Gas permeation
(cm3 /(m2
90
400
d bar))
Melt viscosity–molar-mass relation
Viscosity–molar-mass relation
Stress σ (MPa)
B
80
Stress σ (MPa)
50
60
B
B
40
B
40
B
23 ˚C
80 ˚C
120 ˚C
B = break point
20
0
0.0
30
B
0.5
1.0
1.5
Strain ε (%)
Fig. 3.3-64 Melamine formaldehyde, MF: stress versus
strain
20
23 ˚C
80 ˚C
120 ˚C
B = break point
10
0
0.0
0.2
0.4
0.6
Strain ε (%)
Fig. 3.3-65 Unsaturated polyester, UP: stress versus strain
514
Part 3
Classes of Materials
Table 3.3-27 Unsaturated polyester, UP; diallyl phthalate, DAP; silicone resin, SI; epoxy resin, EP
UP
Melting temperature Tm
DAP
SI
EP
0.8–0.9
0.8–1.0
(◦ C)
Enthalpy of fusion ∆Hu (J/mol) (mu)
Entropy of fusion ∆Su (J/(K mol)) (mu)
Heat capacity c p (kJ/(kg K))
Temperature coefficient dc p / dT (kJ/(kg K2 ))
1.20
Enthalpy of combustion ∆Hc (kJ/g)
Glass transition temperature Tg (◦ C)
Vicat softening temperature TV 50/50
70 –120
(◦ C)
Part 3 3.3
Thermal conductivity λ (W/(m K))
0.7
0.6
0.3–0.4
0.88
Density (g/cm3 )
2.0
1.51–1.78
1.8–1.9
1.9
Coefficient of thermal expansion α (10−5 /K) (linear)
2–4
1–3.5
2–5
1.1–3.5
14 –20
9.8–15.5
6–12
21.5
Stress at fracture σb (MPa)
30
40–75
28– 46
30 –40
Strain at fracture εb (%)
0.6–1.2
Compressibility κ (1/MPa) (cubic)
Elastic modulus E (GPa)
Shear modulus G (GPa)
Poisson’s ratio µ
Stress at yield σy (MPa)
Strain at yield εy (%)
Stress at 50% elongation σ50 (MPa)
4
Impact strength (Charpy) (kJ/m2 )
Notched impact strength (Charpy) (kJ/m2 )
Sound velocity vs (m/s) (longitudinal)
Sound velocity vs (m/s) (transverse)
Shore hardness D
82
Volume resistivity ρe (Ω m)
> 1010
1011 –1014
1012
> 1012
Surface resistivity σe (Ω)
> 1010
1013
1012
> 1012
Electric strength E B (kV/mm)
25 –53
40
20– 40
30 –40
Relative permittivity εr (100 Hz)
6
5.2
4
3.5–5
400
400
300
10
Dielectric loss tan δ
(10−4 )
(100 Hz)
Refractive index n D (589 nm)
Temperature coefficient dn D / dT (1/K)
1.54 –1.58
1.47
Steam permeation (g/(m2 d))
Gas permeation (cm3 /(m2 d bar))
Melt viscosity–molar-mass relation
Viscosity–molar-mass relation
Table 3.3-28 Unsaturated polyester, UP: coefficient of thermal expansion
Temperature T (◦ C)
Coefficient of thermal
expansion α (10−5 /K) (linear)
−200
3.0
−150
4.1
−100
4.9
−50
5.8
0
7.3
20
8.4
50
10.7
100
15.0
Polymers
3.3 Tables and Figures
515
Table 3.3-29 Epoxy resin, EP: thermal conductivity and coefficient of thermal expansion
Temperature T (◦ C)
−200
−150
−100
−50
Thermal conductivity λ
(W/(m K))
Coefficient of thermal
expansion α (10−5 /K) (linear)
1.8
2.8
3.8
4.9
0
20
50
100
150
0.20
0.20
0.20
0.20
6.1
6.2
6.3
7.5
13.0
Viscosity η (Pa s)
Stress σ (MPa)
80
B
260 ˚C
280 ˚C
300 ˚C
10 3
70
60
Part 3 3.3
B
50
10 2
40
30
B
20
23 ˚C
80 ˚C
120 ˚C
B = break point
10
0
0.0
0.2
0.4
0.6
0.8
Strain ε (%)
Fig. 3.3-66 Epoxy resin, EP: stress versus strain
Silicone resin, SI. Applications: molding compounds, laminates.
