n08_fea
1 of 10
Finite Element Analysis – One Dimensional Example
straight cantilever beam with constant thickness in pure tension
w = 1 in
L = 10 in
t = 0.5 in
aluminum
E = 10.4e6 psi
P = 1000 lbf
1000 lbf 10 in
PL
PL
in 2
= 0.001923 in = 1.923 mil
6
0.5 in 1 in 10.4x10 lbf
AE twE
Pk
k
twE
L
1000 lbf
P
P
= 2.0 ksi
A t w 0.5 in 1 in
n08_fea
2 of 10
tapered cantilever beam with constant thickness in pure tension
L = 10 in
b = 2 in
x
t = 0.5 in
a = 1 in
aluminum
E = 10.4e6 psi
P = 1000 lbf
w b
b a x b m x
L
P
P
E
A tw
L
L
0
0
dx
m
b a
L
0xL
P
Etw
P
P
dx
Et
E t w
L
1000 lbf 10 in
in 2
0.5 in 2 in 1 in 10.4x10 6 lbf
L
0
1
PL
P 1
b
dx
ln
ln b m x
Et m
0 E t b a a
bm x
2 in
ln
1 in
= 1.333 mil
(NOT 1.923 / 1.5 = 1.282 mil)
n08_fea
3 of 10
five elements – six nodes
width 2.0
node
length
element
width
1
1.8
1.6
1.4
1.2
1.0
2
3
4
5
6
2.0
2.0
2.0
2.0
2.0
1
2
3
4
5
1.9
1.7
1.5
1.3
1.1
n08_fea
4 of 10
five elements – six nodes
u1
u2
u3
u4
u5
u6
F1
F2
F3
F4
F5
F6
element1
element2
element3
element4
element5
ui = displacement of node i
Fi = external force applied at node i
li = length of element i
Ai = cross sectional area of element i
ti = thickness of element i
wi = width of element i
Ei = modulus for element i
ki = stiffness of element i
fi = internal force on element i
ui
ui+1
NO LOAD
u
WITH LOAD
u
f i li
fi li
Ai Ei t i w i Ei
f i k i u i 1 u i
fi
fi
fi
t i wi Ei
u k u k i u i 1 u i
li
ki
t i wi Ei
li
n08_fea
5 of 10
nodei
Fi
fi-1
fi
elementi-1
elementi
F on node 1
F1 f1 FWALL 0
F on node 2
F2 f 2 f1 0
F on node 3
F3 f 3 f 2 0
F on node 4
F4 f 4 f 3 0
F on node 5
F5 f 5 f 4 0
F5 k 4 u 4 k 4 k 5 u 5 k 5 u 6
F on node 6
F6 f 5 0
F6 k 5 u 5 k 5 u 6
k 1
k
1
0
0
0
0
F1 k1u1 k1u 2 FWALL
F2 k1u1 k1 k 2 u 2 k 2 u 3
F3 k 2 u 2 k 2 k 3 u 3 k 3 u 4
F4 k 3 u 3 k 3 k 4 u 4 k 4 u 5
k1
0
0
0
k1 k 2
k2
0
0
k2
k2 k3
k3
0
0
k3
k3 k4
k4
0
0
k4
k4 k5
0
0
0
k5
0 u 1 F1 FWALL
0
F2
u 2
u 3
0
F3
0 u 4
F4
k5 u5
F5
k 5
F6
u 6
impose restraints u1 = 0 and F1 = 0 in first row of equations
1
k
1
0
0
0
0
0
0
0
0
k1 k 2
k2
0
0
k2
k2 k3
k3
0
0
k3
k3 k4
k4
0
0
k4
k4 k5
0
0
0
k5
0 u1 0
0
u 2 F2
0
u 3
F3
0 u 4 F4
k 5 u 5 F5
k 5
u 6
F6
[K] = system stiffness matrix
{u} = vector of nodal displacements
{F} = vector of external forces on nodes
displacement analysis - solve for u K
1
F
Ku F
n08_fea
6 of 10
stress analysis
i = strain in element i
i = stress in element i
i
u i 1 u i
i Ei i
li
1 E 1 / l 1
0
2
3 0
0
4
5 0
0
0
0
E2 / l2
0
0
0
E3 / l3
0
0
0
E4 / l4
0
0
0
Ei
li
u i 1
ui
u 2 u 1
0 u 3 u 2
0 u 4 u 3
0 u 5 u 4
E 5 / l 5 u 6 u 5
0
{} = vector of stresses on each element
[C] = elasticity matrix
{u} = vector of differences in nodal displacements
