CALIFORNIA STATE UNIVERSITY, NORTIIRIDGE
Tiffi EVALUATION OF AN
0-RING SEAL WHEN USED
WITIIIN A STRUCTURAL JOINT
A graduate project submitted in partial
satisfaction of the requirements for the
degree of Master of Science in Engineering
by
Kevin P. Grabe
May 1987
0
The graduate project of Kevin P. Grabe is approved:
Professor Astrid Gautier-Levine
Pfofess~ tephenQ omski
California State University, Northridge
ii
'
TABLE OF CON1ENTS
LIST OFTABLES
iv
LIST OF FIGURES
vi
ABSTRACf
vii
1.
2.
INTRODUCfiON
1
1.1
1.2
1.3
1
5
Problem Definition
Background Analysis
Method of Evaluation
8
MODEL DEVELOPMENT
9
2.1
2.2
2.3
2.4
9
9
Assumptions
Element Generation
Loading
Design Limitations
17
24
TESTING
29
3.1
3.2
Test Setup
Test Results
29
29
4.
MODEL RESULTS
36
5.
DISCUSSION OF RESULTS
41
6.
CONCLUSION
46
3.
REFERENCES
47
APPENDICES
A.
MODEL BREAKDOWN
48
B.
DESIGN LOADS
50
c.
BOLT PRELOAD
52
D.
NASTRAN INPUT DATA FILE
53
iii
LIST OF FIGURES
Figure
Description
Page
1.
Phoenix Missile Breakdown
2
2.
Proposed Design
4
3.
Guidance Section Model
6
4.
Modelling Strategies for Brazed and Bolted Joints
7
5.
Seal Interface Area
10
6.
Deformation Profile Due to Axial Load
11
7.
Reaction Forces Due to Load "P"
11
8.
Coolant Port Detail
12
9.
Finite Element Geometries
14
10.
Hexagonal Element Geometry
15
11.
Modelling Attachment Bolts
16
12.
Generation of Separate Elements for Rear Bulkhead
18
13.
Seal Interface Model
19
14.
Maximum Response Location and Boundary Conditions for
Guidance Section
21
15.
Rear Bulkhead Bolt Pattern
23
16.
Spring Network for Bolt Preload
25
17.
Manufacturer's Tolerances
28
18.
RTU Structure in Load Cell
30
19.
Location of Displacement Transducers
31
20.
Pressure Drop Over 30 Minutes
33
21.
Pressure Drop With Load Applied
34
22.
Measured Displacement With Pressure and Load
35
23.
Deformed Geometry
38
iv
Figure
Description
Page
24.
Deformation Profile for 50 g Load
39
25.
Stress Contour for 50 g Load
40
26.
Rear Bulkhead Deformation
43
27.
Deformation Profile for 100 g Load
45
v
LIST OFTABLES
Table
Description
Page
1.
Response to Load Conditions
22
2.
Effect of 8 on Measured Displacement
44
vi
ABSTRACf
TIIE EVALUATION OF AN
0-RING SEAL WHEN USED
WITHIN A STRUCfURAL JOINT
by
Kevin P. Grabe
Master of Science in Engineering
California State University, Northridge
The objective of this project is to develop a method to analyze an o-ring seal used
within a structural joint. The application of o-rings for sealing fluids under pressure is
common. However, a pressurized seal also experiencing externally applied loads is
unusual. A proposed o-ring seal, used within the guidance section of the Phoenix Airto-Air Missile, experiences external loads. Although a finite element model of the
guidance section exists, its coarse mesh and two dimensional nature provide little
information related to seal performance. This project provides a method to evaluate the
proposed seal design. A detailed finite element model is developed, simulating the seal.
Approximate loads are chosen and applied to the model to determine seal separation.
This is compared with the allowable separation determined from manufacturer's design
data. Output data from the guidance section finite element model is reviewed to qualify
the load magnitudes chosen for the seal model. Hardware is tested to verify the results
of the seal finite element solution. The model and the tests resulted in separation less
than the allowables, indicating that seal failure will not occur.
vii
CHAPTER 1
INTRODUCTION
1.1 Problem Definition
The Phoenix Air-to-Air Missile is a long range missile used on the Navy's F-14
Tomcat fighter aircraft. The missile, divided into several individual sections, is shown in
Figure 1. The guidance section of this missile is composed of two separate units: the
Receiver Transmitter Unit (RTU) and the Electronics Unit (EU). These units are shown
above their actual locations in Figure 1. The individual units are composed of a basic
structure to which various subassemblies of electrical components are mounted.
In its present (henceforth "C") configuration, the RTU structure is a brazed
assembly made from 6061 T6 aluminum. Subcomponents are fabricated separately from
plate stock and joined using a dip process. Channels are cut where a joint is to be made
and foil braze material is placed between the surfaces to be joined. The structure is then
placed in a fixture and dipped in a bath. The braze material flows to form the joint. This
process provides continuous adhesion within the joint and has performed well in prior
applications.
A recent upgrade in the requirements for the RTU has made it necessary to
develop a new structure (henceforth referred to as the engineering development model or
EDM). Although the EDM structure design is similar to its parent "C" configuration,
significant changes were made which change its structural characteristics. The major
functional change made within the RTU was the incorporation of a high power
transmitter. This new transmitter design has impacted the design of the structure in the
following ways:
1
EU
4'
Fin
RTIJ
Propulsion Section
Wing
Annament Section
Guidance Section
Radome I Seeker Assembly
Figure 1
Phoenix Missile Breakdown
1\)
3
-The EDM transmitter is larger than its "C" counterpart. This forces
more volume to be allocated for the transmitter, requiring other
assemblies to be redesigned or relocated.
-The larger volume and change in configuration of the EDM transmitter
dictates that the structure may no longer be a completely brazed entity.
The effects of "bolt-on" structure components on the overall design
have yet to be evaluated.
-Components within the new transmitter generate considerably more
power than the present design. This necessitates reevaluation of
cooling provisions.
The proposed structure is shown in Figure 2. It uses coldplates along three
surfaces to provide the required cooling within the EDM RTU. The side coldwalls,
which also function as shear panels, are attached to the structure using screws. The side
coldwalls' main purpose is to cool the electrical components which mount to them. The
third coldplate, mounted to the structure, is the transmitter coldplate. Its purpose is to sink
heat from various high power dissipators within the transmitter. The coldwalls are
attached to the coldplate using coolant tubes as shown. The rear bulkhead is attached to
the structure using ten 8-32 screws. Four of the ten screws thread directly into the
coolant ports, located at the aft ends of the coldwalls. These ports are to seal with the rear
bulkhead once the screws are torqued. This completes the coolant circuit. Coolant enters
into the "coolant in" port of the rear bulkhead, loops thru the circuit, and exits thru the
"coolant out" port of the bulkhead.
The structure, proposed for use in the EDM, incorporates changes which will
affect its response under typical load conditions. Furthermore, the EDM design places a
coolant seal within a structural joint. This introduces the question: When the missile is
subject to loads such as when the missile is flown on the aircraft during maneuvers, how
will the seal respond? Occasionally, a missile will require disassembly after captive
~Structure
{\Coolant Tubes
I
~~,
,,
\~
'-n,,
''
~~llll
I I
-::--
1
1 "-,.
0
-
Coldwalls
Transmitter Coldplate
-t
'-J
0
'
.
Coolant Port
r,;•
I
·- Transmitter Components
Figure 2
Proposed Design
•~ -
· - - - - - _o
.
I I
.,
c~- 0 ~
C<~l~t milan~
~
5
flight. Puddles of coolant found within the guidance section may result in days of
additional disassembly and cleanup.
The purpose of this project is to verify the integrity of the seal which mates the
coldwalls with the rear bulkhead. The coolant tubes, mating the side coldwalls to the
transmitter coldplate, are not suspect in this application. Similar coolant tubes are used
within the present structure and have not previously been a source of problems. This is
due to the fact that the stiffness of the coolant tubes is considerably less than that of the
structure. This relative flexibility makes it highly unlikely for load conditions to exist at
the seal interface which would cause leakage.
1.2 Back wound Analysis
As stated earlier, the EDM structure is not expected to respond the same as the "C"
structure when the same loads are applied. For this reason, it is important that the EDM
structure and its unique components be analyzed. Analysis of the structure is not the
primary emphasis of this report. However, it it necessary to provide a brief description of
the analysis model, used to evaluate the structure, to provide a better understanding of the
necessity for a more detailied analysis of the coldwalls.
The guidance section structure was modelled using a Nastran finite element
model. The model is shown in Figure 3. It is composed primarily of plate elements
which accurately describe the geometry of the structures. At the EU and RTU interface,
the structures are joined together using beam elements. The beam elements are used to
simulate the bolts which join the two units. On the RTU structure, plate elements
perpendicular to one another are typically connected by braze joints. These are modelled
using common boundaries between elements (see Figure 4). The rear bulkhead used on
the EDM is not brazed, but bolted. This is simulated, in the model, by generation of
separate elements for the rear bulkhead and the structure. Although there may appear to
be common nodes and boundaries between the structure and the rear bulkhead, two
separate nodes were defined at the same point. This allows the elements to be defined
6
7
Common Element
Boundary
2 Dimensional Plate Element
~
Common Node
Braze Joint Simulation
Beam Eiements
Connecting Uncommon
Boundary
Separate Nodes
Bolted Joint Simulation
Figure 4
Modelling Strategies for Brazed and Bolted Joints
8
independently along the mating surfaces (Figure 4). The rear bulkhead is attached to the
RTU structure using beam elements. Subassemblies are simulated in this model by point
masses, located at the actual center of gravity of the subassembly, and attached to the
structure using rigid elements. This is a conservative assumption because it allows the
model to be more flexible than the actual hardware. Modelling the RTU subassemblies
would introduce more elements in parallel with those defining the structure, thus
increasing its rigidity. The results obtained from this structural model provided useful
output of stresses and displacements resulting from various input load conditions.
Modifications were made to the structure design in areas exhibiting high stress levels.
