Notes_08_04 1 of 20 Two-mass Equivalent Link m3 JG3 B G3 C m3B G3 m3C C B total mass centroid location m 3B m 3C m 3 m 3B m 3 check approximate mass moment CG 3 BC m 3C m 3 BG 3 BC J G 3 J G 3 _ APP m 3B BG 3 m 3C CG 3 (for slender rod J G 3 _ APP 3 J G 3 _ ACTUAL ) 2 2 Notes_08_04 2 of 20 Shaking Force for Slider Crank B m3B T12 2 A=G2 3 G3 C m3B+m4 4 P 1 1 mBAL assume crank is statically balanced G2 = A split link 3 into m3B and m3C constant crank speed 0 assume is small Case I - static force analysis for only d’Alembert inertial force P with no friction P (m 3C m 4 )s T1on 2 s R 2 cos RL cos 2 P R sin( ) cos F1Xon 2 P F1Yon 2 P tan 0 F1Xon 4 0 Case II - static force analysis for only inertial force m 3B R T1on 2 0 F1Xon 2 m 3B R 2 cos L sin R sin F1Yon 4 P tan 2 F1Yon 2 m 3B R 2 sin Case III - place additional counterbalance mBAL on the crank at radius R and 180º from pin B Superposition = Case I + Case II + Case III T1on 2 12 (m 3C m 4 )R 2 2 ( 2RL sin sin 2 32RL sin 3) F2xon1 m 3B m BAL R 2 cos m 3C m 4 s F2yon1 m 3B m BAL R 2 sin m 3C m 4 s tan F4yon1 m 3C m 4 s tan Notes_08_04 m m BAL cos m 3C m 4 cos RL cos 2 FSHAKING F2on1 F4on1 R 2 3B m 3B m BAL sin 3 of 20 Notes_08_04 4 of 20 Model 1 – no additional balancing mass mBAL = 0 Model 2 – unidirectional in-line shaking force m m BAL cos m 3C m 4 cos RL cos 2 FSHAKING R 2 3B m 3B m BAL sin m BAL m 3B m m 4 cos RL cos 2 FSHAKING R 2 3C 0 Model 3 – minimize the maximum magnitude of shaking force (approximate) m m BAL cos m 3C m 4 cos RL cos 2 FSHAKING R 2 3B m 3B m BAL sin m BAL m 3C m 4 m 3B cos m 3C m 4 RL cos 2 m 3B m 3C m 4 sin FSHAKING R 2 Model 4 – minimize in-line shaking force (approximate) m m BAL cos m 3C m 4 cos RL cos 2 FSHAKING R 2 3B m 3B m BAL sin m BAL m 3 m 4 m 3B m 3C m 4 R cos 2 sin FSHAKING R 2 m 3C m 4 L Notes_08_04 5 of 20 mBAL = 0 mBAL = m3B 40 40 20 20 0 0 -20 -20 -40 -40 -20 0 20 40 mBAL = m3C + m4 40 -40 -40 20 0 0 -20 -20 -40 -40 -20 0 20 40 0 20 40 mBAL = m3 + m4 40 20 -20 -40 -40 -20 0 20 40 45 40 Maximum shaking force [lbf] 35 30 25 20 15 10 5 0 0 0.2 0.4 0.6 0.8 Balancing mass [lbm] 1 1.2 1.4 Notes_08_04 % shake.m - single cylinder shaking force Notes_08_04 % HJSIII, 13.03.14 clear % constants d2r = pi / 180; % geometry [inches] R = 0.985; L = 4.33; % crank speed [rad/sec] w = 104.719; % masses [lbm] m3B = 0.351; m3C = 0.111; m4 = 0.781; % crank angle th_deg = (0:360)'; th = th_deg * d2r; % piston acceleration [inch/s/s] sdd = -R*w*w*(cos(th) +R*cos(2*th)/L); % plot four models figure( 1 ) clf res = []; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Model 1 - mBAL = 0 subplot( 2,2,1 ) mBAL = 0; % shaking force [lbm.in/s/s] * [lbf*s*s / 32.174 lbm.ft] * [ ft / 12 in ] Fx = ( (m3B-mBAL)*R*w*w*cos(th) - (m3C+m4)*sdd ) / 386; % [lbf] Fy = ( (m3B-mBAL)*R*w*w*sin(th) ) / 386; Fs = sqrt( Fx.*Fx + Fy.