A.E. Eiben
Principled approaches to tuning EA parameters
A.E. Eiben
Free University Amsterdam Free University Amsterdam
(google: eiben)
The aims of this tutorial
y Creating awareness of the tuning issue y Providing guidelines for tuning EAs
y Presenting a vision for future development CEC 2009 tutorial
1
A.E. Eiben
Principled approaches to tuning EA parameters
By the end of this talk
You will certainly NOT have:
y Simple answers like “Crossover rate should be 0.8” y Clear recipes like “Method X can tune your EA perfectly”
You will hopefully have: y A new look on EA parameter calibration
y Motivation to adjust your practice j y
p
y Inspiration to do research on EA parameter calibration
The basic EC metaphor
EVOLUTION
PROBLEM SOLVING
Environment
Problem
Individual
Fitness
Candidate Solution
Quality
Fitness → chances for survival and reproduction
Quality → chance for seeding new solutions
CEC 2009 tutorial
2
A.E. Eiben
Principled approaches to tuning EA parameters
The two main pillars of EAs
There are two competing forces active
y Increasing population diversity by y Decreasing population diversity by genetic operators
selection
y mutation
y of parents
y recombination
y of survivors
Push towards novelty Push towards quality
us to a ds qua ty
Proper balance of these forces is essential
This is regulated through the parameters
Algorithm design and parameters
y Calibration of EAs
y Design of EAs
y Configuration of EAs
y Parameter optimization of EAs
y…
Given:
Required:
CEC 2009 tutorial
an algorithmic framework
instantiation to a specific algorithm
with good quality
3
A.E. Eiben
Principled approaches to tuning EA parameters
Problems
y How to find good parameter values ?
Many parameters, unknown effects, unknown, non‐
linear interactions
y How to vary parameter values?
EA is a dynamic, staged, process Æoptimal parameter values may vary during a run
Brief historical account
y 1970/80ies “GA is a robust method”
adapt mutation stepsize σ
y 1970ies + ESs self
1970ies + ESs self‐adapt
mutation stepsize σ
y 1986 meta‐GA for optimizing GA parameters
y 1990ies EP adopts self‐adaptation of σ as ‘standard’ y 1990ies some papers on changing parameters on‐the‐fly y 1999 Eiben‐Michalewicz‐Hinterding paper proposes clear taxonomy & terminology
clear taxonomy & terminology CEC 2009 tutorial
4
A.E. Eiben
Principled approaches to tuning EA parameters
Taxonomy
PARAMETER CALIBRATION
PARAMETER TUNING
PARAMETER CONTROL
(before the run)
(during the run)
DETERMINISTIC
ADAPTIVE
SELF-ADAPTIVE
((time dependent)
p
)
((feedback from search))
((coded in chromosomes))
Google Scholar index > 550 (>700 with the conference version)
Parameter tuning
Parameter tuning: testing and comparing different
values before the “real”
real run
Problems:
y users mistakes in settings can be sources of errors or
sub-optimal performance
y costs much time
y parameters interact: exhaustive search is not
practicable
y good values may become bad during the run
CEC 2009 tutorial
5
A.E. Eiben
Principled approaches to tuning EA parameters
Parameter control
Parameter control: setting values on-line, during the
actual run, e.g.
y predetermined time-varying schedule p = p(t)
y using (heuristic) feedback from the search process
y encoding parameters in chromosomes and rely on natural
selection
Problems:
y finding optimal p is hard, finding optimal p(t) is harder
y still user-defined feedback mechanism, how to “optimize”?
y when would natural selection work for algorithm parameters?