The structural model, due to its two dimensional nature, provided little information
indicating how the seals would respond. Further investigation of the seals is necessary.
1.3 Method of Evaluation
The objective of this project is to develop a means to evaluate the seal which mates
the coldwall to the rear bulkhead. The approach used is as follows:
-Develop a fmite element model simulating how the seal will react
to various load conditions. Patran, a pre and post processing tool,
is used with Nastran, a finite element program, to develop this model
and evaluate results.
-Obtain applicable information from the structure model which may
help to indicate the worst case load condition present at the seal
interface. In this case, response at the rear bulkhead is used to verify
the loads chosen for the seal model input.
-Test hardware to simulate load conditions. Critical areas of the
structure at, or near, the seal are instumented to obtain data used to
compare with the results obtained from the model.
-Compare the results from the tests with the analytical results.
CHAPTER 2
MODEL DEVELOPMENf
2.1 Assumptions
A detailed sketch of the seal interface area is shown in Figure 5. The mounting
bolts assemble thru the (countersunk) rear bulkhead and thread into a helical insert within
the coldwall. In order to determine an approach for model development, it is first
necessary to examine likely failure criteria. Compressive forces within the seal and the
rear bulkhead will not cause failure because they result in a tighter seal. Slight shifts in
the direction perpendicular to the bolt axis will increase stresses within the bolts. Failure
of the seal due to these stresses is unlikely because the bolts will fail before leakage will
occur. Excessive shear stresses in the bolts are determined from the EDM structure
model. The most likely cause of a seal failure is a tensile force. Separation, which will
occur due to tensile loads, will result in a reduction of o-ring compression. Excessive
separation will cause leakage.
If separation is to occur, it is expected that some arbitrary load "P" will cause a
deformation profile as shown in Figure 6. A free body diagram showing the resultant
forces acting in this situation is depicted in Figure 7. Both reactive forces, due to the bolt
and the force exerted at the corner by the rear bulkhead, tend to return the system to its
equilibrium position. A detailed fmite element model is developed to determine the effects
of such forces at the seal interface.
2.2 Element Generation
The bulk of the finite elements used to describe the seal area are hexagonal, or
solid three dimensional elements. The area consists of an o-ring and a gland in which the
ring is compressed. A detailed drawing of the gland area and its tolerances is shown in
Figure 8. In the worst case condition, which was modelled, the o-ring is at minimum
compression and the largest gland size. The seal interface/gland area is examined to
9
10
Rear Bulkhead
l
Countersink
0-ring
Gland
Coolant Port
Threaded Insert
Coldwall
Figure 5
Seal Interface Area
11
(_
p
Undeformed
Figure 6
Axial Load Applied
Defonnation Profile Due to Axial Load
R bolt
Figure 7
I!
R bulkhead
Reaction Forces Due to Load "P"
12
.1:"58 ~
10$! .¢.
010
1
/.40
I8
B
.329
.3Z.Z.
.400
Figure 8
Coolant Port Detail
13
determine the method of element subdivision to be used. Since the interface area is
symmetric, only half of the model geometry is defined. The balance of the elements are
mirrored using Patran.
Two geometries are considered for use. The first is shown in Figure 9a. At first
glance, this geometry appears to adequately represent the interface configuration. Figure
9b displays an alternative subdivision having a slightly higher element concentration.
Although alternative "a" demonstrates greater detail around the area of where the bolts
fasten the seal to the rear bulkhead, it provides less detail in the area of the gland. The
bolthole is expected to experience little, if any, motion. Gland deformations, being of
primary concern here, suggests the use of the geometry which models the gland most
accurately. Thus, geometry "b" was chosen. Another concern, when developing a finite
element model, is that of element aspect ratios. An aspect ratio is simply the ratio of
element sides with respect to one another. Elements having aspect ratios greater than 10: 1
may yield less accurate results. The maximum aspect ratios used in this model are
approximately 7: 1. The overall assemblage of the elements, used to model the interface
area, is shown in Figure 10. Further breakdown of this model, defining the balance of
interior elements, is shown in Appendix A.
The bolts, which hold the assembly together, were modelled using beam
elements. The elements are sectioned at the same levels as the hexagonal elements to
provide for attachment. Infinitely rigid elements are used to attach the beam elements to
the hexoganal elements, previously defined, to simulate the tight fit of a bolt within a
threaded hole. The element connectivity is shown in Figure 11.
Thus far, modelling the o-ring gland area, where the seal is retained, has been
discussed. The next area to be considered is the rear bulkhead. Initially, plate elements
were considered for this application, but these proved to be inappropriate. The simulated
hardware consists of separate pieces, the rear bulkhead and the gland area. Modelling this
requires separate elements to define each item. Defming separate elements will allow the
14
(a) 18 Divisions Per Half
Figure 9
(b) 25 Divisions Per Half
Finite Element Geometries
15 '
Figure 10
Hexagonal Element Geometry
Beam Elements With Bolt Properties
Rigid Elements
Hexagonal Elements
Figure 11
Modelling Attachment Bolts
~
(j)
17
surfaces to intersect one another when a load is applied. See Figure 12. This is not
representative of the hardware. As shown previously, in Figure 7, a tensile load resulting
in separation at one side is countered by a resisting force at the opposite side. For this
reason, an alternative approach is used. Boundary, or spring, elements are used to
simulate the resistive force caused by the rear bulkhead Boundary elements are also used
to attach the screws to ground. The deformations of the gland surface, resulting from
applied loads, compared to its undeformed configuration, is used to investigate
displacements. This method of evaluating displacements assumes that the rear bulkhead
does not deform. This is a conservative assumption because it allows larger relative
displacements in the model than actually occurs in the hardware.
The shear panel portion of the cold wall is not evaluated in this analysis because it
is evaluated within the structural model. It is necessary to specify the location where the
loads are applied. Rigid elements are used to simulate the cold wall attachment to the seal.
The rigid elements will transfer a load applied to a point to the elements. Figure 13 shows
the entire model.
2.3 Loading
Loads applied to the seal interface model originate from three sources. Two
external loads are applied, henceforth referred to as environmental conditions and bolt
preload. The third is an internal pressure load, applied to the seal resulting from coolant
flow. The methods of determining the loads used within this analysis are discussed
below.
Environmental conditions for which the guidance section is designed are as
follows:
- 45 g sawtooth shock in all three axes
- Sinusoidal vibration in all three axes
- Randon vibration in all three axes
Bolt Attachment Points
Intersecting Surfaces
Plate Elements (Rear Bulkhead)
Hexagonal Elements (Coolant Port)
Figure 12
Generation of Separate Elements For Rear Bulkhead
_..
00
19
Boundary Elements
Rigid Elements
Figure 13
-
--~--~·---
Seal Interrace Model
-----
-------
rl
I
20
The design loads mentioned above are further described in Appendix B. Each load case is
independently applied to the guidance section model to determine its response. The load
condition of interest is that which causes the maximum response at the rear bulkhead.
Interpretation of data obtained from these runs indicates the peak response at the RTU/EU
interface is due to longitudinal shock. Figure 14 shows the location of the responses and
Table 1 presents their magnitudes. The response data was not available when loads were
to be applied to the seal model. The response data is included at this point to justify the
loads chosen as input for the seal model.
The absence of response data required that some assumption be made regarding
the evironmental load used in the seal model. Consider the RTU and EU as shown in
Figure 4. They weigh 57 lbs and 40 lbs respectively. An arbitrary load of lOOg's is
chosen and applied along the negative longitudinal axis. This results in a load at the rear
bulkhead of:
F = (1000) (40 lb) = 4000 lb
The rear bulkhead configuration is shown in Figure 15. Ten bolts, marked "A", attach
the rear bulkhead to the RTU structure. The holes marked "B" attach the RTU to the EU.
Assuming an infinitely rigid rear bulkhead and an even transfer of the load "F" from bolts
"B" to bolts "A", the load can be evenly distributed amongst the ten bolts used to attach
the bulkhead to the structure. The load per bolt is:
P=4000lb/ 10= 400lb
Each seal is attached using two screws. The axial load experienced within each seal will
therefore be 800 lbs. This corresponds to a lOOg load at the rear bulkhead. It is unlikely
that the area under consideration would ever experience this load, certainly never for a
sustained period of time. For the seal model, incremental loads of 100 lbs were applied
and evaluated. The data presented within this report are responses to a 50g and 100g
input load.
Response Location
j
RTU
EU
I
I
I
I
'
Figure 14
0
0
Q
0
0
0
LX
Maximum Res~nse Location and Boundary Conditions For Guidance Section
1\)
--L
22
Load
Condition
Axis
.x
46.2
44.6
46.2
10.4
25.8
20.9
1.96
y
3.24
z
2.05
X
y
Shock
z
X
Sinusoidal
y
z
Random
( 1 cr rms
value )
Table 1
Maxg
Response
Response to Load Conditions
I
I
~
@
B
0
0
B
@
1\
A
A
@
~ Coolant Port
A
0
i
~
Attachment (2 pi)
@
B
A.
@
Figure 15
A
@
Rear Bulkhead Bolt Pattern
1\)
(_.)
24
During the assembly of the rear bulkhead to the RTU, the bolts are torqued
between the range of 19 and 23 in-lbs. This torque produces a bolt preload which is a
function of torque, cross sectional properties of the bolt, and frictional characteristics of
the materials in contact with one another. The formula relating these factors is most
simply expressed as:
P=T /DK
where:
P = bolt preload in pounds
T = applied torque in inch pounds
D = nominal diameter of fastener in inches
K = friction coefficient
The origin of the values for T, D, and K are further discussed in Appendix C. The
preload on each bolt is about 570 lbs for the recommended torque of 19 in-lb. Preload,
an interesting phenomena in itself, can be understood as a spring network as shown in
Figure 16. The outer springs, ks, represent the resistive forces produced by the surfaces
which are clamped together. The inner spring, kb, represents the bolt. When the bolt is
tightened, a preload of some magnitude "P" is introduced in the bolt at node one. This
tensile preload in the bolt results in a compressive, or clamping, force on the surface
being joined. If a load equal magnitude but opposite in direction from "P" is applied at
node 2, no compressive forces are present in ks, but the force in kb is still "P"! This
illustration shows that bolt preload remains constant until a force which exceeds the
preload is applied.
