07_03

Notes_07_03
1 of 6
Measuring Mass Moment of Inertia as a Simple Pendulum
F12y
P
P
m = mass
JG = mass moment about centroid
a = distance from pivot to centroid
g = acceleration of gravity
 = time period for one oscillation
a
m g sin

 m g sin  a  J G  m a 2  
J
G

G
G
 M about P CCW  

F12x


 m a 2   m g a sin   0 

mg
for small angles   15, sin   
J
G

 m a 2   m g a   0
   MAX 2 f sin( 2 f t )
assume   MAX cos(2 f t)
2
2
  
cos( 2 f t )
MAX 4 f
 (J G  m a 2 )  MAX cos( 2 f t )  m g a  MAX cos( 2 f t )  0
4 2 f 2 ( J G  m a 2 )  m g a
using   1 / f
m g a 2
JG  m a 
4 2
2
2 x 4 x 24 from Notes_07_01
m = 2.286 lbm
JG = 111.9 lbm.in2
a = 12.25 in
20  = 25.74 sec
 = 1.2870 sec
m g a  2  2.286 lbm  386 in 
12.25 in 1.2870 sec2 = 453.52 lbm.in2


2
2
2 
4
 4
 sec 
ma2 = (2.286 lbm)(12.25 in)2 = 343.04 lbm.in2
JG = 110.48 lbm.in2 (-1.2% difference)
Notes_07_03
2 of 6
Measuring Mass Moment of Inertia with Torsional Pendulum
Torsional pendulums use a lightweight circular or triangular platform suspended from three light
cables as shown below. The platform must be horizontal and the cables must be of equal length.
The cables should be attached to the platform equidistant from the center of the platform in an
equilateral triangular pattern. Cable attachments need not be at the edge of the platform.
The object should be placed with its center of mass directly over the center of the platform. The
centroidal axis of the object must be vertical. The platform must oscillate in pure rotation with
small angular displacement about the central vertical axis and must not swing laterally.
This procedure should be used first with an empty platform to determine the mass moment of the
platform alone and then repeated with the object centered on the platform to measure the mass
moment of the object plus the platform.
Reference: Shigley, J.E. and J.J. Uicker, Theory of Machines and Mechanisms
McGraw-Hill, 1995, second edition
J GO  J GP 
gm O  m P  r 2  2
4 s 2
JGO
JGP
g
mO
mP
r
= centroidal polar mass moment of inertia of object
= centroidal polar mass moment of inertia of platform
= acceleration of gravity
= mass of object
= mass of platform
= radius of cable attachments from center of platform
(not platform radius)
 = time period for one torsional oscillation
s = length of cables
s
r
small
torsional
oscillation

Notes_07_03
3 of 6
Measuring Mass Moment of Inertia with Platform Pendulum
Platform pendulums use a lightweight rectangular platform suspended from four light cables as
shown below. The platform must be horizontal and the cables must be of equal length. Cable
attachments need not be at the edge of the platform. Pendulum design should minimize aO to
maximize accuracy.
The object should be placed with its center of mass directly over the center of the platform. The
centroidal axis of the object must be horizontal. The platform must swing laterally with small
displacement about the centerline of the cable pivots and must not twist or swing axially.
This procedure should be used first with an empty platform to determine the mass moment of the
platform itself and then repeated with the object centered on the platform to measure the mass
moment of the object plus the platform.
Reference: Mabie, H.H. and C.F. Reinholtz, Mechanisms and Dynamics of Machinery,
Wiley, 1987, fourth edition
J GO  m O a O2  J P 
gm O a O  m P a P   2
4 2
JGO
JP
g
mO
mP
aO
aP
= centroidal polar mass moment of inertia of object
= polar mass moment of inertia of platform
= acceleration of gravity
= mass of object
= mass of platform
= distance from pivot to centroid of object
= distance from pivot to centroid of platform
 = time period for one oscillation
aO
aP
Notes_07_03
4 of 6
Measuring Mass Moment of Inertia and Centroid Location Simultaneously
Small objects
1)
2)
3)
4)
Suspend object by point P1 and measure 1
Suspend object by point P2 and measure  2
Measure m
Measure distances e, IDB, IDC
P1
C
IDC
a1
m g a 1 1
4 2
2
m g a 2 2

4 2
2
e
J G  m a1 
2
JG  m a 2

2
4 a 1  a 2
2
2
2
 ga
a 2  e  a1
a1 

a2
1  g a 2  2
2
1
2
a 2  e 2  2ea 1  a 1
2
e g  2  4 2 e

G
2

B
IDB
2
P2

g 1   2  8 2 e
2
2
BG  a 2  ID B / 2
CG  a 1  ID C / 2
Suspended objects
1)
2)
3)
4)
Suspend object by point P1 and measure 1
Suspend object by point P2 and measure  2
Measure m
Measure distance f
a 2  f  a1
a1 

a 2  f  2 f a1  a1
2
f g  2  4 2 f

2


g 1   2  8 2 f
2
2
2
2
P2
f
P1
a2
a1
Notes_07_03
5 of 6
Measuring Mass Moment of Inertia and Centroid using Multiple Pivots
P2
an
a2
P
n
G
a1
P1
y
x
1) Suspend object by points P1 , P2 ,, Pn and measure 1 ,  2 ,,  n . All points on same body.
x 
2) Measure local coordinates  
y
' P1
x 
, 
y
' P2
x 
, ,  
y
' Pn
3) Weigh the object to measure m
JG  m ai
2
m g a i i

4 2

2
a i  x ' Pi x ' G
2
x ' G 
 
iteratively solve for q   y' G 
J 
 G
qk1  qk   q T  q 
1

using
  y'
2
Pi
 y' G

2
 J G  ma 1 2  m g a 1 1 2 / 4 2 

2
2
2
   J G  ma 2  m g a 2  2 / 4 



2
J  ma  m g a  2 / 4 2 
n
n
n
 G

  
T
q

Pi
G
 i
2
2 (x' x' )


m
2
a

g

/
4

i
1
ai
x ' G


Pi
G
 i
2
2 ( y'  y' )


m
2
a

g

/
4

i
1
ai
y' G
Notes_07_03
 
q
  1 / x ' G

 / x ' G
 2



G
 n / x '
 1 / y' G
 2 / y'
G

 n / y' G
1

1


1
% t_mult.m - test multiple point measurement of mass moment
% HJSIII, 09.04.11
clear
% constants
m = 96;
g = 1;
% experimental values for xg=8, yg=3, JG=2336
% x, y, t
xyt = [ 12 2 19.894 ;
10 5 21.244 ;
14 5 20.039 ];
x = xyt(:,1);
y = xyt(:,2);
t = xyt(:,3);
t2term = t.*t /4/pi/pi;
n = length( t );
% initial estimate
q = [ 0 ; 0 ; 0 ];
% loop
for iter = 1 : 10,
% current estimates
xg = q(1);
yg = q(2);
JG = q(3);
% evaluate residuals
a2 = (x-xg).*(x-xg) + (y-yg).*(y-yg);
a = sqrt( a2 );
PHI = JG + m*a2 - m*g*a.*t2term ;
% Jacobian
par = -m
JAC(:,1)
JAC(:,2)
JAC(:,3)
*
=
=
=
(2*a - g*t2term ) ./a;
par .* (x-xg);
par .* (y-yg);
ones(n,1);
% update
q = q -inv(JAC)*PHI;
disp( q' )
end
6 of 6