Example
Task to solve:
( 1,,…,x
, n)
y min f(x
y Li ≤ xi ≤ Ui
y gi (x) ≤ 0
y hi (x) = 0
for i = 1,…,n
for i = 1,…,q
for i = q+1,…,m
bounds
inequality constraints
equality constraints
Algorithm:
y EA with
ith real-valued
l l d representation
t ti ((x1,…,xn)
y arithmetic averaging crossover
y Gaussian mutation: x’ i = xi + N(0, σ)
standard deviation σ is called mutation step size
CEC 2009 tutorial
6
A.E. Eiben
Principled approaches to tuning EA parameters
Varying mutation step size: option 1
Replace the constant σ by a function σ(t)
σ (t ) = 1 - 0.9 × Tt
0 ≤ t ≤ T is the current generation number
Features:
z
z
z
z
changes in σ are independent from the search progress
strong user control of σ by the above formula
σ is fully predictable
a given σ acts on all individuals of the population
Varying mutation step size: option 2
Replace the constant σ by a function σ(t). The value is updated after
every n steps by Rechenberg’s 1/5 success rule
>1/5
1/5
⎧σ ((tt − n ) / c if ps >
⎪
σ (t ) = ⎨σ (t − n ) ⋅ c if ps < 1/5
⎪σ (t − n )
otherwise
⎩
where ps is the % of successful mutations, c is a parameter (0.8 < c < 1)
Features:
z
z
z
z
CEC 2009 tutorial
changes in σ are based on feedback from the search progress
some user control of σ by the above formula
σ is not predictable
a given σ acts on all individuals of the population
7
A.E. Eiben
Principled approaches to tuning EA parameters
Varying mutation step size: option 3
Assign a personal σ to each individual
Incorporate this σ into the chromosome: (x1, …, xn, σ)
Apply variation operators to xi‘s and σ
σ ′ = σ × e N ( 0,τ )
x′i = xi + N (0, σ ′)
Features:
z
z
z
z
changes in σ are results of natural selection
(almost) no user control of σ
σ is not predictable
a given σ acts on one individual
Varying mutation step size: option 4
Assign a personal σ to each variable in each individual
Incorporate σ’s into the chromosomes: (x1, …, xn, σ1, …, σ n)
Apply variation operators to xi‘s
s and σi‘s
s
σ ′i = σi × e N ( 0,τ )
x′i = xi + N (0, σ ′i )
Features:
z
z
z
z
CEC 2009 tutorial
changes in σi are results of natural selection
(almost) no user control of σi
σi is not predictable
a given σi acts on one variable of one individual
8
A.E. Eiben
Principled approaches to tuning EA parameters
Control WHAT?
Practically any EA component can be parameterized and
thus controlled on-the-fly:
y representation
y evaluation function
y variation operators
y selection operator (parent or mating selection)
y replacement operator (survival or environmental selection)
y population (overlap, size, topology)
Control HOW?
Three major types of parameter control:
y deterministic: some rule modifies strategy parameter
without feedback from the search (based on some
counter, typically time or no of search steps)
y adaptive: feedback rule, i.e., heuristic, based on some
measure monitoring search progress
y self-adaptative: parameter values evolve along with
solutions; encoded onto chromosomes they undergo
variation and selection
CEC 2009 tutorial
9
A.E. Eiben
Principled approaches to tuning EA parameters
Notes on parameter control
y Parameter control offers the possibility to use appropriate values in various stages of the search
y Adaptive and self‐adaptive control can Adaptive and self adaptive control can “liberate”
liberate users from tuning
users from tuning Æ
reduces need for EA expertise for a new application
y Assumption: control heuristic is less parameter‐sensitive than the EA
BUT
y State‐of‐the‐art is a mess: literature is a potpourri, no generic knowledge, no principled approaches to developing control heuristics (deterministic or adaptive), no solid testing methodology
WHAT ABOUT TUNING?
Historical account (cont’d)
Last decade: y More & more work on parameter control y Traditional parameters: mutation and xover y Non‐traditional parameters: selection and population size
y All parameters Î “parameterless” EAs (name!?)