The final load to be included within this model is the pressure load due to coolant
flow. Specifications suggest that operating pressures not exceed 50 psi. However, the
coldwalls were burst tested to 150 psi. This is the pressure used in the analysis.
2.4 Design Limitations
The development of the model and instrumentation of the hardware would be in
vain if the design limitations of the o-rings used were not defined. The o-rings used in
25
ks
kb
1
2
Equilitnum Configuration
ks
ks
p
kb
1
2
Bolt Preload "P" Applied
ks
ks
p
1
kb
2
•
ks
Figure 16
p
Removal of Camping Force
Yields Same Bolt Preload
Spring Network For Bolt Preload
11
'
26
this application are defined within the military specification MS25988/1-013. This is a
flourosilicon rubber, oil and fuel resistant type o-ring. Characteristics of the o-ring which
may lead to failure are degradation of the ring material and failures associated with the
gland tolerances.
When sealing some gasses under high pressures, permeability may need to be
considered as a potential problem. Coolanol, as with most fluids, will not permeate thru a
flourosilicon o-ring. Vendor test data for flourosilicon o-rings used with coolanol shows
no material breakdown. The only adverse effect noted, one common in similar
applications, is that of swelling. In the type of ring used here this amounts to about
2.5%. Swell has no adverse effects on the o-ring's ability to seal. Instead, it has been
shown that additional pressure provided by minimum swell can actually provide for a
better seal.
It is extremely important that the gland tolerances, recommended by the
manufacturer, be maintained to eliminate design related failures. 0-ring tolerances, along
with the manufacturer's recommended tolerances for gland size, are presented in Figure
17. Previous testing has proven that o-ring compression, or squeeze, shall not exceed
approximately 30%. This value is determined from the following equation:
squeeze= ( 1- Df /Di)
where
* 100
Df =minimum gland depth
Di = maximum o-ring diameter
Maximum compression is:
( 1- .05 I .073)
* 100 = 31.5%
The minimum recommended squeeze is 0.007 inches. The minimum squeeze which is
allowed by o-ring tolerances is determined by subtracting the largest gland size from the
smallest o-ring cross section which yields:
0.067 - 0.054 = 0.013 inches
27
Subtracting the minimum recommended compression from the minimum squeeze,
allowed by tolerances, indicates a safety margin of 0.006 inches. This is the value used
to determine the allowable separation at the seal interface.
28
.093
.098
l
.050
.054
1
.005radmax
__{
f
Figure 17
.070±.003
Manufacturer's Tolerances
CHAPTER3
TESTING
3.1 Test Setup
It is fortunate that an actual EDM structure is available for tests. The structure is
fitted with coldwalls, coolant tubes, and a rear bulkhead. All hardware is torqued to
recommended values. The structure assembly is installed in a load cell. The front
bulkhead is clamped to the base of the cell. A plate is fabricated to attach to the rear
bulkhead, simulating the interface of the EU and RTU, to which loads can be applied.
The test setup is shown in Figure 18.
Pressure is applied to the assembly and leak rates are determined by plotting
change in pressure versus time using a data acquisition unit. The data acquisition unit
enables real time data to be stored on a tape and later reviewed graphically, or as an output
file. It is difficult to instrument the surfaces which define the seal interface to obtain
separation data. Relative displacement at the interface of the coldwall coolant port and the
rear bulkhead needs to be obtained in the event that leakage is present. The measurement
devices available are strain and displacement gages. Consideration was given to
mounting a strain gage in an "L" configuration between the two surfaces, but this would
produce errors larger than the measured separation. Instead, displacement transducers are
used to measure the small relative displacement. The transducers did not fit between the
gland and rear bulkhead mating surfaces. Therefore, the transducers are placed as shown
in Figure 19. This alternative location, while not optimal, is along the expected line of
displacement.
3.2 Test Results
Three separate tests are performed. The first test, intended for use as a baseline,
is to detect leaks present with no external loads. The EDM RTU is pressurized with dry
nitrogen. The data acquisition unit reads an initial pressure of 49.5108 psia. Losses are
29
30
a
]
0
0
.s
e
E
tf.l
E
u
-g
.s
0
~
0
-e
00
~
zs::
{I)
Q.
~
u
~
::s
bl)
ii:
31
Rear Bulkhead
Line of Measured Displacement
Displacement
Transducers
Figure 19
Location of Displacement Transducers
32
recorded over a period of 30 minutes. Real time data is plotted in Figure 20. At the end
of the test, the pressure dropped to 49.4759 psia. The loss over 30 minutes is:
.5108- .4759 = .0349 psia
In the second test, the same pressure is applied along with increasing axial loads
of 500, 1000, 2000, and 4000 lbs, applied over 30 minutes. The loss in pressure is
nearly identical to that in the previous test. This indicates that the leakage is load
independent. These small leaks are attributed to pipe fittings used within the test setup.
The results of this test are plotted in Figure 21.
The third test performed is identical to the second, but relative displacements are
monitored instead of pressure drop. Results of this test are plotted in Figure 22.
Increases in load resulted in larger displacements until the load reached 4000 bs. At 4000
lbs, the measured displacement dropped below that of the 2000 lb level. This was caused
by a structural failure, later attributed to an improper braze joint. This renders the data
obtained in this range useless. The total change in displacement, due to the 2000 lb load,
was scaled from this plot to be about 0.0017 inches.
(l'
I
I
r-----,.----
------r- -
'T-----
----r------r-------~--
49.9
49.8
-....
as
c.
._
----------·..a-------------·--· I------.
49.7
~
~
49.6
J:
49.5
~
~
49.4
·---------1------------
t-
I-
1----------
49.3
49.2 t-------+--------f-------------1-49.1
49
_t___ _ _ _ J _ _ _ _ _ _ -· L
0
180
360
540
720
900
1000
1260
1440
1620
1800
Time (seconds)
Figure 20
Pressure Drop over 30 Minutes
(...)
(...)
5000
49.9
49.8
·-tU
-
-··---·-
-
I
4000
\
49.7
I ll
Q,
·~Ill
49.6
J:
49.5
Ill
-
49.4
49.1
I
---1.
49
0
180
360
\
/
49.3
49.2
\
540
720
900
\
\
1000
1260
1440
1620
3000
I ll
"t::
s::
:::1
.
0
0..
.,__..
2000
'g
0
....J
1000
1800
Time (seconds)
Figure 21
Pressure Drop With Load Applied
(,.)
.J:>.
.005
.------~----------.------~----------~-----~----~--~~--~--~~--~
5~
.004
-.5
.c...
~
~
.....~
0
C)
-~
-~
.003
'
4~
.002
.001
-·--·-
---·--· ·-- ---·-----··--·--··.
__ .... __ -- ·--·------·---.
3~
{ /)
-,;j
c
::s
0.0 ·-
.
-----·-·
-.001
8.
2~
~
.3
-.002
-.003
--. - - - · · · · - - - ·
l - - - f 1~
-.004
-.005
0
180
360
540
720
900
1()()()
1260
1440
1620
1800
Time (seconds)
Figure 22
Measured Displacement With Pressure and Load
w
01
CHAPTER4
MODEL RESULTS
If results from the model are to be compared to those obtained thru testing
equivalent loads must be used. As previously discussed, a 4000 lb load at the rear
bulkhead is the equivalent to a 100 g load case. Unfortunately, the test data for this load
is not available. The modelled load case for which the test results are available include:
Environmental = 50 g at the rear bulkhead
Bolt preload =570 lbs each
Pressure = 150 psi (internal surfaces only)
The above load conditions when applied to the model resulted in deformations as shown
in Figure 23. The dashed line defmes the undeformed surface, which mates with the rear
bulkhead. The magnitudes of the deformations shown in this plot are exaggerated for
ease of visualization. The actual deflections along the "z" axis are presented in Figure 24.
It can be seen from these plots that the maximum separation, is about 0.0004 inches. The
maximum compression, along the edge where the boundary elements were placed, is
about 0.0001 inches.
A stress contour plot is shown in Figure 25. The areas exhibiting the highest
stress levels, as to be expected, are as follows:
-The areas where the bolt preload is applied
-The surface where the coldwall attaches to the coolant port
(simulated by the use of rigid elements to transfer the
applied load)
The highest stresses (Von Mises) are significantly smaller than the allowable (40 ksi for
6061 T6 aluminum). Other interesting aspects of the stress plots are:
- The stress distribution is symmetric. This is the result of load and
geometric symmetry.
36
37
- The stresses resulting from the boundary elements, simulating the rear
bulkhead, are larger than those caused by internal pressure. Stresses
resulting from the pressure load are insignificant as compared to those
from the externally applied loads.
---------
38
Undefonned Surface
Figure 23
Defonned Geometry
. 800 174 •
. 000 136
. 0000976
t
I
.. I
"-
. 0000594-+---i
. 00002 13
;"
~-~
-. 0000 168_,......----1
- .0000550
- .0000931
-.000131
-.000169
-.000207
-.000246
- .000284
fZ
_j_'
X
y
Figure 24
Deformation Proflle For 50 g Load
w
(!)
2038. '
-
'
4
j
1924.B_.~ ·,-j;
18 10.
., I
1695.
1581 . ~
i'- .
i
q' ..!
1467 . 1 1
1352.
1238.
11 24.
1009 .
895.
78 0.
666 .
lZ
--l
X
552 .
437.
"(
':)"')•"'")
- ' C...J.
Figure 25
Stress Contour For 50g Load
..J::>.
0
CHAPTERS
DISCUSSION OF RESULTS
Displacement results from the model and tests reveal minor differences. The test
data resulted in larger displacements than the model. The following may explain the
differences.
