Notes_11_14
1 of 8
RSSR Generalized Coordinates
A = revolute R
B = spherical S
C = spherical S
D = revolute R
y
B
a
O
d
b
e
A
z
D
a = OA = ground (20.43 cm)
b = AB = input crank (4.00 cm)
in y-z plane
c = CD = follower (10.00 cm)
in x-y plane
d = OD = ground (19.97 cm)
e = BC = coupler (30.42 cm)
= crank angle in y-z plane
= follower angle in x-y plane
c
C
x
y1’
O
y2’
A
z1’
B
2
D
A
x2’
4
z2’
B
x1’
use
doublespherical
D
z4’
y4’
C
x4’ C
y4’’
Notes_11_14
2 of 8
CONSTRAINTS
r2
p
q 2
14 x1
r4
p 4
revA
{r1 }A {r2 }A
T
y 2 ' x1 '
{ĝ 2 } {f̂ 1 }
z 2 ' x1 '
{ĥ 2 }T {f̂ 1 }
{d } {r }C {r }B {d }T {d } L2 double sph BC
4
2
ij
ij
ij
D
D
revD
{r1 } {r4 }
T
x 4 ' z1 '
14 x1
{f̂ 4 } {ĥ 1 }
y 4 ' z1 '
{ĝ 4 }T {ĥ 1 }
T
Euler parameters
{p 2 } {p 2 } 1
{p 4 }T {p 4 } 1
Euler parameters
driver
C f (t)
A, r1 r2 , i 2, j 1
g 2 f 1 , i 2, j 1
h 2 f 1 , i 2, j 1
i B2, j C4
D, r1 r4 , i 4, j 1
f 4 h 1 , i 4, j 1
g 4 h 1 , i 4, j 1
p2
p4
driver
CONSTANTS
0
d
{r1 }A 0 {r1 }D 0
a
0
0
0
c
0
{s 2 }'A 0 {s 2 }'B 0 BC e {s 4 }'C 0 {s 4 }'D 0
0
b
0
0
INITIAL ESTIMATES
0
{r2 } 0
a
2 0 deg
u 1
û 2 v 0
w 0
e 0 C 2 1
e 0
uS
p 2 1 2
e 2 vS 2 0
e 3
wS 2 0
Notes_11_14
d
{r4 } 0
0
4 270 deg
0 u
û 4 0 v
1 w
3 of 8
e 0 C 2 0.7071
e 0
uS
p 4 1 2
e 2 vS 2 0
e 3
wS 2 0.7071
FIXED REVOLUTE DRIVER
= 2 = 2 acos(e0) for link 2
y2’
z1’
{ĥ 1 }T {ĥ 2 } C
{ĥ 1 }T {ĝ 2 } S
{ĥ 1 }T {ĝ 2 }
a tan 2
{ĥ }T {ĥ }
2
1
z2’
OUTPUT LINK
y4’
{f̂ 1 }T {f̂ 4 } C
x4’
{f̂ 1 }T {ĝ 4 } C( 90 ) S
x1’
{f̂ 1 }T {ĝ 4 }
a tan 2
{f̂ }T {f̂ }
4
1
Notes_11_14
4 of 8
JACOBIAN
[I3 ]
01x 3
01x 3
2d T
ij
0
3x 3
01x 3
01x 3
01x 3
0
1x 3
0
1x 3
2[A 2 ][ ~s2 ]'A [G 2 ]
2{f1}'T [A1 ]T [A 2 ][ ~
g 2 ]'[G 2 ]
~
2{f1}'T [A1 ]T [A 2 ][ h 2 ]'[G 2 ]
T
4d ij A 2 ~s2 'B G 2
01x 3
01x 3
T
03 x 4
[I3 ]
01x 4
01x 3
01x 4
01x 3
2p 2
01x 3
01x 4
01x 3
2e 0 u 2e 0 v 2e 0 w
01x 3
A, r1 r2 , i 2, j 1
g 2f1 , i 2, j 1
01x 4
h 2f1 , i 2, j 1
01x 4
T
C
~
i B2, j C4
4d ij A 4 s4 ' G 4
D
D, r r , i 4, j 1
~
2A 4 s4 ' G 4
1
4
~
T
T
f
h
,
i
4, j 1
2{h1}' [A1 ] [A 4 ][ f4 ]' G 4
4 1
g 4 h1 , i 4, j 1
