The Taxonomy of Fluid Dynamics The Cauchy Equation • Valid for any fluid r ∂ ρV r rr r r + ∇ ⋅ ρVV = ρ g + ∇ ⋅ σ ij • ∂t The Navier-Stokes Equation Approximations of the Navier-Stokes equation: Creeping Flow • • • • Linear Density drops out Very low Re r r ∇P = µ∇ 2V Inviscid Flow • Nonlinear • Viscous terms drop out • Bernoulli equation valid along streamlines • Eulerrequation r DV r = −∇P + ρ g • ρ Dt ( ) ( ) • Validr for Newtonian fluid only r r DV r = −∇P + ρ g + µ∇ 2V • ρ Dt Irrotational Flow • Linear • Viscous terms drop out • Bernoulli equation valid everywhere • Superposition valid • Potential r r rflow solutions ζ = ∇ ×V = 0 • r r V = ∇φ , ∇ 2φ = 0 Boundary Layer • Nonlinear • Some viscous terms drop out • Very high Re ∂u ∂v + =0 ∂x ∂y • dU ∂u ∂u ∂ 2u u +v =U +ν 2 ∂x ∂y ∂y dx
© Copyright 2026 Paperzz