y Hardly any work on parameter tuning, i.e.,
y Nobody reports on tuning efforts behind their EA published
y Just a handful papers on tuning methods / algorithms CEC 2009 tutorial
10
A.E. Eiben
Principled approaches to tuning EA parameters
Control flow of EA calibration / design
User
Design layer
Meta-GA
Algorithm layer
GA
optimizes
GP
optimizes
Symbolic
regression
Application layer
One-max
Information flow of EA calibration / design
Design layer
Algorithm quality
Algorithm layer
Solution quality
Application layer
CEC 2009 tutorial
11
A.E. Eiben
Principled approaches to tuning EA parameters
Lower level of EA calibration / design
EA
Searches
Decision variables
Problem parameters
Candidate solutions
Evaluates
Application
Space of solution vectors
Lower level of EA calibration / design
The whole
field of EC
is about this
EA
Searches
Decision variables
Problem parameters
Candidate solutions
Evaluates
Application
Space of solution vectors
CEC 2009 tutorial
12
A.E. Eiben
Principled approaches to tuning EA parameters
Upper level of EA calibration / design
Design method
Searches
Design variables,
Algorithm parameters,
Strategy parameters
Evaluates
EA
Space of parameter vectors
Parameter – performance landscape
y All parameters together span a (search) space
y One point – one EA instance y Height of point = performance of EA instance on a given problem
y Parameter‐performance landscape or utility landscape for each { EA + problem instance + performance measure }
y This landscape is unlikely to be trivial, e.g., unimodal, separable
y If there is some structure in the utility landscape, then we can do better than random or exhaustive search
CEC 2009 tutorial
13
A.E. Eiben
Principled approaches to tuning EA parameters
Ontology ‐ Terminology
LOWER PART
UPPER PART
UPPER PART
EA
Tuner
Solution vectors
Parameter vectors
Fitness
Utility
Evaluation
Test METHOD
SEARCH SPACE
QUALITY
ASSESSMENT
y Fitness ≈ objective function value
y Utility = ? y MBF‐utility, AES‐utility, SR‐utility, combined utility, robustness utility, … Off‐line vs. on‐line calibration / design
Design / calibration method
y Off‐line Æ parameter tuning
y On‐line Æ parameter control
y Why focus on tuning (first)?
y Easier
y Most immediate need of users
y Control strategies have parameters too Æ need tuning themselves
y Knowledge about tuning (utility landscapes) can help the design of Knowledge about tuning (utility landscapes) can help the design of
good control strategies
y There are indications that good tuning works better than control
High impact R&D programme: principled approaches to EA tuning
CEC 2009 tutorial
14
A.E. Eiben
Principled approaches to tuning EA parameters
Tuning by generate‐and‐test
y EA tuning is a search problem itself
y Straightforward approach: generate‐and‐test
hf
d
h
d
Generate parameter vectors
Test parameter vectors
Terminate
Testing parameter vectors
y Run EA with these parameters on the given problem or problems
y Record EA performance in that run e.g., by y Solution quality = best fitness at termination y Speed = time used to find required solution quality y EAs are stochastic Æ repetitions are needed for reliable evaluation Æ we get statistics, e.g.,
y Average performance by solution quality, speed (MBF, AES, AEB)
y Robustness
R b
= variance in those averages
i
i h
y Success rate = % runs ending with success
y Big issue: how many repetitions of the test
CEC 2009 tutorial
15
A.E. Eiben
Principled approaches to tuning EA parameters
Numeric parameters
y E.g., population size, xover rate, tournament size, …
y Domain
D
i is
i subset
b t off R,
R Z,
Z N (finite
(fi it or infinite)
i fi it )
EA performance
EA performance
y Sensible distance metric Æ searchable
Parameter value
Parameter value
Relevant parameter
Irrelevant parameter
Symbolic parameters
y E.g., xover_operator, elitism, selection_method
y Finite domain, e.g., {1
point, uniform, averaging}, {Y, N}
Finite domain e g {1‐point
uniform averaging} {Y N}
A B C D E F G H
Parameter value
Non-searchable ordering
CEC 2009 tutorial
EA peerformance
EA peerformance
y No sensible distance metric Æ non‐searchable in general
B D C A H F G E
Parameter value
Searchable ordering
16
A.E. Eiben
Principled approaches to tuning EA parameters
Notes on parameters
y A value of a symbolic parameter can introduce a numeric parameter, e.g., y Selection = tournament Æ tournament size
y Populations_type = overlapping Æ generation gap
y Parameters can have a hierarchical, nested structure
y Number of EA parameters is not defined in general
y Cannot simply denote the design space / tuning search space by S = Q1 x … Qm x R1 x … x Rn
with Qi / Rj as domains of the symbolic/numeric parameters What is an EA?