2{h1}'T [A1 ]T [A 4 ][ ~
g 4 ]' G 4
p2
01x 4
T
p4
2p 4
driver
01x 4
03 x 4
2d ij
T
2 1 e 02
03 x 3
[G i ]
2
{p i }
{ i }'
Notes_11_14
5 of 8
VELOCITY
0 A, r1 r2 , i 2, j 1
0
g 2 f 1 , i 2, j 1
0
h 2 f 1 , i 2, j 1
0
i B2, j C4
0 D, r r , i 4, j 1
1
4
f 4 h 1 , i 4, j 1
0
0
g 4 h 1 , i 4, j 1
0
p2
p4
0
f t
driver
Notes_11_14
6 of 8
ACCELERATION
~ ]'[
~ ]'{s }'A
A, r1 r2 , i 2, j 1
[A 2 ][
2
2
2
T
T
~
~
g 2 f1 , i 2, j 1
{f1}' ([A1 ] [A 2 ][2 ]'[2 ]' ){g 2 }'
~ ]'[
~ ]' ){h }'
{f1}'T ([A1 ]T [A 2 ][
h 2f1 , i 2, j 1
2
2
2
T
T
s
i B2, j C4
2{d ij} {d ij} 2{d ij} { }
D
D, r r , i 4, j 1
~
~
[A 4 ][4 ]'[4 ]'{s 4 }'
1
4
T
T
~
~
f 4 h1 , i 4, j 1
{h1}' ( [A1 ] [A 4 ][4 ]'[4 ]' ) {f 4 }'
~ ]'[
~ ]' ) {g }'
{h1}'T ( [A1 ]T [A 4 ][
g 4 h1 , i 4, j 1
4
4
4
T
p2
2p 2 p 2
T
p4
2p 4 p 4
driver
f tt
dot 1
{} {â i }T {â j }
~ ]'[
~ ]'2[
~ ]' T [A ]T [A ][
~ ]'[
~ ]'[
~ ]'[A ]T [A ] ) {a }'
{a j }'T ( [A j ]T [A i ][
i
i
j
j
i
i
j
j
j
i
i
sphere
{} {rj }P {rj }P
double spherical
{d ij} {rj }P {ri }P
~ ]'[
~ ]'{s }'P [A ][
~ ]'[
~ ]'{s }'P
[A i ][
i
i
i
j
j
j
j
{} {d ij}T {d ij} L2
2{d ij}T {d ij} 2{d ij}T { s }
Notes_11_14
7 of 8
JERK
A, r1 r2 , i 2, j 1
[A 2 ][ H 2 ]{s 2 }'A
T
T
g 2f1 , i 2, j 1
{f1}' [A1 ] [A 2 ][ H 2 ]{g 2 }'
{f1}'T [A1 ]T [A 2 ][ H 2 ]{h 2 }'
h 2f1 , i 2, j 1
6{d }T {d } 2{d }T {s }
i B2, j C4
ij
ij
ij
D
D, r r , i 4, j 1
[A 4 ][ H 4 ]{s 4 }'
1
4
T
T
f 4 h1 , i 4, j 1
{h1}' [A1 ] [A 4 ][ H 4 ]{f 4 }'
{h1}'T [A1 ]T [A 4 ][ H 4 ]{g 4 }'
g 4 h1 , i 4, j 1
T
p2
6p2 p 2
T
p4
6p4 p 4
3 / 4 f ttt for link 2
driver
jerk product
dot 1
~ ]' [
~ ]'[
~ ]' [
~ ]'[
~ ]' [
~ ]' [
~ ]'
[H i ] 2[
i
i
i
i
i
i
i
{a j }'T [A j ]T [A i ][ H i ]{a i }'{a i }'T [A i ]T [A j ][ H j ]{a j }'
~ ]' [
~ ]'[
~ ]' )[A ]T [A ][
~ ]'{a }'3{a }'T ( [
~ ]' [
~ ]'[
~ ]' )[A ]T [A ][
~ ]'{a }'
3{a }'T ( [
j
j
j
j
j
i
i
i
i
i
i
i
i
j
j
j
sphere
double spherical
[A i ][H i ]{s i }'P [A j ][H j ]{s j }'P
{d ij} {rj }P {ri }P
{} {d ij}T {d ij} L2
6{d ij}T {d ij} 2{d ij}T {s }
Notes_11_14
Empty page
8 of 8
© Copyright 2026 Paperzz