Notes_11_12
1 of 10
RSUR Generalized Coordinates
A = revolute R
B = spherical S
C = universal U
D = revolute R
y
a
B
O
d
b
e
A
z
D
a = OA = ground (20.43 cm)
b = AB = input crank (4.00 cm)
in y-z plane
c = CD = follower (10.00 cm)
in x-y plane
d = OD = ground (19.97 cm)
e = BC = coupler (30.42 cm)
= crank angle in y-z plane
= follower angle in x-y plane
c
C
x
y1’
O
y2’
A
z1’
B
2
D
A
x2’
4
z2’
z3’
B
x1’
3
D
z4’
C
y4’
y3’
x3’
x4’ C
y4’’
Notes_11_12
2 of 10
CONSTRAINTS
r2
p
2
r
q 3
21x1
p 3
r4
p 4
revA
{r1 }A {r2 }A
T
y 2 ' x1 '
{ĝ 2 } {f̂ 1 }
T
{ĥ 2 } {f̂ 1 }
z 2 ' x1 '
{r }B {r }B
sphB
3
2
{r }C {r }C
univC
4
3
T
x4 ' x3'
{f̂ 4 } {f̂ 3 }
D
D
revD
21x1
{r1 } {r4 }
T
{f̂ 4 } {ĥ 1 }
x 4 ' z1 '
T
y 4 ' z1 '
{ĝ 4 } {ĥ 1 }
{p 2 }T {p 2 } 1 Euler parameters
{p }T {p } 1 Euler parameters
3
3
T
{p 4 } {p 4 } 1 Euler parameters
driver
C
f
(
t
)
A, r1 r2 , i 2, j 1
g 2 f 1 , i 2, j 1
h 2 f 1 , i 2, j 1
B, r2 r3 , i 3, j 2
C, r3 r4 , i 4, j 3
f 4 f 3 , i 4, j 3
D, r1 r4 , i 4, j 1
f 4 h 1 , i 4, j 1
g 4 h 1 , i 4, j 1
p2
p3
p4
driver
CONSTANTS
0
d
D
{r1 } 0 {r1 } 0
a
0
A
0
0
0
0
c
0
B
B
C
C
D
{s 2 }' 0 {s 2 }' 0 {s 3 }' 0 {s 3 }' 0 {s 4 }' 0 {s 4 }' 0
0
b
e
0
0
0
A
INITIAL ESTIMATES
0
{r2 } 0
a
2 0 deg
u 1
û 2 v 0
w 0
e 0 C 2 1
e 0
uS
p 2 1 2
e 2 vS 2 0
e 3 wS 0
2
Notes_11_12
d
ĥ 3 unit c
a b
d
{r3 } c
0
a b
f̂ 3 unit 0
d
4 270 deg
A 3 f̂ 3
e 02 tr[A] 1 / 4
d
{r4 } 0
0
3 of 10
ĥ f̂ ĥ
3
0 u
û 4 0 v
1 w
e 0 C 2 0.7071
e 0
uS
p 4 1 2
e 2 vS 2 0
e 3 wS 0.7071
2
= 2 = 2 acos(e0) for link 2
z1’
{ĥ 1 }T {ĥ 2 } C
{ĥ 1 }T {ĝ 2 } S
{ĥ }T {ĝ }
a tan 2 1 T 2
{ĥ } {ĥ }
2
1
z2’
OUTPUT LINK
y4’
{f̂ 1 }T {f̂ 4 } C
x4’
{f̂ 1 }T {ĝ 4 } C( 90 ) S
x1’
3
e1
a 32 a 23
1
e 2
a 13 a 31
e 4e 0 a a
3
21 12
FIXED REVOLUTE DRIVER
y2’
3
{f̂ 1 }T {ĝ 4 }
a tan 2
{f̂ }T {f̂ }
4
1
Notes_11_12
4 of 10
JACOBIAN
[I3 ]
A, r1 r2 , i 2, j 1
2[A 2 ][ ~s2 ]'A [G 2 ]
03 x 3
03 x 4
03 x 3
03 x 4
T
T
~
2{f1}' [A1 ] [A 2 ][ g 2 ]'[G 2 ]
01x 3
01x 4
01x 3
01x 4
01x 3
g 2f1 , i 2, j 1
~
T
T
01x 3
h 2f1 , i 2, j 1
2{f1}' [A1 ] [A 2 ][ h 2 ]'[G 2 ]
01x 3
01x 4
01x 3
01x 4
B
B
~
~
[I ]
B, r r , i 3, j 2
2[A 2 ][ s2 ]' [G 2 ]
[I3 ]
2[A 3 ][ s3 ]' [G 3 ]
03 x 3
03 x 4
3
2 3
C
C
0
C, r r , i 4, j 3
~
~
03 x 4
[I3 ]
2[A 3 ][ s3 ]' [G 3 ]
[I3 ]
2[A 4 ][ s4 ]' [G 4 ]
3x 3
3 4
~
~
T
T
T
T
01x 3
01x 4
01x 3 2{f 4 }' [A 4 ] [A 3 ][ f3 ]'[G 3 ] 01x 3 2{f 3}' [A 3 ] [A 4 ][ f4 ]'[G 4 ] f 4f 3 , i 4, j 3
[ q ]
03 x 3
D, r1 r4 , i 4, j 1