Cu
n08_fea
7 of 10
SUMMARY FOR THREE-DIMENSIONAL ANALYSIS
1) Know material properties – E, G,
(Poisson’s ratio)
2) Generate mesh – create elements and nodes
reduce mesh size by factor of 2, increases number of nodes by factor of 8
3) Compute stiffness matrix – order n = number of degrees of freedom (DOF)
n = 3 * number of nodes
4) Define restraints – modify stiffness matrix to force specific nodal displacements to zero
5) Define loading – form right-hand-side (RHS) vector
6) Invert stiffness matrix and pre-multiply loading RHS vector to solve for nodal displacements
computation time proportional to n2
7) Compute nodal deformations RHS vector (differences of nodal displacements)
8) Compute elasticity matrix
9) Pre-multiply elasticity matrix times deformation RHS vector to solve for stresses at nodes
find von Mises stress, maximum shear stress, normal stress, Dowling stress
10) Know strength of material – SY, SUT, SUC
11) Compute factor of safety at each node
n08_fea
8 of 10
% fea_1d.m - one dimensional finite element analysis
% HJSIII, 12.09.05
%
P
L
t
E
axial load,
= 1000;
= 10.0;
= 0.5;
= 10.4e6;
geometry, material
% axial load [lbf]
% length [inch]
% thickness [inch]
% Young's modulus for aluminum [psi]
% analytical solution - constant width
w = 1.0;
% width [inch]
delta_const_w_mil = P *L /w /t /E *1000;
% [mils]
% analytical solution - tapered
a = 1.0;
% width at tip [inch]
b = 2.0;
% width at root [inch]
delta_taper_mil = P *L /t /E /(b-a) *log(b/a) *1000;
% element stiffness - tapered
n = 5;
li = L/n * ones(n,1);
ti = t * ones(n,1);
Ei = E * ones(n,1);
wi = [ 1.9 1.7 1.5 1.3 1.1 ]';
%
%
%
%
%
% [mils]
number of finite elements
length [inch]
thickness [inch]
Young's modulus for aluminum [psi]
width [inch]
k = wi .*ti .*Ei ./li;
% global stiffness
K = [ +1
0
-k(1) +k(1)+k(2)
0
-k(2)
0
0
0
0
0
0
% external forces
F = [ 0 0 0 0 0
0
-k(2)
+k(2)+k(3)
-k(3)
0
0
0
0
-k(3)
+k(3)+k(4)
-k(4)
0
P ]';
% displacements
u = inv(K) * F;
delta_fea_mil = u(6) *1000;
delta_const_w_mil
delta_taper_mil
delta_fea_mil
% stress
C = diag( Ei ./li );
strain = diff( u );
stress = C * strain;
stress_ksi = stress /1000
% [mils]
0
0
0
-k(4)
+k(4)+k(5)
-k(5)
0
0
0
0
-k(5)
+k(5)
;
;
;
;
;
];
n08_fea
>> fea_1d
delta_const_w_mil =
1.9231
delta_taper_mil =
1.3330
delta_fea_mil =
1.3306
stress_ksi =
1.0526
1.1765
1.3333
1.5385
1.8182
9 of 10
n08_fea
FEA sensitivity study for
10 of 10
tee_01.sldprt
mesh control
size parameter
[inch]
max von Mises
stress
[ksi]
DOF
relative
computations
0.086
0.06
0.04
0.02
0.01
45.59
50.80
51.55
50.38
50.42
35496
61335
87162
205329
762018
1
2.99
6.03
33.46
460.86
© Copyright 2026 Paperzz