Typically, in a finite element model, the modelled component is stiffer than the
actual component. The reason is, in theory, that the component is modelled using a finite
number of divisions to determine its response to a load. In reality, the component has an
infinite number of divisions. Reducing the number of elements used restricts the degrees
of freedom of the system, resulting in a stiffer model. Error due to this phenomena is
small in comparison to the geometric effects, discussed next
Unforseen geometric effects may have contributed to greater displacements in the
test results. Because the instrumentation used prevented measurements at the ideal
location, the displacement gages were located elsewhere. It is possible that the rear
bulkhead experienced slight deformations during loading, causing an angle (theta) shown
in Figure 26. The displacement gages, attached to a stationary position, are unable to
compensate for this angle. Thus the results obtained are now a function of two variables,
separation and theta. The effects of the contribution of theta alone on overall displacement
are shown in Table 2. The relationship of displacement and theta is:
1:::,. = .7 <11 cos e- 1 )
The angles shown in this table are very small and may not have been noticed during
testing. Table 2 shows that an angle of 4 degrees could have accounted for all of the
displacement measured from the 2000 lb tested case.
Evaluating the model for a 1OOg load, at the rear bulkhead, yields displacement
results as shown· in Figure 27. Maximum separation is about one mil and maximum
compression is about 0.3 mils. Changes outside of the maximum separation and
41
42
compression are interesting to note. The 50 g load case, Figure 24, shows that there is
virtually no displacement at the bolts. This is an indicaton that the bolt preload has not
been exceeded. Evaluation of the 100 g load case shows a displacement of about 0.3 mils
at the bolts. This is an indication that the preload has been overcome.
~
- ..
,_~----·
43
9
t
.30
.40
I
Figure 26
Rear Bulkhead Deformation
~
.
.000339__,_,._,
. 000239 -~--~
. 000 140--t----'-i
. 0000399-+----.,
-. 0000599 _,_,.,.;.n
- . 000160 ~.-.<j
-.000259
- .000359
-.000459
-.000559
- .000658
-.000758
- .000858
- .. 000958
X
,,
-.00106
y
- .00116
Figure 27
Deformation Profile for 100 g Load
.;:..
(.)1
CHAPTER6
CONCLUSION
The results obtained by testing are difficult to compare with those from the modeL
The primary reason is that the hardware could not be instrumented to obtain displacement
data to compare directly to the model. This, however, does not obstruct the overall
project objective. The results from the tests and the model prove that seal leakage will not
occur, even with a 4000 lb (100g) load! In fact, failure of the structure during this test
indicates that the braze joints, instead of the seals, be a primary candidate for further
investigation.
Further support for the conclusion is that the loads, used in the model and tests,
were applied statically. The loads used are a gross magnification of what the guidance
section will ever experience for a sustained time period. Even using these loads, the
absence of leakage is apparent.
It can be concluded that the use of the o-ring type seal within a structural joint, as
discussed within this project, will pose no potential problems in the guidance section of
the Phoenix Missile.
46
47
REFERENCES
1. Bickford, John H., "An Introduction to the Design and Behavior of Bolted Joints,"
Chapters 11 and 13, Marcel Dekker Inc.,1981
2. Parker Seal Co., "Parker 0-Ring Handbook," Chapters A5, A9, and B13, Parker 0Ring Division, Lexington, Kentucky, 1982
3. PDA Engineering, "PDA I PATRAN-G Users Guide," Volumes I and II, PDA
Engineering, Santa Ana, California, 1980
4. Schaeffer, Harry G., "MSC I Nastran Primer, Static and Normal Modes Analysis,"
Chapters 7,9, and 11, Schaeffer Analysis Inc., 1982
5. Segerlind, Larry J., "Applied Finite Element Analysis," Chapters 20 and 26, John
Wiley and Sons Inc., 1984
APPENDIX A
MODEL BREAKDOWN
4S
49
-
5(
APPENDIXB
DESIGN LOADS
5g ·----.
2g
I- -
- '-----------1
I
I
I
5
300
60
Frequency (Hz)
Sinusoidal Input
45 g
0
11
Time (milliseconds)
Shock Input
51
.1
N
::t
N
**b.O
....>.
•VJ
Lateral3.3 g rms
.01
c
G)
0
'£
&
tl)
....
Vertical 2. 77 g rms
.001
G)
'
~
~
'
Longitudina11.00 g rms
.0001
2
10
4 6 8
2
4
100
Frequency (Hz)
Random Inputs
6 8
1000
2
4 6 8
10,000
52
APPENDIXC
BOLT PRELOAD
The screws and washers, used to attach the rear bulkhead to the coolant ports, are
defined within the specifications NAS1101E08-6 and NAS620C8L respectively.
Variables required to determine the bolt preload are; cross sectional properties, which
defme the stress area, and materials, which are used to determine the friction factor. The
bolt, washers, and insert are all corrosion resistant, or "cres" steel. Hughes Aircraft
Company Missile System Standards, dated 1 October 1983 assigns the hardware
combination used with a friction factor of 0.25. The minimum stress area of the bolt, per
the specification, is 0.014 inches. Since the recommended torque of this hardware is 19
to 23 inch pounds, choosing the minimum applied torque yields the lowest value for bolt
preload.
P = T I DK = 19.0 I (.133)(.25) = 571.4 lb
APPENTIIXD
NASTRAN INPUT DATA FILE
ll• SLAL lNII:_I<IAC[.LVALUI'IlliJN
r.ot
~4
10
PfAD 9
crND
SE1 I= 231 THRU 240
ELSTRESS!VONMJSESI=
TIME
ELS1RfSS<PLOT>~ALL
SEI 2= 2, 4, 6-8. 14. 16, !50, 52. 54, 5t>. t>;'. 68 7P. 74. 78. 82,
86.90.9•L 142.144,146,148.150, 1~2. 19(', 1';'2,
194. }Q6, 200.204.206. 2Jq, 218·
815 1HRU 902.949 THRU 960.
DISPLACfME.NT=;:>
OJSPLACEME.NT!PLOTI=ALL
SPC=O
SUBCASE' 1
LOAD' 100
SUB CASE 2
;;~22·
0£14
;...?26.
~30,
234.
lHHU 1042, 1694, 1794
LOI\[•~~,00
SUB CASE 3
LOA0~300
SUB COM 4
SUBSEG"'1. 0. I Q, I
s--5oott TES1 CASE
SUB COM 5
SUBSEG~1 o. 1 0,2
$--10001! TEST CASE
SUTlCOM 6
SUTlSEG~I o. 1 0.4
·--~0(H)t4
TEST CASE
SUB COM 7
SUBSEG,-1 o. 1 0,8
"--4000tt TEST CASE
BEGIN BULK
PARAM.AUTOSPC.YES
SNASPH2
•--BULK DATA CARDS
FORCE
300
FORCE
200
200
FORCE
100
f"LOAD4
PLOAD4
100
PLOAD4
100
PLOAD4
100
PLOAD4
100
PLOAD4
100
100
PLOAD4
PLOAD4
100
100
PLOAD4
PLOAD4
100
PLOAD4
100
100
PLOAD4
100
PLOAD4
PLOAD4
100
100
PLOAD4
100
PLOAfl4
100
PLOAD4
100
PLOAD4
100
PLOAD4
100
PLOAD4
0
0
0
0
PRODUCED BY "PAlNAS" VERS I Ut~ 1 7
0
I 0
0 0
1£.95
0
1 0
0. 0
1694
0
1794
1 0
0 0
1 150 000 150 000 1~0 000 150
1 150 000 J~(l 000 150 000 150
2 150 000 1 :-.o 000 150. 000 150
2 150 000 1:'•(\ 000 150 000 150
3 150 000 150 000 150 000 1!'"10
4 150 000 I c•O 000 150 000 150
19 150 000 ]-:;(1 000 1":>0 000 150
19 150 000 150 000 150 000 !50
20 !50 000 150 000 150 000 !50
20 !50 000 I 50 000 150 000 !50
21 150 000 150 000 150 000 ISO
22 150 000 1~0 000 150. 000 150
37 150. 000 150 000 150 000 150
39 150 000 ISO 000 150 000 150
:J<;I 150 000 150 000 150 000 150
46 150 000 15C 000 150 000 150
47 150 000 150 000 150 000 1~0
48 1!50 000 150 000 1~0 000 150
52 150 000 J50 000 150 000 150
53 150 000 150 000 150 000 150
10-SEI'--86
- l 00 0
:ill 0
0 ()
511 0
0 ()
000
000
2
000
5
000
t.
17
000
11 48.36
0 0
OD·:J
21
000
000
000
000
000
000
000
000
000
000
000
000
000
000
1'11
142
149
150
1 ~,7
165
29
13
14
353
356
362
39:>
398
6
8
14
16
5
13
146'
148
142
144
145
141
149
150
152
165
157
161
356
362
54
I LUAll'l
lUU
!,)1.