*Fy ); Fs_max = max( Fs ); res = [ res ; mBAL Fs_max ]; % plot shaking force curve plot( Fx, Fy ) axis square axis( [ -40 40 -40 40 ] ) title( 'mBAL = 0' ) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Model 2 - mBAL = m3B subplot( 2,2,2 ) mBAL = m3B; % shaking force [lbm.in/s/s] * [lbf*s*s / 32.174 lbm.ft] * [ ft / 12 in ] Fx = ( (m3B-mBAL)*R*w*w*cos(th) - (m3C+m4)*sdd ) / 386; % [lbf] Fy = ( (m3B-mBAL)*R*w*w*sin(th) ) / 386; Fs = sqrt( Fx.*Fx + Fy.*Fy ); Fs_max = max( Fs ); res = [ res ; mBAL Fs_max ]; % plot shaking force curve plot( Fx, Fy ) axis square axis( [ -40 40 -40 40 ] ) title( 'mBAL = m3B' ) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Model 3 - mBAL = m3C + m4 subplot( 2,2,3 ) 6 of 20 Notes_08_04 mBAL = m3C + m4; % shaking force [lbm.in/s/s] * [lbf*s*s / 32.174 lbm.ft] * [ ft / 12 in ] Fx = ( (m3B-mBAL)*R*w*w*cos(th) - (m3C+m4)*sdd ) / 386; % [lbf] Fy = ( (m3B-mBAL)*R*w*w*sin(th) ) / 386; Fs = sqrt( Fx.*Fx + Fy.*Fy ); Fs_max = max( Fs ); res = [ res ; mBAL Fs_max ]; % plot shaking force curve plot( Fx, Fy ) axis square axis( [ -40 40 -40 40 ] ) title( 'mBAL = m3C + m4' ) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Model 4 - mBAL = m3 + m4 subplot( 2,2,4 ) mBAL = m3B + m3C + m4; % shaking force [lbm.in/s/s] * [lbf*s*s / 32.174 lbm.ft] * [ ft / 12 in ] Fx = ( (m3B-mBAL)*R*w*w*cos(th) - (m3C+m4)*sdd ) / 386; % [lbf] Fy = ( (m3B-mBAL)*R*w*w*sin(th) ) / 386; Fs = sqrt( Fx.*Fx + Fy.*Fy ); Fs_max = max( Fs ); res = [ res ; mBAL Fs_max ]; % plot shaking force curve plot( Fx, Fy ) axis square axis( [ -40 40 -40 40 ] ) title( 'mBAL = m3 + m4' ) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % plot maximum shaking force versus balancing mass keep = []; for mBAL = 0 : 0.01 : (m3B+m3C+m4), % shaking force [lbm.in/s/s] * [lbf*s*s / 32.174 lbm.ft] * [ ft / 12 in ] Fx = ( (m3B-mBAL)*R*w*w*cos(th) - (m3C+m4)*sdd ) / 386; % [lbf] Fy = ( (m3B-mBAL)*R*w*w*sin(th) ) / 386; Fs = sqrt( Fx.*Fx + Fy.*Fy ); Fs_max = max( Fs ); keep = [ keep ; mBAL Fs_max ]; end % plot results figure( 2 ) clf plot( keep(:,1),keep(:,2),'b', res(:,1),res(:,2),'ro' ) axis( [ 0 1.4 0 45 ] ) xlabel( 'Balancing mass [lbm]' ) ylabel( 'Maximum shaking force [lbf]' ) % bottom of shake 7 of 20 Notes_08_04 8 of 20 Model 5 – minimize the maximum magnitude of shaking force (exact) does not work ????? 2 FSHAKING R 2 4 ( m 3B m BAL 2m 3B m BAL m 3C m 4 cos cos RL cos 2 2 m 3C m 4 cos RL cos 2 ) 2 2 2 FSHAKING R 2 4 ( 2m 3B m BAL 2m 3C m 4 cos cos RL cos 2 ) 0 m BAL m BAL m 3B m 3C m 4 cos 2 RL cos cos 2 m BAL m 3B m 3C m 4 cos 2 RL cos 3 RL cos sin 2 m BAL m 3B m 3C m 4 2 RL cos 3 cos 2 RL cos 2 RL cos 3 cos 2 RL cos 6 RL cos 2 sin 2 cos sin RL sin 0 m BAL m 3B m 3C m 4 1 RL sin 0, 0 m BAL m 3B m 3C m 4 1 RL sin 0, 180 1 1 6 RL 2 cos 6 R L % model5.m - min/max shaking force for slider crank % does not