Epoxy resin EP, Applications: moulding compounds.
10 1
10 1
10 2
10 3
10 4
10 5
Shear rate dγ /dt (s–1)
Fig. 3.3-67 Poly(acrylonitrile-co-butadiene-co-styrene) +
polycarbonate, ABS + PC: viscosity versus shear rate
Stress σ (MPa)
60
B
B
3.3.3.12 Polymer Blends
B
B
40
Polypropylene + ethylene/propylene/diene rubber, PP +
EPDM. Applications: automotive parts, flexible tubes,
sports goods, toys.
Poly(acrylonitrile-co-butadiene-co-styrene) + polycarbonate, ABS + PC; Poly(acrylonitrile-co-butadieneco-acrylester) + polycarbonate ASA + PC; poly(acrylonitrile-co-butadiene-co-styrene) + polyamide, ABS +
PA. Applications: semifinished goods, automotive parts,
electronic parts, optical parts, houseware goods.
Poly(vinyl chloride) + poly(vinyl chloride-coacrylate), PVC + VC/A; poly(vinyl chloride) +
chlorinated polyethylene, PVC + PE-C, poly(vinyl chloride) + poly(acrylonitrile-co-butadiene-co-acrylester),
PVC + ASA. Applications: semifinished goods, foils,
plates, profiles, pipes, fittings, gutters, window frames,
door frames, panels, housings, bottles, blow molding,
disks, blocking layers, fibers, fleeces, nets.
Polycarbonate + poly(ethylene terephthalate), PC
+ PET; polycarbonate + liquid crystal polymer, PC +
B
B
20
B = break point
0
0
2
4
– 20 ˚C
0 ˚C
23 ˚C
40 ˚C
60 ˚C
90 ˚C
Strain ε (%) 6
Fig. 3.3-68 Poly(acrylonitrile-co-butadiene-co-styrene) +
polycarbonate, ABS + PC: stress versus strain
LCP; polycarbonate + poly(butylene terephthalate), PC
+ PBT. Applications: optical devices, covering devices,
panes, safety glasses, semifinished goods, houseware
goods, compact discs, bottles.
Poly(ethylene terephthalate) + polystyrene, PET +
PS; poly(butylene terephthalate) + polystyrene, PBT +
PS. Applications: same as for PET, PBT, and PS.
516
Part 3
Classes of Materials
Table 3.3-30 Polypropylene + ethylene/propylene/diene rubber, PP + EPDM; poly(acrylonitrile-co-butadiene-costyrene) + polycarbonate, ABS + PC; poly(acrylonitrile-co-butadiene-co-styrene) + polyamide, ABS + PA;
poly(acrylonitrile-co-butadiene-co-acrylester) + polycarbonate, ASA + PC
PP + EPDM
Melting temperature Tm
(◦ C)
ABS + PC
ABS + PA
ASA + PC
160–168
Enthalpy of fusion ∆Hu (J/mol) (mu)
Entropy of fusion ∆Su (J/(K mol)) (mu)
Heat capacity c p (kJ/(kg K))
Temperature coefficient dc p / dT (kJ/(kg K2 ))
Enthalpy of combustion ∆Hc (kJ/g)
Part 3 3.3
Glass transition temperature Tg (◦ C)
Vicat softening temperature TV 50/50 (◦ C)
Thermal conductivity λ (W/(m K))