PLOAD4
PLOAD4
PLOAD4
PLOAD4
PLOAD4
PLOAD4
PLOAD4
PLOAD4
PL.OAD4
PLOAD4
PLOAD4
PLOAD4
PLOAD4
PLOAD4
PL.OAD4
PLOAD4
PLOAD4
PLOAI14
PLOAD4
PLOAD4
PLOAD4
PLOAD4
F'LOA!J4
PLOAD4
PLOAD4
PLOAD4
PLOAD4
PLOAD4
F'l.OAJ'"\4
PL0Al>4
PLQAD4
PI OAD4
I'LOAD4
PLOA[)4
PLOAit4
PI.OAD4
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
55
57
58
60
91
93
9i1
95
97
107
107
1 08
108
109
110
125
125
126
126
127
128
143
145
145
152
l"'l0A["I4
l"'l.OAD4
Pl.OAD4
GRID
GRID
m< Ill
GRID
GRID
"GRID
GRill
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRill
GRID
1
2
3
4
5
6
7
8
13
14
15
16
17
19
21
23
29
31
35
36
1 ':J'~'
UI...IU
150 000
150.000
150 000
150 000
!50 000
150 000
150 000
150 000
150 000
150 ooo
150. ooo
1 50 ooo
150 000
1~0 000
150 ooo
150 000
150 000
tso ooo
150. ooo
ISO 000
tso ooo
150 000
150 000
150.000
150 ooo
I :i3 1 50 000
J
~HJ
1~0
150
150
1~0
!50
150
1 5(~
150
1~0
150
1~0
1 •,c,
150
150
t5o
150
150
1s0
I ~,I
1~0
uno
ooo
000
000
J
150
!50
J5C
!50
150
1 50
I c>O
]50
!50
J50
1 50
150
!50
1so
!50
!50
t5o
!50
!30
1so
150
ouu
000
000
000
000
000
000
00('
000
000
ooo
uoo
non
000
000
ooo
ono
000
000
000
000
ooo
ooo
ooo
ono
000
000
ooo
ooo
000
000
000 JSQ 000
000 150 000
ooo 1~0 000
1 ~)fj ()00
'4U4
;;i6tl
150
150
150
150
!50
150
1 50
150
150
150
413
427
433
29
353
21
413
427
395
398
JSO
1 so
150
150
t5o
150
150
150
000
000
000
000
000
000
000
000
000
ooo
ooo
ooo
000
000
ooo
000
000
oon
11'1 7
L-:15
689
703
/11
I
1 r,>
(-?
J ...,
404
410
813
815
II
8:~1
:JJ6
823
8~9
8:J7
145
Jill
Q4r;'
1 ~.4
1 ">i> ·'•)0 I 5C• ,-,C•O 1 ~·fJ 000
1 50 000 l "C'• ~)0(· 1 :>O 000 1 ~0 000
158
1 59
160
161
163
tso
1 50
ISO
150
I 50
ooo , •. ,
1 I bl
951
161
965
973
957
959
110.4
1170
368
1206
0(>(•
1164
] 21
1 b4
l 5n
0(~~~
166
197
1 5C• 0(''.'
1 50 000
000
000
00('
tso
JUU
000
000
000
000
000
000
000
000
oou
noo
I
I',(,
1 :·o
150
150
1~0
1~0
1·
'l:,(i
I 50 000
·~49
1so
150
150
150
?57
021
ooo
000
000
000
1sn noo
ono 150 ooo 150 ooo
I '•r.. (>C•O I 50 000 i 50 000
1:~ 000 150 000 150 Ol~
1~n 000 15~ 0no J~O ~00
1 '·•· D()O I "-C) C"•"C• J 50 C'•0D
I [:'~
0('(' 1 :'('
{l(\("1
J 50 (,00
1 50 000
1 50 000
t1"1"""7
r"' . . . ,
''~
~12'"='
I~~~!
~_)
4!0
I J .'0
lll..t
1203
I •
1221
q:;r:'l
oco tso oon
1:-'.JS
150
1703
1?06
121;;'
1527
733
I ~'n 00(•
I ~,-:J OC'C'
199 ISO ooo
200 150 ooo
1~u
o~~
J50
1~1
nuo !50
20 I I 50 000
203 150 ooo
o 16500
(I 16500
0 18600
0 18300
0 13349
0 13349
0 15048
0 14805
0 05099
0 05099
0 05748
0. 05655
0. 16500
0. 18600
0. 13349
0 15048
0.05099
0 05748
0 27400
0.27400
1 ">0 •100 1 50 CJC\0 J "iC• . . •·.)
1'·0 ~oo 150 noo 150 ouo
r:
· 0 0::'>1100
000
0
-0
0
0
0
0 09698·0
0 091.98 0
0 J09:J3-0
0 10756 0
0 15692-0
0 15692 0
0 17690--0
0 17404 0
0
-0
0
-0
0 096<;18-0
0 10933-0
0 15692-0
0. 17690-0.
0.
-0
0
-0
0;:>4
1235
1497
1511
I "'• • UOO
l ' · · 00•)
U
8:::?3
0540C•
05400
05400
05400
05400
00250
08250
08250
08250
08250
08250
08250
05400
onn
1147
I
~19
55
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GR I l'
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GR!D
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRill
GRID
GRID
GRID
GRID
GRID
GRID
40
47
48
50
51
52
54
55
56
61
62
68
69
70
73
74
77.
78
81
82
85
86
89
90
93
94
97
101
107
115
1 19
123
127
131
135
139
141
142
143
144
145
146
147
148
149
150
151
152
157
159
161
163
165
167
175
176
179
lBO
183
184
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.
0
0
0
0
0
0
0
0
0
0
0
0
-o
-0
-0
-0
-0
-0
-0.
-0
-o
-o
-0
-o
-o
-0
-o
22167
08467
08467
28370
32000
32000
22952
32000
32000
32000
32000
08767
12000
12000
32000
32000
05800
05800
32000
32000
05800
05800
32000
32000
05800
05800
32000
32000
32000
12000
32000
05800
32000
0580(1
32000
05800
1334C
13349
15048
14805
16500
16500
18600
18300
05099
050Gl9
05748
05655
13349
15048
16~00
0
0
0
0
0
0
0
0.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C•
1610~-0 05400
2605Gl-O 08250
~!60'5Gl-0 05400
0
-0 05400
0
16675 0
16100 ·0. 05400
16100··0
35000-0 05400
35000 0
;' 6'~81 0
35000-0 05400
35000 0
44200-0 05400
44200 0
44200-0 05400
44200 0
0,'5800-0 05400
55800 0
'55800-0 05400
55800 0
70000-0 05400
70000 0
70000-0 05400
70000 0
-0 08250
16100-0 0£3250
.]!:·000-0 08250
35000-0 08250
44200··0 08250
44;:'00-0 08250
:_,580(,- 0 08250
~>5800-0
08250
('J
7'0\)0(1- 0
oo~:.o
(I
.,OOO•J-·0 08250
(1
('·OcCf8-·0
('
l1Qt,l?8
(•
10933-0
107~•6 0
-0
0
-0
0
156Gl2-0
1 ~·,692 0
17690-0
17404 0
09698-0
10933-0
-0
-0
15692-0
176Gl0-0
16105-0
16105-0
-0
-0
0
0
0
()
0
0
0
0
0
0
0
0
-0. 18600 0
-0 05099 0
-o 05748 0
-0. 22167 0.
-o. 22167 0
-0. 27400 0
-o 27400 0
-0 OB4o7 0
05400
0
2~059-0
05400
051100
05400
05400
05400
08250
082~>0
08250
082'50
08250
08250
08250
05400
08250
05400
09250
51
GPID
GRID
G:RID
GRID
GRID
GRID
GRID
GRID
GRID
GRin
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRin
GRID
GRID
C~R ID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
190
191
192
194
195
196
199
200
204
205
206
213
214
217
218
221
222
225
2;::>6
229
230
233
234
237
241
245
251
259
263
267
271
275
279
353
356
362
368
373
377
385
393
395
398
404
410
413
421
427
433
441
447
455
459
465
473
481
489
495
503
GRID
507
-0
2295~
(1.
-o
32000
32000
28370
32000
32000
32000
32000
08767
12000
12000
05800
05800
32000
32000
05800
05800
32000
32000
05800
05800
32000
32000
32000
32000
32000
12000
05800
32000
0':>800
32000
05800
32000
05099
05099
13349
16500
0
0
-0
-0
-0
-0
-0
-o
-o
-0
-0
-0
-0
-o
-o.
-0
-o
-0
-o
-0
-o
-0
-0.
-0
-o
-0
-0
-o
-0.
-0
-0
-0
-0
0
-0
-o
-o
0 06~85
-0 06785
-0 17762
-0 21954
0 0509<;
-0 05099
-0. 13349
-0 16500
0 17781
0 22824
0 23481
0 22250
0 27675
0. 27950
0 32000
0 32000
0 32000
0 12000
-0. 12000
-o 32000
-o 32000
-0 32000
0
3~000
0
0
0
0
0
0
0
0
0
0
0
1667':> ()
16100-0 0:'>40•J
16100 0
0
-0 05400
0.
35000-('\ 05400
3~-,ooo
0
0
0
26981 0
"15000--0
35000 0
44200-0
44200 0
44200-0
44:?00 0
55800-0
55800 0
55800-0
55800 0
70000--0
70000 0
0
~oooo-o
0
0
0
0
0
0. 70000 0
0 16100-0
-0
0
0 35000-0
0 :15000--0
0 44200--(l
0 44.?00-0
0 55800-0
0 ~5800-0
0 70000-0
0 701)00-0
0 1 ~'692-0
o_
1 5692-~0
0 (•9698-0
-0
0
{' ~'0879- 0
0 ;;'(1879-0
0 12903-0
-0
0
(l I 5692- 0
0 1569?.- 0
0 r.9698-·0
-0
(•
9726-0
0
0 1;'91 5-0.
( 1
0 ()t;'726-0
0
0
0
0
0
0
0
0
0
0
0
()
-0
-0
-0
-0
16100-0
35000-0
35000-0
~:woo-o
35000-0
16100-0.
-o
0540(1
0540('
05400
05400
05400
05400
05400
08250
08250
08250
08250
082~0
08250
08250
08250
08?.50
00250
14000
14000
111000
14000
14000
14000
14000
14000
1"'700
19700
19700
19700
14000
13975
19700
14000
13975
19700
13'n5
13975
14000
14000
14000
14000
14000
14000
57
GRID
GRJO
GRJ()
GRID
GRID
GRID
GRID
GRID
GRID
GI>ID
GRill
GRID
GRID
GRID
GRID
GRID
GRill
GRID
GRID
GRID
GRill
GRID
GRID
GRill
GRill
GRID
511
517
5;;?5
533
541
547
555
559
563
567
~71
0
3;•ooo
3200(\
(_•
{>
-o 32000 0
-0 32000 0
-o 32000 0
0 3;'000 (·
0 05800 (\
0 32000 0
0 05800 0.
