An Analytical Algorithm for a Seven-DOF Limb “Real-time inverse kinematics techniques for anthropomorphic limbs” Deepak Tolani, Ambarish Goswami, Norman I. Badler University of Pennsylvania A 7 (or 4) degree-of-freedom limb 3 DOF S1 3 DOF L3 S2 1 DOF L1 F L2 Numerical approaches : Jacobian singularites, local minima Analytical approaches : efficient and reliable Inverse Kinematics Rotation matrices at joints S1, F, and S2 R ( , , ) 0 T1 1 1 2 3 1 0 0 0 R ( ) 0 Ty y 4 0 0 0 1 2 constant transformation matrices ta Ra A 0 0 0 1 tb Rb B 0 0 0 1 A desired goal tg Rg G 0 0 0 1 The equation to solve T1 ATy BT2 G R ( , , ) 0 T2 2 5 6 7 1 0 0 0 Step 1: Solving for 4 Only 4 affects the distance of S2 relative to S1. If the normal vector of the plane containing S1, S2, and F is parallel to the axis of rotation of F, then 4 can be computed trivially using the law of cosines. L1 L2 L3 cos( 4 ) 2 L1 L2 2 Else, … 2 3 Step 2: Solving for Elbow Position nˆ tg aˆ (aˆ nˆ )nˆ uˆ aˆ (aˆ nˆ )nˆ tg L3 L1 L2 cos( ) 2 L3 L1 2 2 vˆ nˆ uˆ 3 c cos( ) L1nˆ R sin( ) L1 e( ) c R(cos( )uˆ sin( ) vˆ ) Step 3: Solving for R1 and R2 xˆ g ( ) yˆ g ( ) zˆ g ( ) 0 xˆ yˆ zˆ 0 T1 0 0 0 1 0 0 0 1 T2 (T1 ATy B)1 G T Class PV_IK \\vrs4\opensources\xmath \\vrs4\opensources\ik #include “pv_ik.h” … float t4, r1[4][4]; … PV_IK ik(L1, L2); ik.setGoal(gx, gy, gz); ik.solve(); //or ik.solve(psi); t4 = ik.getTheta4(); ik.getR1(r1);
© Copyright 2025 Paperzz