Review Chapter 9

Name: ___________________________
Review Chapter 9 Transformations
Give the vertices of the image after it is reflected across the given line.
1) A  2,1 , B  6,1 , C  4,3 across the x-axis.
2) N 1, 2  , P  3,5 , Q  3,7  , R 1,6  across the line y  x .
3) A  4, 2  , B  7, 1 , C  0,1 across the y-axis.
4) Which transformation is not an isometry?
Translate the following figures given the vertices and the motion rule.
5) D  2, 4  , E  4,1 , F  4, 2  ;
6) J  3, 1 , K  2, 3 , L 1, 3 , M  2, 1
 x, y    x  2, y  2
 x, y    x  1, y  4
y
y
5
4
5
4
3
2
3
2
1
1
5 4 3 2 1 0
1
1
2
4
3
5
x
5 4 3 2 1 0
1
2
1
2
3
4
5
x
2
3
4
3
4
5
5
Tell what kind of transformation each pair of figures simulates.
7)
8)
9)
10)
11) DEF is translated so that the image of D has coordinates 1,1 .
What is the image of F after this translation?
y
5
4
3
2
1
5 4 3 2 1 0
1
D
E
1
2
3
4
5
F
2 3
4
5
x
11) __________
Rotate the following figure about the origin by the given angle measure.
12) P  4, 3 , Q  2, 3 , R 1, 2  , S 3,0 
13) A  4, 4  , B  2,1 , C  0,3
180 counterclockwise rotation
90 counterclockwise rotation
y
y
5
5
4
4
3
3
2
2
1
1
5 4 3 2 1 0
1
1
2
3
4
5
x
5 4 3 2 1 0
1
2
2
3
3
4
4
5
5
1
2
3
4
5
x
Draw the image of the figure with the given vertices under a dilation with the given scale factor
centered at the origin.
14) D  0, 2  , E  0,0  , F  2,1 , G  2, 2 
Scale factor: 2
15) A  4, 4  , B  2,0  , C  0,0 
scale factor: ½
y
y
5
5
4
4
3
3
2
2
1
1
5 4 3 2 1 0
1
1
2
3
4
5
x
5 4 3 2 1 0
1
2
2
3
3
4
4
5
5
1
2
3
4
5
x
16) The preimage of M  has coordinate  4, 2  . What is the motion rule that translates MNP to
M N P ?
Do the following composite transformations:
17) Translate  x , y    x  4, y  1 ,
18) Rotate 180 counterclockwise,
Reflect across the x-axis.
y
Reflect across the y-axis
y
5
5
A
4
B
3
2
1
5 4 3 2 1 0
1
C
1
3
2
4
A
x
5
3
2
B
C
4
1
5 4 3 2 1 0
1
2
2
3
3
4
4
5
5
1
2
3
4
19) DEF is transformed by a dilation centered at the origin. What
scale factor produces an image that has a vertex at D  2,1 ? Find
x
5
19) __________
E  __________
the coordinates of the other two vertices after the dilation.
F  __________
y
6
E
5
D
4
3
2
1
6 5 4 3 2 1 0
1
1
2
3
4
5
6
x
2
3
4
F
5
6
20)
21) Find the value of x and y?
y
x
2x  3
100
6