Notes_11_08 1 of 7 Three-Dimensional Dynamics Must use centroidal coordinate frames r r 2 KINEMATIC r 2 DRIVER ' ' 2 KINEMATIC ' 2 DRIVER r3 KINEMATIC r3 DRIVER for ' 3 KINEMATIC ' 3 DRIVER r2 r r3 2 ' ' 3 ' for r' r' * 2 * G * * G r pi ' ' i m i M i 0 0 ' i i 0 mi 0 ' r 1 2 T pi 0 0 m i M 2 0 3x 3 0 3x 3 M 0 3x 3 M 3 0 3x 3 0 3x 3 0 3x 3 J G 2 ' J' 0 3x 3 0 3x 3 0 3x 3 J G 3 ' 0 3x 3 0 3x 3 0 3x 3 ~ ' 0 0 3x 3 2 3x 3 ~ ' 0 3x 3 ~ 3 ' 0 3x 3 0 3x 3 0 3x 3 F on i ALL F on i APPLIED F on i CONSTRAINT i 2 ' ' 3 ' Notes_11_08 2 of 7 Fon 2 APPLIED FAPPLIED Fon 3 APPLIED Ton 2 ' APPLIED T' APPLIED Ton 3 ' APPLIED Equations of motion (EOM) Mr r T FAPPLIED J' ' ' T T 'APPLIED ~ ' J'' r' r q or ' r M 3 nb x 1 3 nb x 3 nb ' J' T' APPLIED 3 nb x 1 3 nb x 3 nb 3 nb x 1 FAPPLIED 3 nb x 1 q r nc x 3 nb ~ ' J' ' nc x 1 3 nb x 1 ' nc x 3 nb nc x 1 nb = number of moving bodies nk = number of kinematic constraints nd = number of driver constraints nc = total number of constraints (nc = nk + nd) Inverse dynamics – kinematically driven solve kinematics r r ' ' must have full rank r ' compute constraint forces 1 nc = 6nb r T' F ~ ' J'M'rJ' ' T 1 APPLIED ' APPLIED KINEMATIC DRIVER KINEMATIC DRIVER Notes_11_08 Statics r 0 r ' 0 and ' 0 and TF' APPLIED Inverse dynamics – simultaneous EOM matrix M 3nb x 3nb 0 3nb x 3nb nc x 3rnb T 1 APPLIED ' r T r FAPPLIED 3nb x 1 3 nb x 1 T ~ ' T' APPLIED' J ' ' ' 3 nb x 1 3 nb x nc 3nb x 1 0 nc x nc nc x 1 nc x 1 0 3nb x 3nb 3 nb x nc J' 3 nb x 3 nb ' nc x 3 nb M EOM 0 3nb x 3nb r r T 0 3nb x 3nb J ' T ' ' 6 nb nc x 6 nb nc r M ' 0 3nb x 3nb r 0 3nb x 3nb J' ' 0 nc x nc r T ' 0 nc x nc T 1 FAPPLIED ~ T' APPLIED' J ' ' 3 of 7 Notes_11_08 4 of 7 Lagrange multipliers for specific constraints F r i on i CONSTRAINT T ' on i CONSTRAINT F on j CONSTRAINT T ' on j CONSTRAINT CONSTRAINT T ~ si ' P A i r i r j CONSTRAINT T T CONSTRAINT CONSTRAINT T T CONSTRAINT T r j CONSTRAINT ' j T CONSTRAINT local joint definition frame at P s i ' A s i ' P C i P s i ' ' A F ' ' C A F P T on i T i i on i T ' ' C T ' P T on i i on i Spherical SPH rj P ri P 03x1 F on i SPH T ' on i SPH F on j SPH T ' on j SPH SPH 0 3x1 SPH 0 3x1 Double spherical SPH _ SPH dij dij C2 0 T F on i CONSTRAINT 2d ij SPH _ SPH CONSTRAINT CONSTRAINT ~ sj ' P A j 'i T for d r r P ij j P i CONSTRAINT Notes_11_08 T ' on i CONSTRAINT F on j CONSTRAINT T ' on j 5 of 7 0 3 x1 2d ij SPH _ SPH CONSTRAINT 0 3 x1 Dot-1 DOT _ 1 a i a j 0 T F on i DOT _ 1 T ' on i DOT _ 1 on j DOT _ 1 on j and a r r and a i ri Q ri P Q j j P j 01x 3 F T ' a i ri Q ri P for T ~ a i ' A i A j a j ' DOT _ 1 01x 3 DOT _ 1 A a ' ~ aj ' Aj T i i DOT _ 1 Dot-2 DOT _ 2 a i dij 0 T F on i DOT _ 2 T ' on i on j DOT _ 2 T ' on j d r r P ij a i DOT _ 2 DOT _ 2 F for T ~ a i ' A i d ij DOT _ 2 a i DOT _ 2 DOT _ 2 0 j P i Notes_11_08 6 of 7 Forward dynamics - dynamically driven nc < 6nb does not have full row rank ' r given r compute p r r ' 0 3nb x 3nb r T ' r M ' 0 3nb x 3nb r J' ' FAPPLIED ' 0 nc x nc T 1 r p y r ' M J' FAPPLIED ~ T' APPLIED' J ' ' must use forward time integration of r r p y r ' T'APPLIED ' to get r p r ' at next time step p G ' 1 2 T G 2 0 3x 4 0 3x 4 G 0 3x 4 G 3 0 3x 4 0 3x 4 0 3x 4 Notes_11_08 7 of 7 EOM using Euler parameters M 0 4 nb x 3nb r 0 nb x 3nb 0 3nb x 4 nb 4G J ' G T p E FAPPLIED 0 3nb x nb r T T T J ' G p p E p 2G T' APPLIED8 G 0 nc x nb E 0 nb x nb E T p p 0 nc x nc p E 0 nb x nc G 2 0 3 x 4 0 3 x 4 G 0 3x 4 G 3 0 3x 4 0 3 x 4 0 3 x 4 p 2 p p 3 r T p 2 T 2 01x 4 0 1x 4 01x 4 p 2 T 01x 4 01x 4 01x 4 E p 2 T p 2 T 2p 3 p 3 Euler parameter EUL pi T pi 1 0 01x 3 F 03x1 r i EUL p i G i G i p i 01x 3 T ' i EUL 2p i T p i EUL on i EUL T ' on i EUL F on j EUL T ' on j EUL 0 3 x1 03x1 0 3 x1 T T
© Copyright 2026 Paperzz