Equation Sheet for M E 433 Quizzes and Exams Author: John M. Cimbala, Penn State University. Latest revision, 05 January 2015 Note: This equation sheet will be provided in electronic form as a pop-up window during the quizzes taken at the Testing Center. Do not bring a printout of this equation sheet to the quiz. This equation sheet has information for the entire semester in order of presentation; for the earlier quizzes, ignore the later pages. This sheet is also useful for homework, inclass poll questions, and the open-book portion of the final exam. m 0.3048 m 1 mile 1 Btu 1 kPa m 2 1 kN m 1 kW s , , , , , , , 2 1 kN 1 ft 1.6093 m 1 kJ 1 kJ 1.055056 kJ s 3 3 1 kg 1 ton 1m 4 1 1 tonne (metric ton) 1g 1m , , , 6 , 6 , 9 , Vsphere R p D p . 2.205 lbm 2000 lbm 3 6 1000 kg 10 μg 10 μm 10 nm General and conversions: g 9.807 Molecular weights and mols: m nM , M air 28.97 g/mol , M water 18.02 g/mol , Avagadro’s number: 6.0225 1023 . P TSTP PSTP 101.325 kPa 760 mm Hg Volume and mass flow rate: Q V UAc , m Q V , QSTP Qactual , . PSTP T TSTP 25o C 298.15 K Ideal gas: PV nRuT , R Ru / M , PV mRT , P RT , Ru 8.314 kJ kJ , Rair 0.287 . kmol K kg K J J J J mj j 1 j 1 j 1 j 1 mt Ideal gas mixture: mt m j , nt n j , P Pj , V V j , f j J PV nt RuT , PjV n j RuT , PV j n j RuT , M t y j M j , c j j 1 Relative humidity and vapor pressure: RH PH2O Pv ,H2O Emission factors (EPA AP-42 and CHIEF): EF 100% mj V PH2O Psat,H2O yj Mj Mt , cmolar, j nj V , yj 100% , yH2O mpollutant mraw material or product produced , cj Mj PH2O Patm nj nt Pj P , cj yj Vj V , Mj mj nj Mj P , m j c j Q . Ru T , Pv Psat for any VOC . m discharged 1 E m generated E = APCS removal efficiency . Combustion of hydrocarbons: Stoichiometric equation, C x H y astoich O 2 3.76N 2 bCO 2 cH 2 O dN 2 , Simple dry air = 21% O2 , 79% N2 , Flux chamber: dm j dt V Tank filling: m j , displaced Lapse rate: dc j dt F / O2 n F / O2 n, stoichiometric astoich , where a = molar coeffient of oxidizer O2 , a c j ,a Qa S j c j Qa , m j , generated S j c j ,ss c j ,a Qa , EF M j Pj RuT m j , generated some appropriate denom. . Qliquid in . Coriolis force: Fc 2m U . o o dT C C , Normal lapse rate = 6.5 , Dry adiabatic lapse rate = 9.8 . km km dz Gradient diffusion: J A b dc j da A , where a and A = mass, energy, momentum, … For mass, M j J j Daj . dz dz V d Gaussian plume model: y ax b , z cx f , with x in units of km and y and z in units of m. 2 2 1 y z H exp Absorbing ground: c j , where H hs h = effective stack height. 2 U y z 2 y z 2 2 2 2 m j , s 1 y z H z H 1 y exp Reflecting ground: c j exp . 2 U y z 2 y z 2 y z m j , s , 1 y 2 1 z 2 H H 2 1 z H 2 T exp exp Absorbing ground w/ inversion: c j , exp 2 U y z 2 2 2 y z z where H = effective stack height and HT is the elevation of the reflecting part of the inversion. 1 y 2 m j , s m j , s exp ; at y = 0, c j , F Fumigating, reflecting ground, far downwind: c j , F . 2y 2 U y H T 2 U y H T m j , s Gaussian puff diffusion model: xi yi ax , zi cx , but x in units of m, not km, and yi and zi in units of m. b d Use these empirical values for the instantaneous diffusion coefficients, depending on atmospheric stability conditions: Stability condition a b c d Unstable Neutral Very stable 0.14 0.06 0.02 0.92 0.92 0.89 0.53 0.15 0.05 0.73 0.70 0.61 Adapted from Slade (1968), as found in Heinsohn and Kabel (1999). 