ALG‐1
ALG‐2
ALG‐3
ALG‐4
SYMBOLIC PARAMETERS
Bit‐string
Bit‐string
Real‐valued
Real‐valued
Overlapping pops
Representation
N
Y
Y
Y
Survivor selection
̶
Tournament Replace worst
Replace worst
Roulette wheel
Uniform determ
Tournament Tournament Bit‐flip
Bit‐flip
N(0,σ)
N(0,σ)
Recombination
Uniform xover
Uniform xover
Discrete recomb
Discrete recomb
G
Generation
ti gap
̶
05
0.5
09
0.9
09
0.9
Population size
100
500
100
300
Parent selection
Mutation
NUMERIC PARAMETERS
Tournament size
Mutation rate
Mutation stepsize
Crossover rate
CEC 2009 tutorial
̶
2
3
30
0.01
0.1
̶
̶
̶
̶
0.01
0.05
0.8
0.7
1
0.8
17
A.E. Eiben
Principled approaches to tuning EA parameters
What is an EA? (cont’d)
Make a principal distinction between EAs and EA instances and place the border between them by:
y Option 1
O ti 1
y There is only one EA, the generic EA scheme
y Previous table contains 1 EA and 4 EA‐instances
y Option 2
y An EA = particular configuration of the symbolic parameters
y Previous table contains 3 EAs, with 2 instances for one of them
y Option 3
y An EA = particular configuration of parameters
y Notions of EA and EA‐instance coincide
y Previous table contains 4 EAs / 4 EA‐instances
Generate‐and‐test under the hood
Generate
initial
parameter
vectors
Test p.v.’s
Terminate
Select p.v.’s
→ Fixed-set search
→ Smart
S
t fixed-set
fi d t search
h
→ Population-based search
Generate p.v.’s
CEC 2009 tutorial
18
A.E. Eiben
Principled approaches to tuning EA parameters
Tuning effort
y Total amount of computational work is determined by y A A = number of vectors tested
number of vectors tested
y B = number of tests per vector
y C = number of fitness evaluations per test y Tuning methods can be positioned by their rationale: y To optimize A (population‐based search)
y To optimize B (smart fixed‐set search)
p
(
)
y To optimize A and B (combination)
y To optimize C (non‐existent)
y…
Optimize A = optimally use A
Applicable only to numeric parameters
Number of tested vectors not fixed, A is the maximum (stop cond.)
Initialization with N << A vectors + iterations Per iteration: generating, testing, selecting
y Meta‐EA (Greffenstette ‘86)
y Generate: usual crossover and mutation of p.v.’s
y SSPO (Bartz‐Beielstein
O ( a t e e ste et
et al. ‘05)
a 05)
y Generate: uniform random sampling!!! of p.v.’s
y REVAC (Nannen & Eiben ’06)
y Generate: usual crossover and distribution‐based mutation of p.v.’s
CEC 2009 tutorial
19
A.E. Eiben
Principled approaches to tuning EA parameters
REVAC illustration
Optimize B = reduce B
Applicable to symbolic and numeric parameters
Number of tested vectors (A) fixed at initialization
Set of tested vectors can be created by y regular method Æ
regular method Æ grid search
grid search
y random method Æ random sampling
y exhaustive method Æ enumeration
Complete testing vs. selective testing
y Complete testing: nr. of tests per vector = B (thus, not optimizing)
y Selective testing: nr. of tests per vector varies, ≤ B y Idea: y Execute tests in a breadth‐first fashion, all vectors X < B times
y Stop testing vectors with statistically significant poorer utility
y Well‐known methods
y ANOVA (Scheffer ‘89)
y Racing (Maron & Moore ’97)
CEC 2009 tutorial
20
A.E. Eiben
Principled approaches to tuning EA parameters
Optimize A & B
Existing work:
y Meta‐EA with racing (Yuan & Gallagher ‘04)
New trick: sharpening (Smit & Eiben 2009) destilled from SPO y Idea: test vectors X < B times and increase X over time during the run of a population‐based tuner – see talk on Tuesday (S2‐1 at 13.15‐14.55)
Ongoing research
y Meta‐EA with sharpening
y Meta‐EA with racing & sharpening M t EA ith i & h
i
y REVAC with racing
y REVAC with sharpening y REVAC with racing & sharpening Which tuning method?
