Notes_10_01
1 of 7
State Space Model For Spring-Mass-Damper
x
k
m
c
mx cx kx 0
q x
x
k
c
x x
m
m
q x
{y}
q x
q x
use states y to compute derivative of states {y } f {y}
q x 0
{y } k
q x m
1 x 0
mc x mk
1 y1
mc y 2
{y } f {y}
{y } [A]{y}
a e t
assumed solution {y} 1 t
a 2 e
{y } [A]{y}
a e t
{y } 1 t {y}
a 2 e
{y} [A]{y}
([A] [I 2 ]){y} {0}
det([ A] [I 2 ]) 0
1
det k
0
c
m ( m )
for c = 0, λ
[A]{y} {y} {0}
2
c
k
0
m
m
k
k
i
i n
m
m
n
is an eigenvalue, NOT from EOM
2
λ
c
k
c
2m
m
2m
k
m
2
critical damping
underdamped
k
c CR
0
m
2m
1
c CR 2 m n
λ n i n 1 2
c
c CR
c
2 m n
d n 1 2
Notes_10_01
2 of 7
State Space Model For Double Spring-Mass-Damper
x1
k1
x2
k2
m1
k3
m2
c1
c2
c3
m1x1 k1x1 c1x 1 k 2 (x1 x 2 ) c 2 (x 1 x 2 )
m 2 x 2 k 3 x 2 c 3 x 2 k 2 (x 2 x 1 ) c 2 (x 2 x 1 )
x1
x 2
q
x1
q x
{y} 2
q x 1
x
2
x 1
x 2
q
use states y to compute derivative of states {y } f {y}
0
x 1
0
x k k
q
1
2
{y } 2
m
1
q x1
k
x
2
2
m2
{y } [A]{y}
0
1
0
0
c1 c 2
k2
m1
m1
k k3
c
2
2
m2
m2
x
1
1
c2
x 2
x [A]{y}
m1
1
c 2 c 3 x
2
m 2
0
{y } f {y}
assumed solution {y} {a i e t }
{y } {y}
for c1 = c2 = c3 = 0,
a = (m1k2+ m1k3+ m2k1+ m2k2) / (m1m2), b = (k1k2+ k1k3+ k2k3) / (m1m2)
λi
a
4b
1 1 2
2
a
Notes_10_01
3 of 7
State Space Model for Cylindrical Coordinate Manipulator
Y
Y
Y
r
r3
T
F
a
X
Both links
X
Link 2
X
Link 3
Main body link 2 - Shaft and end-effector link 3
Mass centers at a and r3 from waist rotation axis, a=constant, r3 = variable
Masses m2 and m3 - centroidal mass moments of inertia J2 and J3
CCW from positive x axis – a and r3 radial from rotation axis
T is rotary actuator torque of ground on body 2 about waist measured CCW positive
F is radial actuator force of body 2 on body 3 measured positive outward
Gravity g acts along negative y axis
m 2 a 2 m 3 r32 J 2 J 3
0
r3
q
q
r3
T 2m 3 r3 r3 gm 2 a m 3 r3 cos
0
2
m 3 r3
F m 3 r3 m 3 g sin
q r
{y} 3
q
r3
use states y to compute derivative of states {y } f {y}
Notes_10_01
0 0 1 0 r3
0 0 0 1
r3
q r3
{y }
1
q
m 2 a 2 m 3 r32 J 2 J 3 0 T 2m 3 r3 r3 gm 2 a m 3 r3 cos
r3
0
m 3 F m 3 r3 2 m 3 g sin
4 of 7
Notes_10_01
5 of 7
State Space Model for Two Link Anthropomorphic Manipulator (Double
Pendulum)
Y
C
3
d2
m 3 , J3
a2
d3
a3
T3
m 2 , J2
2
T2
B
A
X
Two solid rigid bars with revolute joints A and B
Lengths d2 and d3 - mass centers at a2 and a3 from proximal ends
Masses m2 and m3 - centroidal mass moments of inertia J2 and J3
2 CCW from positive x axis
T2 is torque of ground on bar 2 about pin A, CCW positive
3 CCW from centerline of bar 2
T3 is torque of bar 2 on bar 3 about pin B, CCW positive
Gravity g acts along negative y axis
J B m 3 a 32 J 3
J A J B m 2 a 22 m 3 d 22 J 2 2m 3 d 2 a 3 cos 3
C J B m 3 d 2 a 3 cos 3
D m 3 d 2 a 3 sin 3
G 2 m 2 a 2 m 3 d 2 g cos 2
G 3 m 3 a 3 g cos ( 2 3 )
1
2
2
J A C T2
D 3 2D 2 3
G 2 G 3
2
3
C J B T3
D 2
G 3
2
3
q
q 2
3
2
q 3
{y}
q 2
3
Notes_10_01
use states y to compute derivative of states {y } f {y}
2
0 0 1 0 3
0 0 0 1
2
2
3
q 3
{y }
1
q 2 J
2
D
2
D
C
T
G
G
2
2
3
2 3
3
3 A
C J T
D 22
G 3
B 3
6 of 7
Notes_10_01
7 of 7
Numerically Evaluate Linear State Matrix
assume y A LINEAR y using ns number of states and n number of time samples
y 1 y 1
y 2 y 2
y ns t1 y ns t 2
Y [A
ns x n
y1 y1
y 1
y
2
y 2 y 2
[A LINEAR ]
y ns
tn
y ns t1 y ns t 2
y1
y
2
y ns
tn
] Y
LINEAR
ns x n
ns x ns
Note that samples need not be computed using fixed h, and do not need to be continuous.
for n = ns
Y 1
[A LINEAR ] Y
y 1 y 1 y 1 y 1
y y y y
2 2 2 2
y ns t1 y ns t 2 y ns t 3 y ns t 4
y1 y1 y1 y1
y 2 y 2 y 2 y 2
y ns t1 y ns t 2 y ns t 3 y ns t 4
1
for n ns
A LINEAR Y YT YYT
1
extract from A LINEAR
f n abs
2
h
1
2 max f n
prefer
h
1
10 max f n
© Copyright 2026 Paperzz