2 1 x Ut y exp Absorbing ground: c j x, y, z, t 2 xi yi zi 2 xi yi 2 2 z H zi . y 1 exp Ground level dose, absorbing ground: D j x, y,0 2 U yi zi yi 2 2 H zi , (double for reflecting). mj mj 3 1 3 CD Dp 2 vr vr . , m p ,mean p D p ,am mass , Fgravity p D p g , Fdrag m p ,mean 6 6 8 C Relative particle velocity = vr v U , where v is the particle velocity and U is the air velocity. dv p 3 CD 1 g vr vr , where C is the Cunningham correction factor, Equation of particle motion: dt 4 p C Dp p vr D p 0.55 Kn , , C 1 Kn 2.514 0.80exp , , and CD = CD(Re), where Re 0.499 8 P Dp Kn Particles: cnumber, j CD cj 2 24 24 24 for Re < 0.1 , CD 1 0.0916 Re for 0.1 < Re < 5 , CD 1 0.158Re 3 for 5 < Re < 1000 . Re Re Re 3 Air at STP (25oC): PSTP 101.325 kPa 760 mm Hg , 1.184 kg/m , 1.849 105 kg/ m s , 0.06704 μm . Vt D p p 2 C 4 p C gD p Dp g . , Re . For Stokes flow (Re < 0.1), Vt 3 CD 18 Terminal settling velocity: Vt Gravimetric settling in ducts: Lc Laminar settling: E D p cj HU = where Vt = function of Dp. Grade efficiency: E D p 1 : Vt c j (in) L L if L Lc ; E D p 1 if L Lc . Well-mixed settling: E D p 1 exp . Lc Lc m j , s 1 y exp Gaussian Plume with Particle Settling: c j 2 U y z 2 y x 2 z H 0 Vt U z 2 , where H = H at x =0. 0 Inertial Separation Devices: vr D p WU L 4 p U 2 C Dp , Re , where rm = mean radius, Lc , c c , 3 rm CD vr rm Inertial “settling” velocity: vr Laminar settling: E D p 1 cj c j (in) Standard Lapple cyclone: D p ,cut cj x x 1 exp , where x rm . . Well-mixed settling: E D p 1 Lc c j (in) Lc 3 D23 , E Dp 128 Q p 2 1 D 1 p D p ,cut 2 QP Q , P 40.96 . , Wblower blower WH Air Cleaners in Series and Parallel: m Qj Parallel: E D p overall 1 f j 1 E D p j , where fj = volume fraction through cleaner j, f j . Qtotal j 1 m Series: E D p overall 1 1 E D p j , where the volume flow rate of air through each cleaner is the same. j 1 Rain, Spray Chambers, and Wet Scrubbers as Air Pollution Control Systems: 2 p Dp 2 U 0 Vt , p r1 Stk Single-drop collection grade efficiency: Ed D p . , where Stk 18 Dc Rc Stk 0.35 2 L Dc 2 Qa Vc Overall collection grade efficiency: E D p 1 exp , where Lc , Vc Vt ,c U a for a spray 3 Qs Vt ,c Ed D p Lc chamber. Lc must be estimated or calculated for a wet scrubber – depends on size and shape of the packing material. Air Filters: ( = porosity, U0 = air speed, L = filter thickness, Ef(Dp) = single-fiber collection efficiency) Stk p D p 2 U 0 / 18 D f Df L Stk , E f Dp , E D p 1 exp , Lc 4 1 E f Dp Stk 0.425 Lc 2 . Electrostatic Precipitators: (ESPs) L E D p 1 exp , where Lc is dependent on voltages, particle composition, air speed, gap widths, and many other Lc parameters. On quizzes and exams, Lc would either be given, or would be the variable to be calculate. Polydisperse Aerosol Particle Statistics: j = class (bin) number with range Dp,min, j < Dp Dp,max, j, width Dp, j, and mid value Dp, j for j = 1 to J. nj = number of particles in bin j, and nt = total number of particles in the sample, nt = nj . f (Dp, j) = fraction of particles per bin width = nj /(Dp, j nt). Probability of particle in bin j: Prob f D p , j D p , j a nj , Cumulative number distribution: F (a) f D p , j dD p . nt 0 Median diameter: F ( Dp ,50 ) 0.50 . For number distribution, use Dp,50 (number); for mass use Dp,50 (mass). Arithmetic mean diameter: D p ,am 0 D p f D p dD p Geometric mean diameter: D p , gm D n1 p ,1 n2 J 1 nt n D . j j 1 nj D p ,2 ...D p , j ...D p , J nJ p, j 1 nt 1 exp nt n ln D , J j 1 j p, j Dp , gm Dp ,50 Dp ,median . J 2 n j ln Dp , j n j ln D p , j ln D p ,am ln g j 1 j 1 Geometric standard deviation: g e , ln g , ln D p ,am . nt nt 1 J Or, g D p ,50 D p ,15.9 D p ,84.1 D p ,50 D p ,84.1 D p ,15.9 , and g is the same whether based on the number or the mass distribution. So, we can use either the number or mass values of Dp,50, Dp,15.9, and Dp,84.1, i.e., g D p ,50 (number) D p ,15.9 (number) D p ,50 (mass) D p ,15.9 (mass) , etc., where D p , gm number D p ,50 number , and D p , gm mass D p ,50 mass Conversion from number distribution to mass distribution: m j n j p we plot histograms as g Dp, j D p , j D 6 p, j 3 . Mass fraction: g D p , j mj mt a for nonequal bin widths. Cumulative mass distribution: G (a) g Dp , j dD p . 0 ln D (mass) ln D (number) p,50 p ,50 Since ln D p ,50 (mass) ln D p ,50 (number) 3 ln g , g exp . 3 Overall particle removal efficiency: J mj J cj Eoverall E D p , j E D p , j . mt j 1 coverall j 1 2 , but
© Copyright 2026 Paperzz