y Differences between tuning algorithms
y Maximum utility reached
y Computational costs
y Number of their own parameters – overhead costs
y Insights offered about EA parameters (probability distribution, interactions, relevance, explicit model…) y Similarities between tuning algorithms
g g
y Nobody is using them
y Can find good parameter vectors
y Solid comparison is missing – ongoing
CEC 2009 tutorial
21
A.E. Eiben
Principled approaches to tuning EA parameters
Preliminary comparison
Optimum
Meta‐EA
REVAC
SPO
Human A
Human B
++
+
++
‐‐
‐‐
Model
‐
+
++
‐‐
‐‐
Value 0.039
0.1
0.046
42
61
y
y
y
y
y
y
One single problem (Rastrigin function)
Meta‐EA = CMA‐ES
REVAC is untuned
Human A = 20 years experience
Human B = ½ year experience
Used also add‐ons (racing, sharpening) – see presentation during this CEC
Tuning “world champion” EAs
Evolution Strategy (G-CMA-ES)
Tuned by
Best
Median
Worst
G-CMA-ES
0.474
0.522
0.579
REVAC
0.603
0.683
0.694
CEC-2005 champion
0.971
0.971
0.971
Differential Evolution (SADE)
Tuned by
Best
Median
Worst
G-CMA-ES
0.497
0.702
1.384
REVAC
1. 419
3.740
12.21
CEC-2005 champion 1.432
1.432
1.432
Main conclusion:
CEC 2009 tutorial
if they had asked us ….
22
A.E. Eiben
Principled approaches to tuning EA parameters
Practice of tuning
y Present practice: no principles, the main “approaches” are
y ad hoc choices, y (mis)beliefs, conventions, y limited grid search
y New, improved practice needs y Solid tuning method(s)
y Working EA framework, shell (e.g., ECJ)
y Integrated toolbox
g
y New attitude y We can improve any EA with our tuning; working on evidence incl. GP, optimization, evolutionary robotics, etc y Note our web‐based “quiz” – check your random sampling score
And the biggest challenge is …
CEC 2009 tutorial
23
A.E. Eiben
Principled approaches to tuning EA parameters
Recommended reading
y S.K. Smit and A.E. Eiben, Using Entropy for Parameter Analysis of Evolutionary Algorithms, in Bartz‐Beielstein et al. (eds.), Empirical Methods for the Analysis of Optimization Algorithms, Springer, 2009 (to appear)
y S.K. Smit and A.E. Eiben, Comparing Parameter Tuning Methods for Evolutionary Algorithms, Proceedings of the CEC 2009, IEEE Press, 2009
The big picture: methodology
y Experimental methodology as a whole is weak
y Eiben and Jelasity
and Jelasity paper (CEC 2002) paper (CEC 2002)
y Eiben and Smith book (Springer 2003), Chapter 14
y Context: objectives & user priorities y Performance measures
y Statistics
y Test problems ̶
Test problems ̶ relevance?! misadapting
relevance?! misadapting community?
y Scoping!
CEC 2009 tutorial
24
A.E. Eiben
Principled approaches to tuning EA parameters
Culture change?
y Fast and good tuning can lead to radically new attitude
y Past & present: robust EAs preferred (the expert vs. Past & present: robust EAs preferred (the expert vs
tuner game is actually unfair)
y Future: problem‐specific EAs preferred y Old question: what is better the GA or the ES?
y New question: what symbolic configuration is best? y Black box with 3 layers inside and a single START button
Black box with 3 layers inside and a single START button
y Assumption: tuner level less sensitive to its parameters
y Never mind the No Free Lunch theorems
The (near) future of automated tuning y Hybrid methods combining population‐based search and selective y
y
y
y
y
y
y
testing
Well‐funded EA performance measures, multi‐objective formulation Æ multi‐objective tuner algorithms
(Statistical) models of the utility landscape Æ more knowledge about parameters Open source toolboxes
Distributed execution
Good testbeds
Adoption by the EC community
Adoption by the EC community
Rollout to other heuristic methods with parameters
THUS: MORE THAN ENOUGH WORK TO DO
CEC 2009 tutorial
25
© Copyright 2026 Paperzz