N02 page 1 of 13 Passive Components Resistor units = Ohms 1 Volt = 1 Ohm x 1 Amp R1 series R2 R R1 R 2 R1 parallel R R 1R 2 R1 R 2 1 1 1 1 R R1 R 2 R 3 i V2 V1 V i R V2 complex impedance nominal wattage 1/8 inch body ~ 1/8 W 1/4 inch body ~ 1/4 W 1/2 inch body ~ 1/2 W ZR = R V1 ZR R2 N02 page 2 of 13 Capacitor + units = Farads F series C 1 Ohm x 1 Farad = 1 second C1C 2 C1 C 2 1 1 1 1 C C1 C 2 C 3 C1 C1 parallel C C1 C2 C2 i 1 V2 V1 V i dt C complex impedance using j 1 V2 ZC and 1 j 2 f C V1 ZC V Vo e j 2 f t Vo cos2 f t j Vo sin 2 f t C2 N02 page 3 of 13 Inductor units = Henry H i V2 V1 V L di dt complex impedance using j 1 V2 V1 ZL j 2 f L ZL V Vo e j 2 f t Vo cos2 f t j Vo sin 2 f t and Transformer (coils have resistance and inductance) Mechanical relays SPDT SPST NC C C NO NO COIL COIL Stepping motor D A e B C C D B A N02 Automotive relay page 4 of 13 N02 page 5 of 13 Impedance Loading prevent current leakage out of sensors and measurement circuits VIN prevent current leakage into measuring devices R1 VOUT R2 VIN VIN i R1 R 2 R1 VOUT i R 2 VOUT i no leakage VOUT R2 VIN R1 R 2 R2 +15V test both circuits with voltmeter VA = +5V no current leakage 2K VB VA 1K OK VOUT 1K VOUT = ½ VB OK connect together +15V 2K 1K VOUT = 2.5 V ????? VA VB +15V 2K VA 1K VOUT 1K 1K 1K 2K N02 VB VA 15V 667 3.75V 2000 667 +15V page 6 of 13 2K VA VOUT = ½ VB = 1.875 V 667 need an impedance buffer between circuit components +15V 2K VA + 1K - VB 1K VOUT 1K N02 page 7 of 13 Basic Circuits Voltage divider R1 VIN gain G VOUT VOUT R2 VIN R1 R 2 R2 First order low pass filter cutoff frequency 1 fC 2 R C [Hz] VIN R VOUT C log(G) 0 -1 log(f) phase fC 10 fC 0 log(f) -90deg fC N02 ZR R i ZC VIN ZR ZC V G OUT VIN for DC 1 j 2 f C page 8 of 13 j 1 VIN ZR VOUT i Z C VOUT i 1 j 2 f C ZC ZR ZC 1 R j 2 f C f=0 1 0 G 1 R R 0 for very high frequencies f=∞ no leakage ZC G=1 passes DC 1 0 G 1 R0 R G=0 removes high frequencies N02 page 9 of 13 use MATLAB to plot frequency response for R = 1.6 K, C = 0.1 F, f C 1 = 994.7 Hz 2 R C lf = (0 : 0.1 : 6); f = 10 .^ lf; R = 1.6e3; C = 0.1e-6; ZR = R; ZC = 1 ./ (j*2*pi*f*C); G = ZC ./ (ZR+ZC); lG = log10( abs(G) ); phase = angle(G) * 180/pi; subplot( 2, plot( lf, subplot( 2, plot( lf, 1, 1 ) lG ) 1, 2 ) phase ) 0 -1 -2 -3 -4 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 -20 -40 -60 -80 -100 N02 page 10 of 13 Filters First order high pass filter C VIN cutoff frequency 1 fC 2 R C VOUT [Hz] R G VOUT ZR R VIN ZR ZC 1 R j 2 f C for DC f=0 G R R R f=∞ G 1 R 0 for very high frequencies G=0 R 1 R removes DC R R0 G=1 passes high frequencies 0 -1 -2 -3 0 1 2 3 4 5 6 0 1 2 3 4 5 6 100 80 60 40 20 0 N02 page 11 of 13 Higher order Butterworth Filters simple Butterworth f log G N log fc actual Butterworth G=1 for f < fC for f > fC G (unity gain in pass band) N = order of filter = 1, 2, 3, 4, etc. 1 1 f / f c 2N N = order of filter = 1, 2, 3, 4, etc. dB = 20 log ( G ) low pass, fc = 100 Hz, unity gain in pass band 20 0 -20 -40 Gain [dB] -60 -80 First order N=1 Second order N=2 Fourth order N=4 Sixth order N=6 -100 -120 -140 -160 -180 0 0.5 1 1.5 2 2.5 log (frequency) [Hz] 3 3.5 4 N02 page 12 of 13 low pass, fc = 100 Hz, unity gain in pass band 10 First order N=1 Second order N=2 Fourth order N=4 Sixth order N=6 Gain [dB] 5 0 -5 -10 1.75 1.8 1.85 1.9 1.95 2 2.05 log (frequency) [Hz] 2.1 2.15 2.2 % gain_butterworth.m - gain for Butterworth filters % HJSIII, 14.03.28 clear % cutoff and orders fc = 100; N1 = 1; N2 = 2; N4 = 4; N6 = 6; % frequency spectrum lf = ( 0 : 0.01 : 4 )'; f = 10 .^ lf; % gain only - no phase G1 = sqrt( 1 ./ ( 1 + ( (f/fc).^(2*N1) ) ) ); dB1 = 20 * log10( G1 ); G2 = sqrt( 1 ./ ( 1 + ((f/fc).^(2*N2) ) ) ); dB2 = 20 * log10( G2 ); G4 = sqrt( 1 ./ ( 1 + ((f/fc).^(2*N4) ) ) ); dB4 = 20 * log10( G4 ); G6 = sqrt( 1 ./ ( 1 + ((f/fc).^(2*N6) ) ) ); dB6 = 20 * log10( G6 ); % plot figure( 1 ) clf plot( lf,dB1,'r', lf,dB2,'g', lf,dB4,'b', lf,dB6,'k' ) xlabel( 'log (frequency) [Hz]' ) ylabel( 'Gain [dB]' ) axis( [ 0 4 -180 20 ] ) title( 'low pass, fc = 100 Hz, unity gain in pass band' ) legend( 'First order N=1', 'Second order N=2', 'Fourth order N=4', 'Sixth order N=6' ) % bottom of gain_butterworth N02 page 13 of 13 Second order Butterworth? NO! VIN R R VOUT a) Impedance loading b) -6Bd at fc C C Need an impedance buffer between circuit components (still -6dB at fc) VIN R + R VOUT C C
© Copyright 2026 Paperzz