Notes_08_06 1 of 6 Coulomb Friction in Prismatic Joint x 4 C ≠0 F on 4 4 X Y FEXT F1on 4 0 X F1Yon 4 FEXT pseudo-code if x F1Xon 4 D F1Yon 4 sign x else X F1Xon 4 FEXT if F1Xon 4 S F1Yon 4 X F1Xon 4 S F1Yon 4 sign FEXT end end ODE X m 4 x FEXT F1Xon 4 C Notes_08_06 2 of 6 Coulomb Friction in Revolute Joint 2 3 simple friction model T2on3 D rBRG F2on3 sign 3 2 for 3 2 0 3 2 Notes_08_06 3 of 6 Free Vibration with Viscous Damping spring-mass-damper with viscous damping has exponential envelope mx cx kx 0 n k 2 f n m c c CR c 2 m n d n 1 2 2 f d T 1/ f d use x0 at a positive peak and xn at a positive peak that occurs n cycles later log decrement damping ratio 1 x0 ln n x n 2 1 2 for exponential envelope 4 2 2 0.1 0.08 0.06 Position [m] 0.04 0.02 0 -0.02 -0.04 -0.06 -0.08 -0.1 0 0.5 1 1.5 2 Time [sec] 2.5 3 3.5 4 Notes_08_06 4 of 6 Free Vibration with Coulomb Friction spring-mass with Coulomb friction has linear envelope mx kx f sign ( x ) use x0 at a positive peak and xn at a positive peak that occurs n cycles later slope s x 0 x n 2 f n nT k for linear envelope friction force f k s k(x 0 x n ) 2 n 4n rotary motion s 0 n nT Tf k s k ( 0 n ) 2 n 4n simple pendulum (small angle approx) s 0 n nT Tf m g a s m g a ( 0 n ) 2 n 4n 0.1 0.08 0.06 Position [m] 0.04 0.02 0 -0.02 -0.04 -0.06 -0.08 -0.1 0 0.5 1 1.5 2 Time [sec] 2.5 3 3.5 4 Notes_08_06 5 of 6 Pacejka Magic Formula Pacejka, H.B., 2006, Tire and Vehicle Dynamics, 2nd edition, SAE International y values from curve yP = peak value for y xM = x value at peak yA = asymptotic value for y xM yP slope yA x coefficients B = stiffness factor C = shape factor D = peak value E = curvature factor y D sin C a tan Bx EBx a tan Bx D = yP slope D BCD xM / 2 y 2 C 1 1 a sin A D B slope CD E B x M tan / 2C B x M a tan B x M for C 1 Notes_08_06 6 of 6 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 -1 -0.8 -0.6 -0.4 -0.2 % try_pacejka.m - test Pacejka magic formula % HJSIII, 11.04.25 clear % constants % define curve xm = 0.01; yp = 0.9; ya = 0.6; % Pacejka coefficients D = yp; C = 1 + (1 - 2 * asin( ya/D ) / pi); slope = yp / (xm/2); B = slope /C /D; E = (B*xm - tan(pi/2/C)) / (B*xm - atan(B*xm)); % plot x = ( -1 : 0.001 : 1 )'; y = D*sin( C*atan( B*x - E*(B*x-atan(B*x)) ) ); figure( 1 ) clf plot( x,y ) 0 0.2 0.4 0.6 0.8 1
© Copyright 2026 Paperzz