Density (g/cm3 )
0.89–0.92
1.08– 1.17
1.07–1.09
1.15
Coefficient of thermal expansion α (10−5 /K) (linear)
15–18
7–8.5
9
7–9
0.5–1.2
2.0–2.6
1.2–1.3
2.3–2.6
Stress at yield σy (MPa)
10– 25
40– 60
30–32
53– 63
Strain at yield εy (%)
10– 35
3–3.5
> 50
> 50
> 50
> 50
Volume resistivity ρe (Ω m)
> 1014
> 1014
2 × 1012
1011 –1013
Surface resistivity σe (Ω)
> 1013
1014
3 × 1014
1013 –1014
Electric strength E B (kV/mm)
35– 40
24
30
Relative permittivity εr (100 Hz)
2.3
3
3–3.5
Dielectric loss tan δ (10−4 ) (100 Hz)
2.5
30– 60
20– 160
Compressibility κ (1/MPa) (cubic)
Elastic modulus E (GPa)
Shear modulus G (GPa)
Poisson’s ratio µ
4.6–5
Stress at 50% elongation σ50 (MPa)
Stress at fracture σb (MPa)
Strain at fracture εb (%)
Impact strength (Charpy)
(kJ/m2 )
Notched impact strength (Charpy) (kJ/m2 )
Sound velocity vs (m/s) (longitudinal)
Sound velocity vs (m/s) (transverse)
Shore hardness D
Refractive index n D (589 nm)
Temperature coefficient dn D / dT (1/K)
Steam permeation (g/(m2 d))
Gas permeation (cm3 /(m2 d bar))
Melt viscosity–molar-mass relation
Viscosity–molar-mass relation
Polymers
60
1000
– 20 ˚C
0 ˚C
23 ˚C
40 ˚C
60 ˚C
90 ˚C
Y = yield point
Y
40
800
Y
Y
600
2 MPa
4 MPa
6 MPa
8 MPa
10 MPa
20
12 MPa
14 MPa
16 MPa
18 MPa
10 1
10 2
10 3Time t (h) 10 4
0
0
2
4
6
Strain ε (%)
Fig. 3.3-69 Poly(acrylonitrile-co-butadiene-co-styrene) +
polycarbonate, ABS + PC: creep modulus versus time
Viscosity η (Pa s)
10 5
200 ˚C
250 ˚C
300 ˚C
10 4
Fig. 3.3-70 Poly(acrylonitrile-co-butadiene-co-styrene) +
polyamide, ABS + PA: stress versus strain
Stress σ (MPa)
Y
80
Y
10 3
Y
60
Y
Y
10 2
10
1
10
0
– 40 ˚C
– 20 ˚C
0 ˚C
23 ˚C
40 ˚C
60 ˚C
80 ˚C
100 ˚C
Y
40
Y
Y
20
10 –2
10 –1
10 0
10 1
10 2
10 3
10 4
10 5
Shear rate dγ /dt (s–1)
Fig. 3.3-71 Poly(acrylonitrile-co-butadiene-co-acrylester)
+ polycarbonate, ASA + PC: viscosity versus shear rate
Y = yield point
0
0
1
2
3
4
5
6
7
8
Strain ε (%)
Fig. 3.3-72 Poly(acrylonitrile-co-butadiene-co-acrylester)
+ polycarbonate, ASA + PC: stress versus strain
Creep modulus Etc (MPa)
2000
Poly(butylene terephthalate) + poly(acrylonitrileco-butadiene-co-acrylester), PBT + ASA. Applications:
same as for PBT and ASA.
Polysulfone + poly(acrylonitrile-co-butadiene-costyrene), PSU + ABS. Applications: same as for
PSU.
Poly(styrene-co-butadiene), PPE + SB. Applications: same as for PPE.
Poly(phenylene ether) + polyamide 66, PPE + PA66.
Applications: automotive parts, semifinished goods.
