ME 405 Fall 2006 Professor John M. Cimbala Lecture 34 11/27/2006 Today, we will: • • Discuss Particle Statistics in Section 8.2 Discuss an example particle size distribution in detail – see class handout The data shown below are from the class handout, so you can follow along. j = class (bin number) D p ,min,j (lower limit) D p ,max,j (upper limit) D p,j (middle value) ΔD p ,j = class width nj = frequency (count per class) 1 2 3 4 5 6 7 8 9 10 11 1 4 6 8 9 10 14 16 20 35 50 4 6 8 9 10 14 16 20 35 50 100 2.5 5 7 8.5 9.5 12 15 18 27.5 42.5 75 3 2 2 1 1 4 2 4 15 15 50 104 160 161 75 67 186 61 79 90 17 0 Minimum diameter in class j Maximum diameter in class j f (D p ,j ) = probability in this n j /ΔD p ,j = class = count per n j /(ΔD p ,j n t )= f (D )*ΔD class width p,j = p ,j fraction per n j /n t class width Number of particles in class j (see Plot 1) Width of class j: ΔDp,j = Dp,max,j – Dp,min,j Middle diameter in class j: Dp,j = (Dp,min,j + Dp,max,j) / 2 34.667 80.000 80.500 75.000 67.000 46.500 30.500 19.750 6.000 1.133 0.000 0.0347 0.0800 0.0805 0.0750 0.0670 0.0465 0.0305 0.0198 0.0060 0.0011 0.0000 0.104 0.16 0.161 0.075 0.067 0.186 0.061 0.079 0.09 0.017 0 Probability in class j Fraction of particles in class j divided by class width: nj/(ΔDp,jnt) (see Plot 3) Number of particles in class j divided by class width: nj/ΔDp,j (see Plot 2) 90 200 180 160 140 120 n j 100 80 60 40 20 0 Plot 1 - Simple histogram Plot 2 - Modified histogram count per class width 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 0 10 20 40 50 0.09 0.09 0.08 0.08 Plot 3 - Histogram of fraction per class width 0.07 Plot 4 - Probability density function (PDF), linear scale 0.07 0.06 0.05 0.04 0.03 0.06 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0 0.00 0 10 20 30 40 50 0 10 20 Dp F (Dp ,j ) = cumulative dist. function 0.08 Plot 5 - PDF, log scale 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 1 30 40 50 D p ,j 0.09 PDF = f (Dp ,j ) 30 Dp PDF = f (Dp ,j ) f (Dp ,j ) = fraction per class width Dp 10 D p ,j on a log scale 100 1.2 1 0.8 0.6 0.4 Plot 6 - Cumulative distribution function 0.2 0 0 10 20 30 D p ,max,j 40 50
© Copyright 2026 Paperzz