Answer Key 3.3 Parallel Proofs Flow Proofs (No Reasons)

1)
1& 2 are
vertical s
2  4
4  2
n
2  1
1  3
4  1
4  3
2)
n
3  1
1  4
3  4
3)
j k
k
1  2
2  3
1  3
4)
j k
k
1  2
2  3
1  3
3& 6 are
vertical s
3  6
1  6
5)
n
7 & 6 are
Linear pair
3  7
7 & 6 are
supplementary
m3  m7
m7  m6  180
m3  m6  180
6)
7 & 6 are
n
Linear pair
2  6
7 & 6 are
supplementary
m6  m7  180
m2  m7  180
m2  m6
7)
m1  101
m5  101
m1  m2
1  5
n
8)
7 & 6 are
Linear pair
7 & 6 are
supplementary
m6  m7  180
m6  75
75  m7  180
m3  105
m7  105
m7  m3
7  3
n
9)
8 & 6
Vertical s
6  8
8  2
6  8
n
10)
2 and 3
form linear pair
2 and 3
7 is supplementary
to 2
are supplementary
7  3
n
11)
BCD & DCG
Are linear pair
mBCD  mBEF  180
AB DC
BCD & BEF
Are supplementary
BCD & DCG
Are supplementary
DCG  ABC
BEF  DCG
BEF  ABC
BC EF
12)
BC EF
ABC  BEF
BEF  DCG
ABC  DCG
AB DC