03 x 4
03 x 3
03 x 4
[I3 ]
2[A 4 ][ ~s4 ]'D [G 4 ]
~
T
T
01x 4
01x 3
01x 4
01x 3 2{h1}' [A1 ] [A 4 ][ f4 ]'[G 4 ] f 4 h1 , i 4, j 1
01x 3
0
01x 4
01x 3
01x 4
01x 3 2{h1}'T [A1 ]T [A 4 ][ ~
g 4 ]'[G 4 ] g 4 h1 , i 4, j 1
1x 3
T
0
p2
2{p 2 }
01x 3
01x 4
01x 3
01x 4
1x 3
T
p3
01x 4
01x 3
2{p 3}
01x 3
01x 4
01x 3
T
p4
01x 4
01x 3
01x 4
01x 3
2{p 4 }
01x 3
2
driver
01x 4
01x 3
01x 4
01x 3 2 1 e 0 2e 0 u 2e 0 v 2e 0 w 01x 3
[G i ]
2
{p i }
{ i }'
Notes_11_12
5 of 10
VELOCITY
0 A, r1 r2 , i 2, j 1
0
g 2 f 1 , i 2, j 1
0
h 2 f 1 , i 2, j 1
0 B, r2 r3 , i 3, j 2
0 C, r r , i 4, j 3
3
4
f 4 f 3 , i 4, j 3
0
0 D, r1 r4 , i 4, j 1
0
f 4 h 1 , i 4, j 1
g 4 h 1 , i 4, j 1
0
p2
0
0
p3
0
p4
f t
driver
Notes_11_12
6 of 10
ACCELERATION
~ ]'[
~ ]'{s }'A
A, r1 r2 , i 2, j 1
[A 2 ][
2
2
2
T
T
~
~
g 2 f1 , i 2, j 1
{f1}' ([A 1 ] [A 2 ][ 2 ]'[ 2 ]' ){g 2 }'
T
T
~ ]'[
~ ]' ){h }'
h 2 f1 , i 2, j 1
{f1}' ([A 1 ] [A 2 ][
2
2
2
B
B
~
~
~
~
B, r r , i 3, j 2
[A 3 ][3 ]'[3 ]'{s 3 }' [A 2 ][ 2 ]'[ 2 ]'{s 2 }'
2
3
C
C
C, r r , i 4, j 3
~
~
~
~
[A 4 ][ 4 ]'[ 4 ]'{s 4 }' [A 3 ][3 ]'[3 ]'{s 3 }'
3
4
T
T
T
T
T
~
~
~
~
~
~
f 4 f 3 , i 4, j 3
{f 3 }' ( [A 3 ] [A i ][4 ]'[ 4 ]'2[3 ]' [A 3 ] [A 4 ][ 4 ]'[3 ]'[3 ]'[A 3 ] [A 4 ] ) {f 4 }'
D
~
~
[A 4 ][ 4 ]'[ 4 ]'{s 4 }'
D, r1 r4 , i 4, j 1
T
T
~
~
f 4 h 1 , i 4, j 1
{h 1}' ( [A 1 ] [A 4 ][ 4 ]'[ 4 ]' ) {f 4 }'
T
T
~
~
g 4 h 1 , i 4, j 1
{h 1}' ( [A 1 ] [A 4 ][ 4 ]'[4 ]' ) {g 4 }'
T
p2
2p 2 p 2
T
p3
2p 3 p 3
T
p4
2p 4 p 4
driver
f tt
dot 1
{â i }T {â j }
sphere
~ ]'[
~ ]'2[
~ ]'T [A ]T [A ][
~ ]'[
~ ]'[
~ ]'[A ]T [A ] ) {a }'
{a j }'T ( [A j ]T [A i ][
i
i
j
j
i
i
j
j
j
i
i
{} {rj }P {rj }P
~ ]'[
~ ]'{s }'P [A ][
~ ]'[
~ ]'{s }'P
[A i ][
i
i
i
j
j
j
j
Notes_11_12
7 of 10
JERK
[A 2 ][ H 2 ]{s 2 }'A
A, r1 r2 , i 2, j 1
T
T
{
f
}'
[A
]
[A
][
H
]{
g
}'
1
1
2
2
2
g 2f1 , i 2, j 1
{f1}'T [A1 ]T [A 2 ][ H 2 ]{h 2 }'
h 2f1 , i 2, j 1
[A 3 ][ H 3 ]{s 3}'B [A 2 ][ H 2 ]{s 2 }'B
B, r2 r3 , i 3, j 2
C
C
[A 4 ][ H 4 ]{s 4 }' -[A3 ][ H 3 ]{s 3}'
C, r3 r4 , i 4, j 3
T
T
T
T
{f 3}' [A 3 ] [A 4 ][ H 4 ]{f 4 }'{f 4 }' [A 4 ] [A 3 ][ H 3 ]{f 3}'
f 4 f 3 , i 4, j 3
T
T
T
T
~
~
~
~
~
~
~
~
3{f 3}' ( [3 ]'[3 ]'[3 ]' )[A 3 ] [A 4 ][4 ]'{f 4 }'3{f 4 }' ( [4 ]'[4 ]'[4 ]' )[A 4 ] [A 3 ][3 ]'{f 3}'
D
D, r1 r4 , i 4, j 1
[A 4 ][ H 4 ]{s 4 }'
f 4 h1 , i 4, j 1
{h1}'T [A1 ]T [A 4 ][ H 4 ]{f 4 }'
g 4 h1 , i 4, j 1
{h1}'T [A1 ]T [A 4 ][ H 4 ]{g 4 }'
p2
T
6p2 p 2
p3
T
6p3 p 3