0. 32000 (")
0 05800 r,
-o 05800 0
-0 32000 0
-0 05800 ('\
-0 32000 0
-0 05800 0
-0 32000 0
0 32000 0
0 05800 (•
0 32000 0
0 0580C• (J
0 32000 (l
0 05800 (>
GRJI'
GRID
qRJ!l
GRID
GRill
GRID
GRIll
GRID
GRID
575
579
583
587
591
595
599
603
623
627
631
635
639
643
651
657
659
667
675
683
685
687
689
691
697
703
70S
711
713
719
GfliD
721
-0 32C•O':·
Gf>IJ"•
GRill
727
-0
733
735
7;l9
743
747
0 03800 ()
-0 32000 ("•
0 3;-000 (~
0 05800 {•
0. 32000 0
0 05800 0
0 32000 0
0 05800 0
-0. 05800 (•
-0 05800 0
-0 05800 0
-0 32000 0.
-o 32000 0.
-0. 32000 0
0 13349-0
0 15048-(>
Gfl!D
('RIP
('RIll
'-'R I [I
C~f;·J D
(.R II)
(~f>l
v
GRII\
GRID
GRID
GRID
GRIP
GRin
GRIO
GRID
GR JIJ
C~R I D
GRll'
GRID
GRID
GRID
r:R T f\
7'SJ
755
759
767
775
783
791
799
807
813
814
i<-·)0(• 0 t 'l/<1r>
0 1 07~\···
0 t;'OOt\ 0 :15000 0 1970~:·
-0 12000 0 35000-0 19700
f)
-(•
0~.,80('
,,
(lr:•8(1t._)
-·
(,c-,F(,I•
(•
-Ct 3~-~(t(t(l
-() 320f•C•
.. (_. 32000
"i)
()
2795t•
0 32000
?.S'l00-·0 1970(•
16100-0 19700
-0 19700
•14;•oo-o J 1101)0
~11.-·or.
C·
'·'>8JO-l'
'•
J
4•)•~.r,
14000
55800-0
70000-0
70000-·0
44200-0
44200-0
14000
14000
111000
14000
14000
~·5800-0 111000
rJ~8()')-(I
111000
lOON1· 0 14000
·coooo--c• 1 11•.j('()
114;:>(1(.'- () 1'7700
411;;:'00-0 19700
"5800-0 19700
~SA00-0
J770r>
7()()00--0 19700
:(!(l(H)-·0
I '-1 .'OC•
-~4~:r,(--J\
j
r.'70C•
,-·,
I
'r,),,
~r-lp• l~i-
. 'I
(\
'3~000·
-(.ftf\t",
' r ~ ..... .''
,4,1;•0(.• 0
I 'i -·· )t'
"· ~-·· j(\() .. ('·
(9".'{•,. . .·
.. (•
j (.) 71_\t"'
-0
'1'·'·-·· ),-,
....... .
•(··~·
(·
,,
- C• •1 (lf.'t}(o
0 ;'7950 0
1:->0•.)0 ,--.
:~·97~~,--o
1t)()l}t
1 '~ 1 l)(l-
IJ('•(){)f;
()
3;'000
25399
0
12(/ 1)0
3~l(•0(J C•
1 r:,6r;-::_·- r.
:: St)(•r_,_ 0
J ~;69;.:- (·
:'5•)0(~- 0
CJ"';,Q8-C•
40000
.110001)
I)
4fh.l(•(·
(>
(J
{>
(:
0 ] !".. ~01 (
-0 12000 0
0 Ot-QSl (J
3~'000
v"
'":"'\1,,(·•.1
1•~·
J (n...
ll/l~')(l
(1
~,-.pon
/l(.i1_1(10
40••00
ilOOOO
0 40000
(l 40000
(j
~Oi)t'Q
{·
40•JOO
.'14200--(1
4':_)()(\l)
':''5£)0(•-0
55800--0
70000-0
70000-0
44200-0
55800-0
70000-0
411200-0
.>5800- 0
4[•')00
40000
40000
110000
4001)0
40000
40000
40000
40000
~oooo-o 40000
09b98-0 05400
10933-0 05400
58
GRID
GRID
GRID
GRID
GRID
GRID
GFID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRill
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
et6
e21
e22
823
824
e2c;>
830
837
838
e46
848
e54
e56
e62
863
e64
869
870
876
e77
87e
eeo
8e2
884
886
see
eqo
8c;>2
ec;>4
8c;>6
e98
900
c;>02
908
915
922
926
930
934
'i'3e
942
946
949
950
951
952
957
'i'58
959
960
'i'65
966
973
974
982
984
9'i'O
992
9<;>8
999
0
0
0
0
0
0
0.
0
0
0
0
0
0.
0
0
0.
0
0.
0.
0
0
0
0
0
0
0
0
0
0
0.
0
0
0
0
0.
0
0
0
0
0
0.
0.
-0.
-o
-0
-o
-o.
-0.
-o
-o
-o
-0
-0
-o
-o
-0.
-o
-o
-0.
l4e05·-0
050'i'9-·()
0'!'>748-0
osoc;>9-o
05655-()
13349·-0
15048-0
050c;>c;>-O
05748-0
22167-()
22167-0
oe467-0
oe467-0
32000-0
22'i'52-0
32000-0
32000-0
32000-0
12000-0
08767-0
12000-0
32000-0
32000-0
05eoo-o.
05800-0
32000-0
32000-0
05800-0
05800-0
32000-0
32000-0
05800-0
05800-0
32000-(l
32000-0
1;.>000-0
32000-0
05800-0
32000-0
05800-0
32000-0
05800-·0
1334C?-O
15048-0
1334<1-0
14805-0.
05099-0
0574e-o
OSO'i'Q-(l
05655-(l
13349-0
15048-(l
0509c;>-O
05748-0
2;!167-0
22167-0
08467-0.
084b7-0
32000-0.
1075b 0
15h9;:>-0 05400
176c;>O-O 05400
156<;>2 0
17404 0
096c;>8-0 08250
10933-0 08250
15692-·0 08?~0
17690-0 082S0
16105-0 08250
16105-0 05400
26059-0 08250
2605C?-O 05400
16100-0 05400
16675 0.
16100 0
35000-0. 05400
35000 0
35000-·0. 05400
26901 0
35000 0.
44200-0 05400
44200 0
44200-0.05400
44200 0
55800-0 05400
55800 0
55800-0 05400
'55800 0
70000-0 05400
70000 0
70000-0 05400
70000 0
16100-·0 08250
35000-0 08250
:'!5000-0. 08250
44200-0 08250
44200-0 08250
~ 5800-0 08250
55eoo-o 08?50
70000-0 08250
..,0000-0 08250
0<>6c;>e-o 05400
10C?33-0 05400
096C?8 0
10756 0
156'i'2-0 05400
176c;>O-O 05400
l56c;>2 0
17404 0
09698-0 08250
10933-0 08250
I '5692--0 08250
17690-0 08250
16105-0 082::-0
16105-0 05400
26059-0 082'50
26059-0 05400
16100-0. 05400
59
GRI[)
GRID
GR 10
GRID
GRID
GRID
GRID
GRID
GRIP
GRID
GRID
GRJD
(;R 1 [)
GRID
GRID
GRill
GRID
GRID
GfiiD
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRI[l
GRID
GRID
GRID
GRID
GRID
GRill
GRID
QRID
GR I L'
GRID
GRID
GRID
GRID
GRill
GRill
GRill
GRID
GRID
GRID
GRID
GRID
GRIP
GRID
GRID
GR I£l
GRII)
GRID
GRID
GRin
GR 11>
1000
1006
1008
1012
1013
1014
1020
1022
1024
1026
1028
I 03C•
1032
1034
1036
1038
1040
1042
1044
1052
1058
1066
1070
1074
1078
1082
1086
1161
1164
1170
1180
1184
1192
1203
1206
1212
1221
1228
1235
1266
1273
1280
1288
1296
1303
1318
1325
1332
1340
1348
1355
1366
1370
1374
13 7 8
1382
1386
1390
!394
·0 32000- ('
32000-"
-o 32000·0
-0 1200(1·(•
-0 08767-(•
-0 12000-(·
-0 05800-(1
-0 05800-0
. 0 32000··0
-0 32000-0
-o 0580'.'·-0.
-0 05800-0
·-0 32000-0
-o 32000·0
-0 05800-·0
-o 05800-0
-o 32000-0
-0 32000-0
-0. 32000-C'
-o 32000-0
-o 12000-0
-0 05800-0
-0 32000-C•
-o 05800-0
-o 32000-0
-0. 05800-C•
-o 32000-C•
0 05099-Cl
-0 0"099-(·
-0 13349-0
0. 06785-0
-o 06785-1)
-o 17'762-0
0 05099-0
-0 05099-()
-0 13349-·:•
0 17781 -(•
0 22824-(:
0 23481·(•
0 32000-(l
0 32000-0
0 12000-\•
-0 12000-0
-o 32000-(1
-0. 32000-(•
0. 32000-0
0 32000-0
0 12000-0
-0. 12000-0
-0. 32000-(J
-o 32000-0
0 32000-0
0 05800-0.
0. 32000-0
0 05800-0
0. 32000-0
0. 05800-0
-0 05800-0
-0. 32000-0
-{)
J I> 1 0•.' '·'
"1''00" 0
:c,ooo 0
0~·400
~1S000-·0
0~'4'''.'
0
:15000 0
~·~qBI
44~00-0
•1
4;:-'0~)
05400
(l
•l ·1 ( "·(,["! ()
1'
{ ' <• •
I ~ \
.34200 0
':•5800-0 0:>400
~'58{)(1
.-·.