1500
1000
500 1
10
6 MPa
8.7 MPa
11.4 MPa
14.1 MPa
16.8 MPa
10 2
19.5 MPa
22.2 MPa
24.9 MPa
27.6 MPa
30.0 MPa
10 3
10 4
10 5
Time t (h)
Fig. 3.3-73 Poly(acrylonitrile-co-butadiene-co-acrylester)
+ polycarbonate, ASA + PC: creep modulus versus time
Part 3 3.3
200
10 0
517
Stress σ (MPa)
Creep modulus Etc (MPa)
1200
400
3.3 Tables and Figures
518
Part 3
Classes of Materials
Table 3.3-31 Poly(vinyl chloride) + poly(vinyl chloride-co-acrylate), PVC + VC/A; poly(vinyl chloride) + chlorinated
polyethylene, PVC + PE-C; poly(vinyl chloride) + poly(acrylonitrile-co-butadiene-co-acrylester), PVC + ASA
PVC + VC/A
PVC + PE-C
PVC + ASA
Density (g/cm3 )
1.42–1.44
1.36– 1.43
1.28– 1.33
Coefficient of thermal expansion α (10−5 /K) (linear)
7–7.5
8
7.5–10
2.5–2.7
2.6
2.6–2.8
Stress at yield σy (MPa)
45
40– 50
45– 55
Strain at yield εy (%)
4–5
3
3–3.5
> 50
10 to >50
≈8
Volume resistivity ρe (Ω m)
1013
1012 to >1013
1012 to >1014
Surface resistivity σe (Ω)
> 1013
> 1013
1012 – 1014
3.5
3.1
3.7–4.3
120
140
100– 120
Melting temperature Tm
(◦ C)
Enthalpy of fusion ∆Hu (J/mol) (mu)
Entropy of fusion ∆Su (J/(K mol)) (mu)
Heat capacity c p (kJ/(kg K))
Temperature coefficient dc p / dT (kJ/(kg K2 ))
Enthalpy of combustion ∆Hc (kJ/g)
Glass transition temperature Tg (◦ C)
Part 3 3.3
Vicat softening temperature TV 50/50 (◦ C)
Thermal conductivity λ (W/(m K))
Compressibility κ (1/MPa) (cubic)
Elastic modulus E (GPa)
Shear modulus G (GPa)
Poisson’s ratio µ
Stress at 50% elongation σ50 (MPa)
Stress at fracture σb (MPa)
Strain at fracture εb (%)
Impact strength (Charpy) (kJ/m2 )
Notched impact strength (Charpy) (kJ/m2 )
Sound velocity vs (m/s) (longitudinal)
Sound velocity vs (m/s) (transverse)
Shore hardness D
Electric strength E B (kV/mm)
Relative permittivity εr (100 Hz)
Dielectric loss tan δ
(10−4 )
(100 Hz)
Refractive index n D (589 nm)
Temperature coefficient dn D / dT (1/K)
Steam permeation (g/(m2 d))
Gas permeation (cm3 /(m2 d bar))
Melt viscosity–molar-mass relation
Viscosity–molar-mass relation
Polymers
Stress σ (MPa)
80
Viscosity η (Pa s)
10 3
240 ˚C
268 ˚C
297 ˚C
3.3 Tables and Figures
Y
– 40 ˚C
– 20 ˚C
23 ˚C
40 ˚C
60 ˚C
80 ˚C
Y
60
Y
10 2
Y
20
10 2
0
10 3
10 4
Shear rate dγ /dt (s–1)
Fig. 3.3-74 Polycarbonate + poly(butylene terephthalate),
PC + PBT: viscosity versus shear rate
0
2
4
6
8
10
12
Strain ε (%)
Fig. 3.3-75 Polycarbonate + poly(butylene terephthalate),
PC + PBT: stress versus strain
Table 3.3-32 Polycarbonate + poly(ethylene terephthalate), PC + PET; polycarbonate + liquid crystall polymer, PC +
LCP; polycarbonate + poly(butylene terephthalate), PC + PBT; poly(ethylene terephthalate) + polystyrene, PET + PS;
poly(butylene terephthalate) + polystyrene, PBT + PS
PC + PET
PC + LCP
PC + PBT
PET + PS
PBT + PS
1.05
1.30
Melting temperature Tm (◦ C)
Enthalpy of fusion ∆Hu (J/mol) (mu)
Entropy of fusion ∆Su (J/(K mol)) (mu)
Heat capacity c p (kJ/(kg K))
Temperature coefficient dc p / dT (kJ/(kg K2 ))
Enthalpy of combustion ∆Hc (kJ/g)
Glass transition temperature Tg (◦ C)
Vicat softening temperature TV 50/50 (◦ C)
Thermal conductivity λ (W/(m K))
0.24
0.21
Density (g/cm3 )
1.22
1.2–1.26
1.37
1.31
Coefficient of thermal expansion
α (10−5 /K) (linear)
9–10
8–9
7
6.0
Compressibility κ (1/MPa) (cubic)
Elastic modulus E (GPa)
2.1–2.3
2.6–4.0
2.3
3.1
2.0
Stress at yield σy (MPa)
50–55
66
50–60
47
40
Strain at yield εy (%)
5
5.6–6.9
4–5
Shear modulus G (GPa)
Poisson’s ratio µ
Stress at 50% elongation σ50 (MPa)
Stress at fracture σb (MPa)
Strain at fracture εb (%)
Impact strength (Charpy) (kJ/m2 )
Notched impact strength (Charpy) (kJ/m2 )
Sound velocity vs (m/s) (longitudinal)
74–82
> 50
15
25 to > 50
50
Part 3 3.3
10 1
Y = yield point
Y
40
519
520
Part 3
Classes of Materials
Table 3.3-32 Polycarbonate + poly(ethylene terephthalate), PC + PET; polycarbonate + liquid crystall polymer, PC +
LCP; polycarbonate + poly(butylene terephthalate), PC + PBT; poly(ethylene terephthalate) + polystyrene, PET + PS;
poly(butylene terephthalate) + polystyrene, PBT + PS, cont.
