Notes_04_04 1 of 8 Two-Dimensional Constraints General 0 0 q 0 q t q t q 0 q q q 2 q 0 q q qt q tt q q q q 2 q t q t t q q 0 q 3 q q q q q 3 q 3 q q 3 q q q q q q qt q qt qtt q ttt 0 q 4 q q 3 q q 6 q q q q q q q 4 q 12 q q 4 q q q 6 q 6 q q 4 q q q qt qttt q q qt tttt q q q qt q q q q q qtt q q qtt q q Notes_04_04 2 of 8 Scleronomic constraints independent of time such as mechanical joints q q q q q qq q q qq q Revolute REV rj P ri P 0 2 x1 qi REV qj REV I 2 Note: Haug uses ri r j P Bi s i ' P I B s ' P 2 j j REV 0 2x1 REV j 2 A j s j ' P i 2 A i s i ' P REV j 3 B j s j 'P 3 j j A j s j ' P i 3 Bi s i 'P 3 i i A i s i ' P REV 6 j 2 j B j s j ' P 4 jj 3 j 2 j 4 A j s j ' P 2 2 4 6 i i Bi s i ' P 4 ii 3 i i A i s i ' P Double revolute REV _ REV d ij d ij L2 0 T for and and and d r r d r r d r r d r r P ij P j i P ij j ij j ij j P i P P i P qi REV _ REV qj REV _ REV P i 2d 2d ij qi T REV T ij qj REV L cons tan t length P Notes_04_04 REV _ REV 0 d T REV _ REV 2d ij REV 2 d ij T ij d T REV _ REV 2d ij REV 6 d ij T ij d 6d d T REV _ REV 2d ij REV 8 d ij T T ij ij ij Parallel vectors (planar parallel-1) a i parallel to a j PARALLEL a i R a j 0 T for T a i ri Q ri P qi PARALLEL qj PARALLEL 0 Q j j P j a a a i a j 01x 2 1x 2 a r r and T T i j PARALLEL 0 PARALLEL 0 PARALLEL 0 PARALLEL 0 Pin-in-slot (planar parallel-2) a i parallel to d ij PIN _ SLOT a i R d ij 0 T for and T d r r P ij j P i d d d ij ij ij and a i ri Q ri P from above 3 of 8 Notes_04_04 a R a i R qi T qi PIN _ SLOT T qj PIN _ SLOT T REV 01x 2 4 of 8 a i T d ij T i qj REV PIN _ SLOT 0 T T 2 PIN _ SLOT a i 2 i d ij R i d ij REV T 3 T 2 PIN _ SLOT a i 3 i d ij 3 i d ij i d ij R 3 i d ij 3 i i d ij REV PIN _ SLOT a i T 4 i dij 6 i d ij 4 i i 3 d ij 6 i 2 i d ij R T 6 2 d 12 d 4 3 2 4 d i ij i i ij i i i i ij REV Relative angle driver ANGLE j i C f ( t ) 0 qi ANGLE ji ANGLE C cons tan t 0 0 1 0 0 1 ANGLE f t ANGLE f tt ANGLE f ttt ANGLE f tttt Gear pair driver (chain/sprockets, belt/pulleys) GEAR j Ki C 0 K cons tan t, C cons tan t external gears K i / j , int ernal gears K i / j qi GEAR qj GEAR 0 0 K 0 0 1 Notes_04_04 GEAR 0 GEAR 0 GEAR 0 GEAR 0 Gear pair on rotating link k GEAR _ ON _ K j k Ki k C 0 qi GEAR _ ON _ K qj GEAR _ ON _ K K cons tan t , C cons tan t from above 0 0 K 0 0 1 qk GEAR _ ON _ K 0 0 K 1 GEAR _ ON _ K 0 GEAR _ ON _ K 0 GEAR _ ON _ K 0 GEAR _ ON _ K 0 Relative coordinate driver (translation, rotation, gears, pure rolling) RCD q j Kq i C f ( t ) 0 K 0 0 1 0 0 qi RCD qi RCD qi RCD qj RCD qj RCD qj RCD 0 K 0 0 0 K 0 1 0 0 0 1 qi xi q i yi q i i qj xj qj yj q j j K cons tan t. C cons tan t 5 of 8 Notes_04_04 6 of 8 RCD f t RCD f tt RCD f ttt RCD f tttt Planar parallel-2 distance driver (see pin-in-slot) PP2 DD a i d ij / L f (t ) 0 L a i cons tan t length T qi PP2 DD qj PP2 DD a a i qi REV T i a i T R T dij/ L 01x 2 T qj REV /L PP2 DD f t T T 2 PP2 DD a i 2 i R d ij i d ij REV / L f tt T T 3 2 PP2 DD a i R 3 i d ij 3 i d ij i d ij 3 i d ij 3 i i d ij REV / L f ttt PP2 DD a i Pure rolling along planar parallel-2 distance ROLL a i d ij/ L j i C 0 T L a i cons tan t length , rolling radius , C cons tan t qi ROLL qj ROLL R T 4 i dij 6 i d ij 4 i i 3 d ij 6 i 2 i d ij /L f tttt 6 2 d 12 d 4 3 2 4 d i ij i i ij i i i i ij REV T a a i qi T REV T i qj REV ROLL PP2 DD for 01x 2 01x 2 ROLL 0 f tt 0 a i T R T d ij L/ L L/ L Notes_04_04 ROLL PP2 DD for f ttt 0 ROLL PP2 DD for f tttt 0 Planar relative distance driver (see double revolute) PRDD d ij d ij f t 0 T qi PRDD qj PRDD 2 f t 0 qi REV _ REV qj REV _ REV PRDD 2 f f t PRDD REV _ REV 2 f t 2 f f tt 2 PRDD REV _ REV 6 f t f tt 2 f f ttt PRDD REV _ REV 6 f tt 8 f t f ttt 2 f f tttt 2 7 of 8 Notes_04_04 8 of 8 Acceleration Right-hand Side for Revolute q q q q 2 q t q tt REV rj P ri P 0 2 x1 r q i i r q i i i i I 2 Bi s i ' P q I Bi s i 'P r r B s ' qi REV qi i 2 q qi i qi 0 2 x 2 i qi REV qi i I 2 0 qi t 2x3 t 0 2x1 i i P i Bi i A i Bi s i 'P q 0 qi t i 2 x1 tt 0 2x1 q q q q 2 q t q tt REV j2 A j s j'P i r 2 i A i s i ' P i i A i s i ' P i 2x 2 REV i 2 Ai si 'P i i A i s i ' P q q 0 qi i for body i for body j REV j 2 A j s j ' P i 2 A i s i ' P
© Copyright 2026 Paperzz