55fl00·0 05400
r:·~1800
0
70000-0 05400
:oooo 0
..10000-(\ 0'5400
70000 0
16100-0 08250
-~7000-0 08250
l:•000-0 08250
44200-0 08250
44~00-·C• 08250
~·5800-0. 08250
~·5800-0 082'50
'.!0000-0 oe;::so
:·oooo-o (>8;:'"i0
156'?2-0 14'-lOO
1 ~"(,9~- 0 14>>00
091-98-0 14•)00
;--r,879-0 14000
~'08-:"9-0 14000
1 ~903-('
I •h>OO
l 56'?;>-C· 19700
~
56r:.-;; ·0
JC7Q(\
19700
09726-0 14;)00
1 ;'915 ·0 l ]·~75
(·4~,Q8-0
{,:,'726-0
Jt;700
13975
14000
14000
14000
14000
14000
1970C•
3~000-0 19700
35000-·0 19700
3';(100-0 1970~·
35000-0 19701)
16100-0 19700
44200-0 14000
44200-0 14000
':•5800-0 14000
55800-0 14000
70000-0. 14000
70000-0 14000
44200-0 14000
44200-0. 14000
16100-0
35000-0
35< 1 00-0
::'!5000-0
3';000-0
]I> lf\0-0
16100··0
60
GRIP
GI'ID
GRill
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRIP
GRill
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRID
GRin
GRID
GRID
GRID
GRID
GRID
1402
1406
1410
1430
1434
1438
1442
1446
1450
1458
14l->5
1466
14 7 4
1482
1490
1497
1498
1505
I '51 I
1512
1519
1520
1527
1528
1535
1546
1550
1554
1558
1562
1566
1574
1582
1'590
1598
1606
1614
1646
1654
1662
1670
1678
1694
1695
1717
1746
1754
1762
1770
1778
1794
1
8
~Rill
CHEXA
+E
(;HEXA
+E
CHEXA
+E
CHEXA
+E
rL.JC"VI\
2
~
3
4
16
3
7
4
15
-0 32000-(' ··5800- 0 14000
-0 05800-r· -:'(>000-0 111000
-0 32000-f> .,.(•1_)()0- 0 Jl1000
0 3~:000-0 411200 ·0 197()(•
0 05800-0 411~'00 0 Jq700
0 32000-(• 5~8(" ..)- 0 19700
0 0'5800-C• ~5r:.c,n r, )9700
0 32000-0 CfH)('tr'; C• ]Qff\r)
:. _,r\
0 05800-r• ·nr.r·r:·· (·
-0 05800-·0 4·~;··)·' r. I!"; .iLl•J
-0 05800· f) ~ 'JBO'• ·'} Jq700
-0 05800-0 "'!'(1(){)0-0 1970(.·
-0 32000-0 114~?00--0 )9700
-0 32000-0 "15800-0 Jq'lOO
-0 32000-0 70000-0 19700
0 27950-0 09726-0 40000
0 32000-0 16100-0 40000
0 32000-0 J";OC•0-·0 40000
0 2'5399· ('· 1569?-0 4or.oo
0 12000-0 35000-0 .QOOOO
0 15201-0 15692-0 40000
-o 12000-0 :>5000-0 40000
0 0695!-0 09698--0 40000
-0 32000-·C :1'5000--0 40000
-0 32000-0 ! f-1 00-0 40000
0 32000-C. .Q/1200-0 40000
0 05800-•.• i14;:'0C•-·0 .QOOOO
0 32000-C• :•')80' ·-0 40000
0 05800-(' ,.·7f10•:l--Q 4(;ooo
0 3200G-!• 70()0(•-·0 40000
0 05800- (• "70000-0 .QOOOO
-o 05800-(:0 11·1200--0 40000
-0 05800-0 ··'i800-0 40000
-0 05800-0 70000-0 40000
-0 32000-0 44;?00-0 40000
-0 32000-0 ~~SR--..-,_ 0 40000
-0 32000-0 :c;ooo--o 1!10000
0 :.00('•0 c
0.
C'• 50000-0 05400
0
(l ~·0000-0 08250
0
(l '5000C•-·O 14000
0
0 ~·0000-0 19700
0
0 50000 0 14000
0
--1 00000
0 12075 0
C• 'l8•)0CJ 0 14000
0
-0 501JOCI 0
0
-0 50000-0 05400
0
-0 ~·0000-0 08250
0
0
-0 ':!0000-0 14000
-0 !)0000-0 19700
0
-0 50000 0 111000
0
4
2
101
7
6
8
101
5
15
17
101
3
I-~
3
5
6 E
7
13
14 E
~
'5 E
3
13 E
II
19
~~1
7
;?3
29
~~-
..,.,
2::1
101
31
101
21
5
r,
,,
'
61
+F
5
CHEXA
+E
6
CHEXA
+E
7
CPENTA
CHEXA
+E
9
10
15
15
16
17
70 E
10
61
77
73
74
II
[l~
101
:.1''
81
12
c.,>3
H'l
115
101
35
107
'36
'i
51
1{,~
40
61
107
61
73
73
81
40 E
I
13
:, ...;
1':"1
115
69 E
16
t;>3
77 E
17
1~:1
101
127
131
1ll1
142
144
IllS
146 E
19
141
142 E
161
145 E
20
21
22
23
24
25
27
20
144
21
147
22
143
23
180
24
176
25
196
26
27
200
28
101
1ll3
101
16:1
101
1 ~9
149
143
16'5
149
1'51
167
157
141 E
101
17q
159
143
176
17'5
163
147 E
101
175
167
184
183
J 59
143 E
101
195
101
176
19()
191
180
194 E
176
199
;:»Q4
101
199
184
101
205
217
101
213
29
226
30
2;-:--J
101
~21
30
234
31
195
2:n
101
17~
241
32
33
101
175
H>1
2'15
18~J
;;:s1
33
109
C:4
101
34
217
263
101
35
36
25
191
206
190
~')00
192
205
176
190 E
27
214
213
199
200 E
28
218 E
29
22b E
30
179
180 E
31
17'7
I 75
191
176 E
33
199 F
34
217 E
35
225 E
36
;>I 4
230
176
23
191
~37
.;'3'
~·
213
221
:?21
2;'9
... ,o
;'71
36
CHE~A
1C>J
14 I
218
31
15::'
157
28
CHEXA
+E
101
147
CHEXA
+E
9
148
CPENTA
CHEXA
•F
6R E
69
19
CHEXA
+E
6'2
18
CHEXA
+E
~4
61
85 E
CHEXA
+E
7
1:::1
CHEXA
+E
54 E
89
CPENTA
CHEXA
+E
40
81
CHEXA
+E
:'II
127
CHEXA
+E
6
1:19
101
CHEXA
+E
15 E
101
CHEXA
+E
31
18
93
19
CHEXA
+E
69
16
77
17
85
39
18
CHEXA
+E
61
101
101
CHEXA
+E
40
40
101
CHEXA
-+E
101
101
13
CHEXA
+E
s~·
55
14
7
36
13
CHEXA
+E
70
10
78
23
101
12
CPENTA
'Hf.kA
+E
Jl7
101
CHEXA
+F.
48
7
56
11
86
12
94
11
CHEXA
+-E
101
9
CHEXA
+E
:l'l
6
8
CHEXA
+E
40
;;::.l3
101
279
207
275
-:p
62
+f.
151
38
I 84
39
I 67
101
lEJJ
3G'
1 ~2
l
40
101
40
;?OS
251
41
~06
20~i
42
213
43
101
101
43
214
21:1
44
230
45
101
44
45
;:?;,>9
38
fHEXA
+f
CHEXA
+F.
C"HE~A
+F.
41
CHEXA
+E
CHE U•
+E
CHEXA
+E
CHEXA
-+E
CPENTA
CPENTA
CPENTA
CHEXA
+E
49
CHEXA
+E
50
CHEXA
-+E
51
CF'ENTA
CPEIHA
CPENTA
CPENTA
CHEXA
+£:.
56
CPENTA
CPENTA
CHEXA
+E
59
CPENTA
CHEXA
+E
61
CPENTA
CHEXA
+E
63
CHEXA
•E
64
CHDA
+F:
6!i
CPENTA
CHEXA
+E
67
CHEXA
+E
68
CPENTA
CHEXA
+E
+E
+E
CPENTA
48
E
,.
1 ·'
]119
J50 E
48
115
183
184 E
40
1-.1?
69
204 E
41
""(.'
201.•
77
""'8
r
::!2:..' f.
131
44
1:39
;'q
I(·."-
31
,,, ...
J(-,7
1 ~.-,·
41 f .. ,
J -.. J6J
167 E
373
377
, -·
'
•1.-.
159 E
50
38~
101
39:J
36;;'
101
101
JO~;
l
7~
16"1 E
38r.
377
385
3S3
398
101
4·)4
101
101
413
~ll
413
31 E
47
37:.~
57
58
59
39
60
61
101
62
63
115
64
251
65
245
66
67
241
101
101
101
421
101
101
459
427
4)3
433
101
421
101
421
41:.1
17
1'?
373
23
421
]Q
:::'3 E
35
447
441
441
97
413
4?1
11~1
3"' E
61
101
107
47 E
63
473
183 E
6'1
481
175 E
6'i
3<?
465
.373
47:i
101
481
101
I 15
373
377
18:?
385
385
4[1~
68
4'::9
i-.9
101
101
503
101
511
101
447
441
427
:.Jl
421
70
101
4;>7
4;:'1
~.,
101
395
481
72
489
73
38
205 [
115
53
54
55
56
71
7';'
101
275
101
473
71
CHFXA
101
101
101
101
377
101
70
CHEXA
151
~11
47
~2
167
411
1"
101
46
48
49
183
50
175
51
179
?-I
409
67
]93
175
455
507
4:-'7
41>5
373 F
70
3?8
377 E
71
385 E
72
7
473
421 E
53:1
101
541
101
1''1
404
377
481
533
404
541
547
385
489
r.
1·~
63
711
~f.
CHEXA
+E
75
CHEXA
+E
76
~63
79
79
~71
59~>
80
101
80
219
60:l
81
81
259
101
'583
101
599
101
627
101
635
101
643
101
651
101
659
101
667
101
675
101
683
101
691
101
10!