p4
T
6p4 p 4
driver
3 / 4 f ttt for link 2
jerk product
dot 1
~ ]' [
~ ]'[
~ ]' [
~ ]'[
~ ]' [
~ ]' [
~ ]'
[H i ] 2[
i
i
i
i
i
i
i
{a j }'T [A j ]T [A i ][ H i ]{a i }'{a i }'T [A i ]T [A j ][ H j ]{a j }'
~ ]' [
~ ]'[
~ ]' )[A ]T [A ][
~ ]'{a }'3{a }'T ( [
~ ]' [
~ ]'[
~ ]' )[A ]T [A ][
~ ]'{a }'
3{a }'T ( [
j
j
j
j
j
i
i
i
i
i
i
i
i
j
j
j
sphere
[A i ][Hi ]{s i }'P [A j ][H j ]{s j }'P
Notes_11_12
8 of 10
RSUR Coordinates - Nori Photogrammetry
A = revolute R
B = spherical S
C = universal U
D = revolute R
z
a
B
O
d
b
e
A
x
D
a = OA = ground (20.43 cm)
b = AB = input crank (4.00 cm)
in x-z plane
c = CD = follower (10.00 cm)
in y-z plane
d = OD = ground (19.97 cm)
e = BC = coupler (30.42 cm)
= crank angle in x-z plane
= follower angle in y-z plane
c
C
y
y1’
O
y2’
A
z1’
B
2
D
A
x2’
4
z2’
z3’
B
x1’
3
D
z4’
C
y4’
y3’
x3’
x4’ C
y4’’
Notes_11_12
markers on coupler body 5 for DH notation
planar cluster parallel to x-z plane
% markers on coupler body 5 measured in local coordinates
x5_markers = [ -7 -11 -19 -23 -19 -11 ;
-3
-3
-3
-3
-3
-3 ;
0
7
7
0
-7
-7 ];
3 cm
stem
B
5
4
5
8 cm
arms
6
3
1
2
C
15 cm
x5
y5
z5
markers on coupler body 3 for Haug notation
planar cluster parallel to x-z plane
% markers on coupler body 3 measured in local coordinates
s3pP = [ 0
6.93
6.93
0
-6.93 -6.93 ;
10.0 10.0
10.0
10.0 10.0
10.0 ;
15.5 19.5
27.5
31.5 27.5
19.5 ];
10 cm
stem
5
4
6
z3’
B
3
8 cm
arms
1
2
23.5 cm
3
C
y3’
x3’
9 of 10
Notes_11_12
10 of 10
RSUR Coordinates - Inertial Properties
link 2
density = 1.18 g/cm3 plexiglass
diameter D = 5 inch = 12.7 cm
t = 0.5 inch = 1.27 cm
m2 tD2 / 4 189.84 g = 0.18984 kg
y2’
B
2
J XX _ 2 mR 2 / 2 mD 2 / 8 3.8274 kg.cm2
A
J YY _ 2 mR 2 / 4 mt 2 /12 1.9177 kg.cm2
z2’
J ZZ _ 2 mR 2 / 4 mt 2 /12 1.9177 kg.cm2
link 3
density = 1.18 g/cm3 plexiglass
diameter D = 0.5 inch = 1.27 cm
length L = 30.42 cm
m3 LD 2 / 4 45.47 g = 0.04547 kg
x2’
z3’
B
3
y3’
J XX _ 3 mL2 /12 3.5064 kg.cm2
J YY _ 2 mL2 /12 3.5064 kg.cm2
shift centroid
initial estimate
0
s3'B 0
e / 2
0
s3'C 0
e / 2
4
D
z4’
J YY _ 2 mR 2 / 4 mt 2 /12 24.9534 kg.cm2
J ZZ _ 4 mR / 2 mD / 8 49.879 kg.cm
2
2
y3’ old
x3’ old
d/2
{r3} c / 2
a b / 2
link 4
density = 1.18 g/cm3 plexiglass
diameter D = 9.5 inch = 24.13 cm
t = 0.5 inch = 1.27 cm
m4 tD2 / 4 685.32 g = 0.68532 kg
J XX _ 2 mR 2 / 4 mt 2 /12 24.9534 kg.cm2
2
C
x3’
J ZZ _ 2 mR 2 / 2 mD 2 / 8 0.009167 kg.cm2
y4’
x4’ C
y4’’
© Copyright 2026 Paperzz