work ??????????????? % HJSIII, 13.03.14 clear % geometry [inches] R = 0.985; L = 4.33; % masses [lbm] m3B = 0.351; m3C = 0.111; m4 = 0.781; % cosine solution rho = R / L; c1 = (-1 + sqrt( 1 + 6*rho*rho ) ) /6 /rho; c2 = (-1 - sqrt( 1 + 6*rho*rho ) ) /6 /rho; % values v1 = 2*rho*c1*c1*c1 + c1*c1 - rho*c1; v2 = 2*rho*c2*c2*c2 + c2*c2 - rho*c2; % balancing masses mBAL1 = m3B + (m3C+m4)*v1 m BAL m 3B m 3C m 4 2 RL cos 3 cos 2 RL cos Notes_08_04 mBAL2 = m3B + (m3C+m4)*v2 9 of 20 Notes_08_04 10 of 20 Shaking Force for In-line Two Cylinder Air Compressor x x C C same crank, connecting rods and pistons a E E B B y in z out z y D + 180° only ABC both A = G2 D A = G2 D m 3B m BAL cos m m cos 3C 4 2 FSHAKING R m 3C m 4 RL cos 2 m 3B m BAL sin m 3B m BAL cos cos 180 m m cos cos 180 3C 4 2 R FSHAKING R m 3C m 4 L cos 2 cos2 360 m 3B m BAL sin sin 180 cos cos 180 cos cos cos180 sin sin 180 0 cos 2 cos2 360 2 cos 2 sin sin 180 sin sin cos180 cos sin 180 0 both 2 RL m 3C m 4 cos 2 0 FSHAKING R 2 shaking moments X M SHAKING a F2Yon1 F4Yon1 Y M SHAKING a F2Xon1 Notes_08_04 In-line Four Cylinder Engine 11 of 20 Notes_08_04 12 of 20 Shaking Force for In-line Four Cylinder Engine x x y in C same crank, connecting rods and pistons E 1,4 z out y A = G2 z 2,3 1 1 4 2 3 180 same as two two-cylinder compressors mirrored end to end 4 RL m 3C m 4 cos 2 0 FSHAKING R 2 shaking moments X M SHAKING 0 Y M SHAKING 0 2 3 4 Notes_08_04 In-line Six Cylinder Engine 13 of 20 Notes_08_04 14 of 20 Shaking Force for In-line Six Cylinder Engine x x y in same crank, connecting rods and pistons z out 1,6 z y 3,4 A = G2 2,5 1 1 6 2 5 120 3 4 240 cos cos 120 cos 240 0 cos 2 cos2 240 cos2 480 0 sin sin 120 sin 240 0 FSHAKING 0 0 X M SHAKING 0 Y M SHAKING 0 2 3 4 5 6 Notes_08_04 V8 separate cranks V8 dual cranks 15 of 20 Notes_08_04 V8 split cranks V8 with pistons 16 of 20 Notes_08_04 17 of 20 Shaking Force for Four Bar assume crank is statically balanced G2 = A split link 3 into m3B and m3C assume 3 is small static force analysis with d’Alembert inertial forces link 3 becomes two-force member Notes_08_04 M on 4 about D CCW + F3on4 sin CD 4 J G4 m4 DG 4 2 m3C CD2 F3on4 4 J G 4 m 4 DG 4 m3C CD / CD sin 4 3 2 2 F4xon1 m 4 DG 4 m 3C CD 24 cos 4 m 4 DG 4 m 3C CD 4 sin 4 F3on 4 cos 3 F4yon1 m 4 DG 4 m 3C CD 24 sin 4 m 4 DG 4 m 3C CD 4 cos 4 F3on 4 sin 3 18 of 20 Notes_08_04 M on 2 about A CCW + T1 _ on _ 2 F3on 2 sin 2 3 AB 0 T1on 2 4 J G 4 m 4 DG 4 m 3C CD 2 2 T1on 2 4 J G 4 m 4 DG 4 m3C CD 2 2 AB sin CD sin 4 3 4 3 2 from Notes_03_02 2 4 and 4 from Notes_03_02 F2xon1 m 3B m BAL AB 22 cos 2 F3on 2 cos 3 F2yon1 m 3B m BAL AB 22 sin 2 F3on 2 sin 3 19 of 20 Notes_08_04 F2xon1 F4xon1 y y F2on1 F4on1 FSHAKING cos 2 sin 2 FSHAKING sin 4 cos 4 m 3B m BAL AB 22 cos 4 m 4 DG 4 m 3C CD 4 sin 4 2 m 4 DG 4 m 3C CD 4 20 of 20
© Copyright 2026 Paperzz