PC + PET
Part 3 3.3
Sound velocity vs (m/s) (transverse)
Shore hardness D
Volume resistivity ρe (Ω m)
Surface resistivity σe (Ω)
Electric strength E B (kV/mm)
Relative permittivity εr (100 Hz)
Dielectric loss tan δ (10−4 ) (100 Hz)
Refractive index n D (589 nm)
Temperature coefficient dn D / dT (1/K)
Steam permeation (g/(m2 d))
Gas permeation (cm3 /(m2 d bar))
Melt viscosity–molar-mass relation
Viscosity–molar-mass relation
PC + LCP
> 1013
> 1015
30
3.3
200
Viscosity η (Pa s)
10
PC + PBT
PET + PS
1014
1014
35
3.3
20–40
> 1012
> 1012
PBT + PS
Stress σ (MPa)
240 ˚C
270 ˚C
300 ˚C
4
80
60
10 3
40
10 2
Y
20
10 1
10 0
10 1
10 2
10 3
10 4
Shear rate dγ /dt (s–1)
Fig. 3.3-76 Poly(phenylene ether) + poly(styrene-co-
butadiene), PPE + SB: viscosity versus shear rate
0
0
1
2
Y = yield point
– 40 ˚C
0 ˚C
23 ˚C
60 ˚C
100 ˚C
3
4
Strain ε (%)
Fig. 3.3-77 Poly(phenylene ether) + poly(styrene-cobutadiene), PPE + SB: stress versus strain
Creep modulus Etc (MPa)
Poly(phenylene ether) + polystyrene, PPE + PS.
Applications: automotive parts, foams, office goods,
electrical parts, houseware goods.
2000
1500
1000
10 1
8 MPa
9.8 MPa
11.6 MPa
13.4 MPa
15.2 MPa
10 2
17.0 MPa
18.8 MPa
20.6 MPa
22.4 MPa
24.0 MPa
10 3
10 4
10 5
Time t (h)
Fig. 3.3-78 Poly(phenylene ether) + poly(styrene-co-
butadiene), PPE + SB: creep modulus versus time
Polymers
3.3 Tables and Figures
521
Table 3.3-33 Poly(butylene terephthalate) + poly(acrylonitrile-co-butadiene-co-acrylester), PBT + ASA; polysulfon +
poly(acrylonitrile-co-butadiene-co-styrene), PSU + ABS; poly(phenylene ether) + poly(styrene-co-butadiene), PPE + SB;
poly(phenylene ether) + polyamide 66, PPE + PA66; poly(phenylene ether) + polystyrene PPE + PS
PBT + ASA
Melting temperature Tm
(◦ C)
PSU + ABS
PPE + SB
PPE + PA66
PPE + PS
225
Enthalpy of fusion ∆Hu (J/mol) (mu)
Entropy of fusion ∆Su (J/(K mol)) (mu)
Heat capacity c p (kJ/(kg K))
1.40
Temperature coefficient dc p / dT (kJ/(kg K2 ))
Enthalpy of combustion ∆Hc (kJ/g)
Vicat softening temperature TV 50/50 (◦ C)
Thermal conductivity λ (W/(m K))
Density (g/cm3 )
0.23
1.21– 1.22
1.13
1.04–1.06
1.09– 1.10
1.06
10
6.5
6.0–7.5
8–11
6.0
2.5
2.1
1.9–2.7
2.0–2.2
2.5
Stress at yield σy (MPa)
53
50
45–65
50– 60
55
Strain at yield εy (%)
3.6
4
3–7
5
20 to >50
> 50
Coefficient of thermal
expansion α (10−5 /K) (linear)
Compressibility κ (1/MPa) (cubic)
