Notes_08_13 1 of 7 Differential-Algebraic Equations (DAE) for Anthropomorphic Manipulator y1 C r2 = AG2 d2 = AB x3 y3 G3 3 r3 = BG3 d3 = BC T2on3 x2 T1on2 G2 x2 B 2 x1 A Two solid rigid bars with revolute joints A and B Tool center point (TCP) at C (endpoint) Centroids G2 and G3 Masses m2 and m3 Centroidal mass moments of inertia JG2 and JG3 T1on2 is torque of ground on bar 2 about revolute A measured CCW positive T2on3 is torque of bar 2 on bar 3 about revolute B measured CCW positive Gravity g acts along negative y axis nL = 3 nJ1=2 m = 3 (nL-1) – 2 nJ1 = 2 Notes_08_13 Lagrangian method (from Notes_09_02) 2 3 q T1 on 2 T2 on 3 q 2 Q 3 Note: 3 measured relative to 2 J B m 3 a 32 J 3 J A J B m 2 a 22 m 3 d 22 J 2 2m 3 d 2 a 3 cos 3 C J B m 3 d 2 a 3 cos 3 D m 3 d 2 a 3 sin 3 G 2 m 2 a 2 m 3 d 2 g cos 2 G 3 m 3 a 3 g cos ( 2 3 ) inverse dynamics 2 T2 J A C 2 D 3 2D 2 3 G 2 G 3 2 D T3 C J B 2 3 G3 know driver motion at any time t - find q compute driver torques T1 on 2 compute joint forces F1 on 2 x q q T2 on 3 from Lagrangian equations F1 on 2 y F2 on 3 x F2 on 3 y from Newtonian equations may arbitrarily choose any other time t forward dynamics 1 2 2 J A C T2 D 3 2D 2 3 G 2 G 3 2 3 C J B T3 D 2 G 3 know current state q and q at current t compute q from Lagrangian equations compute F1 on 2 x F1 on 2 y F2 on 3 x F2 on 3 y from Newtonian equations must integrate q to get new q and q at the next time step 2 of 7 Notes_08_13 3 of 7 Newtonian method (from free body diagrams) F1 on 2 F2 on 3 m2 x2 x x F1 on 2 F2 on 3 m2 g m2 y2 y y s 2 A F1 on 2 s 2 B F2 on 3 T1 on 2 T2 on 3 J G 22 F2 on 3 m3 x3 x F2 on 3 m3 g m3 y3 y s3 B F2 on 3 T2 on 3 J G 33 inverse dynamics 1 0 s 2 A 0 0 0 0 Y 1 1 0 0 0 1 1 s 0 0 1 0 0 0 0 1 s 2 0 A X 0 0 B Y 2 s3 B Y s 2 B X s3 B X 0 F1 on 2 x m2 x2 y 0 F1 on 2 m2 y2 m2 g 1 T1 on 2 J G 22 0 F2 on 3 x m3 x3 0 F2 on 3 y m3 y3 m3 g 1 T2 on 3 J G 33 know driver motion at any time t - find positions, velocities and accelerations compute joint forces F1 on 2 x F1 on 2 y F2 on 3 x F2 on 3 x T1 on 2 T2 on 3 T may arbitrarily choose any other time t forward dynamics know current positions and velocities at current t very cumbersome to compute joint forces and accelerations simultaneously must integrate accelerations to get new positions and velocities at the next time step Notes_08_13 4 of 7 DAE dynamics x 2 y 2 q 2 x 3 y3 3 AG 2 0 s 2 ' B BG 3 0 s 3 ' C s 2 ' A BG 2 0 s 3 ' B CG 3 0 A A ΦKINEMATIC r2 B r1 B r3 r2 ΦDRIVERS f 1 q, t f 2 q, t inverse dynamics M q q Q T 0 12 x1 q 12 x12 EXT 12 x1 r2 A r1 A r3 B r2 B DRIVERS know driver motion at any time t, find q FA1 on A 2 F B 2 on B3 T1 on 2 T2 on 3 q QEXT q compute q and simultaneously may arbitrarily choose any other time t forward dynamics M q q Q 10 x10 T 0 10 x1 q EXT 10 x1 A A r2 B r1B r3 r2 know current state q and q at current t, find QEXT F A1 on A 2 FB 2 on B3 compute q and simultaneously must integrate q to get new q and q at the next time step q Notes_08_13 5 of 7 Inverse Dynamics – joint interpolated motion (independent position controllers on each joint) REV _ A REV _ B 2 2 _ START 2 t START t 3 2 q 6x6 M q REV _ A REV _ B 0 0 q Q T 0 q 12 x1 12 x12 EXT QEXT 3 A END START / t 02 x1 0 2 x1 2 3 C 2 2 _ END 2 _ START / t 2 B 0 m g 2 0 0 m 3g 0 FA1 on A 2 F B 2 on B3 T1 on 2 T2 on 3 12 x1 Inverse Dynamics – straight-line TCP interpolated motion (interpolated position controllers on each joint) REV _ A REV _ B x C3 x C3 _ START v C3 _ x y C 3 y C3 _ START v C3 _ y t t 02 x1 0 2 x1 v C3 _ X v C3 _ Y q 6x6 M q 12 x12 T 0 12 x1 v C 3 _ y y C3 _ END y C 3 _ START / t REV _ A REV _ B 0 0 q Q q v C3 _ x x C 3 _ END x C3 _ START / t EXT 12 x1 FA1 on A 2 F B 2 on B3 FEFF _ CX FEFF _ Cy QEXT 0 m g 2 0 0 m 3g 0 C 3 A 2 B Notes_08_13 r cos 2 r3 cos2 r2 sin 2 r3 sin 2 3 2 3 6 of 7 r3 C 2 2 r2 sin 2 r3 sin 2 r3 sin 2 2 r3 cos 2 r2 cos 2 r3 cos 2 r3 C T T T1 on 2 2 FEFF _ CX C r3 0 FEFF _ Cy T2 on 3 T1 on 2 r2 sin 2 r3 sin 2 r3 sin 2 FEFF _ CX r3 cos 2 FEFF _ Cy r2 cos 2 r3 cos 2 T2 on 3 T Forward Dynamics – double pendulum (no actuators) REV _ A REV _ B REV _ A REV _ B 0 2 x1 02 x1 q 4x6 M q q Q 10 x10 T 0 10 x1 q EXT 10 x1 QEXT F A1 on A 2 FB 2 on B3 0 m g 2 0 0 m 3g 0 Notes_08_13 7 of 7 Forward Dynamics – proximal link kinematically driven, distal link pendulum (position controller only on proximal joint) REV _ A REV _ B 2 _ CENTER sin 2 f t 2 02 x1 02 x1 2 f cos2 f t q 5x 6 q Q M q T 0 q 11x1 11x11 EXT 11x1 REV _ A REV _ B 42f 2 sin 2 f t FA1 on A 2 FB2 on B3 T 1 on 2 QEXT 0 m g 2 0 0 m 3g 0 Forward Dynamics – computed torque control (torque controllers on each joint) T2 on 3 REV _ A REV _ B T1 on 2 REV _ A REV _ B 0 2 x1 02 x1 M q q Q q 4x6 10 x10 T 0 q 10 x1 EXT 10 x1 QEXT F A1 on A 2 FB 2 on B3 0 m g 2 T1 on 2 T2 on 3 0 m 3g T2 on 3
© Copyright 2026 Paperzz