Notes_08_02 1 of 4 Matrix Dynamic Analysis for Four Bar The four bar linkage shown below operates in a vertical plane. Each link is a uniform bar with 2 cm by 2 cm square cross-section stainless steel. Assume that the masses of the bearings and the effects of friction are negligible. Do not neglect the effects of gravity. 2 = 45 deg 3 = 20 deg 4 = 117.4 deg 2 = 20 rad/s CW 3 = 12.82 rad/s CCW 4 = 6.20 rad/s CW 2 = 100 rad/s/s CCW 3 = 39.6 rad/s/s CW 4 = 482.5 rad/s/s CCW m2 = 0.248 kg m3 = 0.372 kg m4 = 0.341 kg JG2’ = 1.405 kg.cm2 JG3’ = 4.588 kg.cm2 JG4’ = 3.552 kg.cm2 = 7.75 g/cm3 AG2 = -1414.2 - j 848.5 cps2 AG3 = -3672.5 - j 2260.9 cps2 AG4 = -2262.4 - j 1412.4 cps2 VG2 = 56.57 - j 56.57 cps VG3 = 86.83 - j 40.86 cps VG4 = 30.27 - j 15.71 cps C Y AD = 22 cm AB = 8 cm BC = 12 cm CD = 11 cm B T D A X F34y F34x F43 F32x RB2/G2 T12 G2 x F12 A W2 F43x RC3/G3 B RA2/G2 C y F32y RB3/G3 C F23x RC4/G4 G4 G3 B F23y W3 RD4/G4 W4 F14x F12y D F14y Notes_08_02 2 of 4 F on 2 right + F12x + F32x = m2 AG2x F on 2 up + F12y + F32y + W2 = m2 AG2y - F12x rA2/G2y + F12y rA2/G2x - F32x rB2/G2y + F32y rB2/G2x + T12 = JG2’ 2 M on 2 about G2 CCW + F23x + F43x = m3 AG3x F23y + F43y + W3 = m2 AG3y - F23x rB3/G3y + F23y rB3/G3x - F43x rC3/G3y + F43y rC3/G3x = JG3’ 3 F on 3 right + F on 3 up + M on 3 about G3 CCW + F on 4 up + F34x + F14x = m4 AG4x F34y + F14y + W4 = m4 AG4y M on 4 about G4 CCW + - F34x rC4/G4y + F34y rC4/G4x - F14x rD4/G4y + F14y rD4/G4x = JG4’ 4 F on 4 right + 1 0 rAy 2 / G 2 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 rAx 2 / G 2 rBy2 / G 2 rBx2 / G 2 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 x B3 / G 3 y C3 / G 3 0 0 0 0 0 r y B3 / G 3 r r r x C3 / G 3 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 rCy4 / G 4 rCx4 / G 4 rDy 4 / G 4 rDx 4 / G 4 W2 = -j 2.433 N W3 = -j 3.649 N W4 = -j 3.345 N m2 AG2 = -3.507 - j 2.104 N m3 AG3 = -13.662 - j 8.411 N m4 AG4 = -7.715 - j 4.816 N 0 F12x m 2 A Gx 2 0 F12y m 2 A Gy 2 W2 1 F23x J 'G 2 2 y x 0 F23 m 3 A G 3 0 F34x m 3 A Gy 3 W3 0 F34y J 'G 3 3 0 F14x m 4 A Gx 4 0 F14y m 4 A Gy 4 W4 0 T12 J 'G 4 4 JG2’ 2 = 1.405 N.cm JG3’ 3 = -1.817 N.cm JG4’ 4 = 17.138 N.cm 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 2.828 2.828 2.828 2.828 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 2.052 5.638 2.052 5.638 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 4.883 2.531 4.883 2.531 0 F12x 3.507 0 F12y 0.329 1 F23x 1.405 0 F23y 13.662 0 F34x 4.762 0 F34x 1.817 0 F14x 7.715 0 F14y 1.471 0 T12 17.138 Notes_08_02 F12x - 22.236 N y F12 - 6.221 N F23x - 18.729 N y F23 - 6.550 N x F34 - 5.067 N F x - 1.788 N 34 F14x - 2.648 N y F14 0.317 N T12 81.135 N.cm 3 of 4 Notes_08_02 4 of 4 Matrix Dynamic Analysis for Slider Crank B T12 3 2 A G3 C 4 P 1 1 F32y T12 B G2 = A F23x F32x 2 + direction for VC to right F23y F34y B F43y G3 3 C F12y F on 2 up + M on 2 about A CCW + F34x F14x P F14y F12x + F32x = m2 AG2x = 0 F12y + F32y = m2 AG2y = 0 - (F32x sin) AB + (F32y cos) AB + T12 = JG2 2 F23x + F43x = m3 AG3x F23y + F43y = m3 AG3y F on 3 right + F on 3 up + M on 3 about G3 CCW + - (F23x sin) BG3 - (F23y cos) BG3 + (F43x sin) CG3 + (F43y cos) CG3 = JG3 3 F on 4 right + F14x + F34x + P = m4 AG4x F14y + F34y = m4 AG4y = 0 F14x = - abs(F14y) sign(VC) F on 4 up + friction 1 0 0 0 0 0 0 0 0 4 F43x F12x F on 2 right + C 0 1 0 0 0 0 1 0 1 0 0 0 0 AB sin AB cos 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 BG 3 sin BG 3 cos CG 3 sin CG 3 cos 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 F12x 0 y 0 0 F12 0 0 1 F23x J G 2 2 0 0 F23y m 3 A Gx 3 0 0 F34x m 3 A Gy 3 0 0 F34y J G 3 3 0 0 F14x m 4 A Gx 4 P 1 0 F14y 0 sign (VC ) 0 T12 0 0
© Copyright 2026 Paperzz