Elastic modulus E (GPa)
Shear modulus G (GPa)
Poisson’s ratio µ
Stress at 50% elongation σ50 (MPa)
Stress at fracture σb (MPa)
Strain at fracture εb (%)
> 50
> 50
Volume resistivity ρe (Ω m)
> 1014
> 1013
> 1014
> 1011
1012
Surface resistivity σe (Ω)
> 1015
> 1014
> 1014
> 1012
1012
Electric strength E B (kV/mm)
30
20–30
35–40
95
Relative permittivity εr (100 Hz)
3.3
3.1–3.3
2.6–2.8
3.1–3.4
Dielectric loss tan δ (10−4 ) (100 Hz)
200
40–50
5–15
450
50
Impact strength (Charpy) (kJ/m2 )
Notched impact strength (Charpy) (kJ/m2 )
Sound velocity vs (m/s) (longitudinal)
Sound velocity vs (m/s) (transverse)
Shore hardness D
Refractive index n D (589 nm)
Temperature coefficient dn D / dT (1/K)
Steam permeation (g/(m2 d))
Gas permeation (cm3 /(m2 d bar))
Melt viscosity–molar-mass relation
Viscosity–molar-mass relation
Part 3 3.3
Glass transition temperature Tg (◦ C)
522
Part 3
Classes of Materials
References
3.1
3.2
3.3
3.4
3.5
3.6
Part 3 3
3.7
3.8
3.9
M. D. Lechner, K. Gehrke, E. H. Nordmeier: Makromolekulare Chemie (Birkhäuser, Basel 2003)
G. W. Becker, D. Braun (Eds.): Kunststoff Handbuch
(Hanser, Munich 1969 – 1990)
Kunststoffdatenbank CAMPUS, M-Base, Aachen
(www.m-base.de)
J. Brandrup, E. H. Immergut, E. A. Grulke (Eds.):
Polymer Handbook (Wiley, New York 1999)
J. E. Mark (Ed.): Physical Properties of Polymers
Handbook (AIP, Woodbury 1996)
C. C. Ku, R. Liepins: Electrical Properties of Polymers
(Hanser, Munich 1987)
H. Saechtling: Kunststoff Taschenbuch (Hanser,
Munich 1998)
W. Hellerich, G. Harsch, S. Haenle: Werkstoff-Führer
Kunststoffe (Hanser, Munich 1996)
B. Carlowitz: Kunststoff Tabellen (Hanser, Munich
1995)
3.10
3.11
3.12
3.13
3.14
3.15
3.16
G. Allen, J. C. Bevington (Eds.): Comprehensive Polymer Science (Pergamon, Oxford 1989)
H. Domininghaus: Die Kunststoffe und ihre Eigenschaften (VDI, Düsseldorf 1992)
H. J. Arpe (Ed.): Ullmann’s Encyclopedia of Industrial Chemistry, 5th edn. (VCH, Weinheim 1985 –
1996)
R. E. Kirk, D. F. Othmer (Eds.): Encyclopedia of
Chemical Technology, 4th edn. (Wiley, New York
1978 – 1984)
H. F. Mark, N. Bikales, C. G. Overberger, G. Menges,
J. I. Kroschwitz: Encyclopedia of Polymer Science and Engineering (Wiley, New York 1985 –
1990)
Werkstoff-Datenbank POLYMAT, Deutsches Kunststoff-Institut, Darmstadt
M. Neubronner: Stoffwerte von Kunststoffen. In:
VDI-Wärmeatlas, 8th edn. (VDI, Düsseldorf 1997)