M E 433 Professor John M. Cimbala Lecture 24 Today, we will: • Discuss the Cunningham correction factor for drag coefficient • Discuss terminal settling velocity and equations for its prediction in quiescent air • Discuss aerodynamic equivalent diameter and how to apply it Review of equations for particle motion so far: Relative particle velocity = vr= v − U , where v = particle velocity and U = air velocity. d dd 1 Drag force on a spherical particle = Fdrag = − r CDp D p 2vr vr , where 8 r vr D p 24 24 CD CD = for Re < 0.1 ,= . (1 + 0.0916Re ) for 0.1 < Re < 5 , and Re = µ Re Re d 3 ddd dv p D p 1 r p − r ) g − r CDp D p 2vr vr . Equation of motion for a spherical particle: m p = ( dt 6 8 Correction to account for free molecular effects for very small particles: Use a correction factor or “fudge factor” called the Cunningham correction factor: λ µ π 0.55 1 + Kn 2.514 + 0.80exp − C= , and λ = . , where Kn = Dp 0.499 8 ρ P Kn d 1 C dd Corrected drag force on a spherical particle = Fdrag = − r D p D p 2vr vr . 8 C Example: Variation of Cunningham correction factor with particle diameter Given: Air at STP has mean free path λ = 0.06704 microns. Knudsen number is defined as Kn = λ / D p . Cunningham correction factor is C = 1 + Kn 2.514 + 0.80exp ( −0.55 / Kn ) . (a)To do: Calculate C for particle diameter Dp = 0.1 microns Solution: (b)To do: Calculate C for various values of particle diameter Dp from 0.001 to 100 microns Solution: [I used Excel for the repetitive calculations] Dp (µm) 0.001 0.0025 0.006 0.01 0.025 0.06 0.1 0.25 C 222.7 89.43 37.60 22.79 9.489 4.355 2.921 1.702 Vt (m/s) 6.56E-09 1.65E-08 3.98E-08 6.71E-08 1.75E-07 4.61E-07 8.60E-07 3.13E-06 Re 4.20E-13 2.63E-12 1.53E-11 4.30E-11 2.79E-10 1.77E-09 5.51E-09 5.01E-08 C Dp (µm) 0.6 1.282 1 1.169 2.5 1.067 6 1.028 10 1.017 25 1.007 60 1.003 100 1.0017 Vt (m/s) 1.36E-05 3.44E-05 1.96E-04 1.09E-03 2.99E-03 1.85E-02 1.06E-01 0.295 Plot of Cunningham correction factor vs. particle diameter at STP: Re 5.22E-07 2.20E-06 3.14E-05 4.19E-04 1.92E-03 2.96E-02 4.08E-01 1.89 Corrected equation of motion for a spherical particle: d 3 ddd dv p D p 1 C r p − r ) g − r D p D p 2vr vr . mp = ( dt 6 8 C = m p ρρ But for a spherical particle, we also know its mass,= pV p p p Dp3 . Plugging this 6 mass into the equation of motion (after a little algebra), we get our final expression, d dv r p − r ddd 3 r CD 1 = g− vr vr . dt rp 4 r p C Dp Simplest application – Terminal settling velocity in quiescent air Terminal settling velocity: Vt = ρVt D p 4 ρρ C p − gD p , but CD = CD(Re), where Re = . µ CD 3 ρ Example: Terminal settling velocity as a function of particle diameter Given: Air at STP with Cunningham correction factors from previous calculations. For ρρ C p − Dp 2 ) g . Stokes flow (Re less than about 0.1), CD = 24 / Re , and Vt = ( 18 µ To do: Calculate Vt for various values of particle diameter Dp. Also calculate Re to test our Stokes flow approximation. At STP conditions, r = 1.184 kg/m3, and µ = 1.849 × 10-5 kg/(m s). Use g = 9.807 m/s2 (gravitational constant), and rp = 1000 kg/m3 (unit density spheres). [Give your answers to 3 significant digits, and be careful with units.] Solution: Table to be filled in during class: Vt (m/s) Re Vt (m/s) Re C C Dp (µm) Dp (µm) 0.001 222.7 0.6 1.282 0.0025 89.43 1 1.169 0.006 37.60 2.5 1.067 0.01 22.79 6 1.028 0.025 9.489 10 1.017 0.06 4.355 25 1.007 0.1 2.921 60 1.003 0.25 1.702 100 1.0017 Filled in Table: C Dp (µm) 0.001 222.7 0.0025 89.43 0.006 37.60 0.01 22.79 0.025 9.489 0.06 4.355 0.1 2.921 0.25 1.702 Vt (m/s) 6.56E-09 1.65E-08 3.98E-08 6.71E-08 1.75E-07 4.61E-07 8.60E-07 3.13E-06 Re 4.20E-13 2.63E-12 1.53E-11 4.30E-11 2.79E-10 1.77E-09 5.51E-09 5.01E-08 C Dp (µm) 0.6 1.282 1 1.169 2.5 1.067 6 1.028 10 1.017 25 1.007 60 1.003 100 1.0017 Vt (m/s) 1.36E-05 3.44E-05 1.96E-04 1.09E-03 2.99E-03 1.85E-02 1.06E-01 0.295 Re 5.22E-07 2.20E-06 3.14E-05 4.19E-04 1.92E-03 2.96E-02 4.08E-01 1.89
© Copyright 2026 Paperzz