705
101
713
101
721
CHE:XA
CHE:XA
+E
CHEXA
+E
CHE:XA
+E
CHE:XA
82
+E
CHEXA
+E
83
CHEXA
+E
84
CHEXA
+E
85
CHEXA
+E
86
CHEXA
+E
87
CHEXA
+E
88
CHEXA
+E
89
CHEXA
+E
90
CHE)(A
91
CPE:NTA
CHEXA
+E
373
94
533
q5
541
96
97
555
98
627
99
635
100
643
q4
+E
95
CPENTA
CHEXA
97
CHEXA
98
CHEXA
+E
99
CHEXA
+E
100
CHEXA
+E
101
101
CHEXA
+E
102
CHEXA
+E
103
CHEXA
+E
r"-4-=-YA
511
92
93
CHEXA
+E
89
595
90
603
q3
CHEXA
+E
+E
82
275
83
563
84
571
85
579
86
583
87
599
88
587
q1
+E
101
563
101
78
77
+E
55~)
'571
101
579
101
587
101
CHEXA
+E
503
75
123
76
131
77
139
78
104
651
102
657
103
6'59
104
667
1fir;
101
101
735
101
743
101
751
101
7'59
101
767
101
775
101
783
101
1 1 <;·
5'59
119
1.?7
56~
127
135
473
57~
115 E
123 F..
'lb
131 E
77
1181
7A
c-,•;;t
;n·1 F..
79
27~
271 E
80
2'51 E
81
267 E
82
58:1
. 'i. 7
'591
473
11 '5
123
571
131
139
579
517
559
623
623
567
631
575
'Jrl"""
'571
47:1 E
6-;:'7
6J~
533
56J [_
84
'571 E
. 8'5
481 E
86
525
4'3
56]
635
571
579
64.1
591 E
87
s::u
1181
58"3
651
489 E
88
587 E
89
'591
651
657
591
675
'507
685
90
427 E
91
703
517
395 E
93
94
68'/
689
689
691
427
697
5!7
703
395
373
70~
711
398 E
711
398
'533
713
719
404 E
719
719
721
7'27
404
5117
404
727
541
733
'547
410 E
. 97
697
517
739
705
525 E
98
739
623
631
7117
7'13
627 E
99
747
631
639
755
751
635 E
100
705
525
627
743
713
533 E
101
63'5
751
767
651 E
102
743
~1
J
751
63'5
643
759
77'5
657 E
103
713
'533
651
767
721
541 E
104
791
11')1
7/.,""'1
1 f)~;
64
CHEXA
+E
125
CHEXA
•E
126
CHEXA
+E
127
CHEXA
.. E
128
CHEXA
+F
129
CHEXA
+E
130
CHE)(A
+F
131
CPENTA
CHEXA
+E
133
CHEXA
+E
134
CHEXA
+E
135
CHEXA
848
112
856
113
864
114
115
878
116
886
117
894
118
902
119
862
120
121
876
122
884
123
892
124
900
125
148
126
952
127
147
128
950
129
180
130
984
131
196
132
133
1008
134
1026
135
1034
136
799
101
807
101
815
101
823
101
813
101
821
10!
814
101
82;:.>
101
863
101
101
877
101
878
101
886
101
894
101
848
101
101
856
101
876
101
884
101
892
101
146
101
951
101
145
101
949
101
147
101
950
101
194
101
101
999
101
1008
101
1026
101
,,....
104;>
10'14
+E
105
CHEXA
+f_
106
CHEXA
+E:
107
CHEXA
+E
108
CHEXA
.. E
109
CHEXA
+F:
I 10
CHEXA
+E
111
CHEXA
+E
112
CHEXA
+E
113
CPENTA
CHEXA
+E
115
CHEXA
+E
116
rHEXA
+E
117
'~HEXA
+E
118
CHEXA
+E
119
CPENTA
CHEXA
+E
121
CHEXA
+E
122
CHEXA
+E
123
CHEXA
+E
124
675
106
683
107
816
108
824
109
814
110
8:22
Ill
659
775
783
4
813
814
816
799
675 E
106
013
Bill E
107
8;;'2 F
lOB
830 E
109
838 E
110
84! E
1t 1
815
19
8 J
829
~~
Et:J7
36
830
846
848
814
:'1"18
854 E
112
36
Sl
52
50
848
86;:' E
113
869
848
862
869
848
870
870
863
RA::l
8"'6 E
115
869
880
882
870
876
884 E
116
880
888
890
882
884
892 E
117
888
896
898
890
892
900 E
118
35
97
51
36
I:JII6
908 E
119
91'1
846
708
915
848
869
848
..,..,
Q2;:t E
1;~1
880
8f,9
9
e~
930 E
122
888
880
'130
938 E
123
934
896
888
946 E
·124
949
952
147 E
125
950 E
126
915
926
934
957
145
939
965
'0,'66
950
949
161
163 E
127
973
974
958
957
965
966 E
128
966
982
984
9'10
163
179 E
129
974
990
992
958
966
982 E
130
984
998
1000
100
195 E
131
998
992
1006
1012
984
1014
1000
1013
1008
984
999
1006 E
133
1012
1020
1022
1014
1006
1024 E
134
1020
1028
1030
1022
1024
1032 E
135
1028
1036
1038
1030
1032
1040 E
136
65
CHEXA
+E
137
CPENTA
CHEXA
+E
139
CHEXA
+E
140
CHEXA
+E
141
CHEXA
+E
142
CHEXA
+E
143
CHEXA
•E
144
CHEXA
+E
14S
CHEXA
146
•E
CHEXA
+E
147
CHEXA
+E
148
CHEXA
+E
149
CHEXA
+E
150
CHEXA
+E
1S1
CPENTA
CPENTA
CPENTA
CHEXA
+E
155
CHEXA
+E
156
CHEXA
+E
157
CPENTA
CPENTA
CPENTA
CPENTA
C:HEXA
+E
162
CPENTA
CPENTA
CHEXA
+E
165
CPENTA
CHEXA
+E
167
CPENTA
CHEXA
+E
169
CHEXA
+E
170
CHEXA
+E
171
CPENTA
137
195
138
139
1006
140
1024
141
1032
142
1040
143
958
144
992
145
960
146
1012
147
1014
148
1020
149
1022
150
1038
151
1036
152
153
154
ISS
990
156
982
1S7
179
1S8
159
160
161
162
854
163
164
165
846
166
167
908
168
169
922
170
1058
171
1052
172
101
180
101
101
984
101
1006
101
1024
101
1032
101
957
101
9S8
101
959
101
992
101
1013
101
1012
101
1014
101
1030
101
1028
101
101
101
101
974
101
966
101
163
101
101
101
101
101
838
101
101
101
830
101
101
846
101
101
854
101
990
101
982
101
,..,'J
101
982
1044
998
98'1
179
241 E
137
1044
990
10S2
10S8
982
1012
9<;18
99?
1006
982
984
1052 E
139
10S8
1066
1020
1012
10S2
1070 E
140
1066
1074
1028
1020
1070
1078 E
141
1074
1082
1036
1028
1078
1086 E
142
837
838
822
821
973
974 E
1'13
838
854
856
822
974
990 E
144
821
822
824
823
9!)7
958 f
14'5
854
q;-!2
87t>
8S6
990
1058 E
1'16
856
876
878
- '
992
1012 E
147
922
930
884
876
1058
1066 E
148
876
884
886
878
1012
1020 E
149
892
90(1
902
8<>4
1028
1036 E
1SO
938
0
116
900
89?
1074
1082 E
151
837
97::1
<;17'1
966
163
838
973
1164
?65
161
1164
1170
368
1184 E
155
838
974
966
1161
1180
1161
1164
1170
854
1164
1 184
990
97'1
1170
1192 E
156
1170
1192
982
966
368
393 E
157
1180
1184
1192
830
1221
I 161
!164
1170
1203
1206
8;;'9
1221
846
1184
1192
393
838
830
1164
1170
368
837
1161
1206
1212
410
1161
1180 E
162
1228
19
433
1221
1235
433
35
1180
830
19
1161
17
441
1203
1221
1228 E
165
441
441
433
4'55
447
97
1228
35
1228
1235
1266 E
167
1273
1228
1266
1273
1228
915
915
846
908
1180
846
1280 E
169
1180
1280
922
854
1184
1288 E
170
1184
1288
1058
990
1192
1296 E
171
1303
1296
1192
1044
1052
c.>~S
12~8
1212
1044
a;-'9
1;:>;;:1
12;;:t1
982
173
66
•E
173
CHEXA
+E
174
CPENTA
CHEXA
+E
176
CHEXA
+E
177
CHEXA
+E
178
CPENTA
CHEXA
+E
180
CHEXA
+E
181
CHEXA
+E
182
CHEXA
+E
183
CHEXA
+E
184
CHEXA
+E
185
CHEXA
+E
186
CHEXA
+E
187
CHEXA
+E
188
CHEXA
+E
189
CHEXA
+E
190
CHEXA
+E
191
C:HEXA
+E
192
CHEXA
+E
193
CHEXA
+E
194
CHEXA
+E
195
CHEXA
+E
196
CHEXA
+E
197
CPENTA
CHEXA
+E
199
CHE~A
+E
200
CHEXA
+E
201
CPENTA
CHEXA
+E
203
CHEXA
+E
204
CHF~A
241
174
1266
175
176
1280
177
1288
178
1296
179
180
503
181
930
182
938
183
946
184
1070
185
1078
186
1086
187
1066
188
1082
189
1370
190
1378
191
1386
192
1390
193
1406
194
1394
195
1402
196
1410
197
1318
198
199
1180
200
1340
201
1148
202
203
5~5
204
1434
17'?'
101
1228
101
101
1180
101
118.11
101
1192
101
101
393
101
447
1~35
1318 E
174
1235
j
1;;'73
1228
L!66
1203
1228
1332 E
116
1203
1280
1180
1206
1340 E
177
1206
1;'AR
1184
1348 E
178
1 ] r,2
1325
1235
1118
1325
?73
1355
1;;?1;;.>
1348
1355
1212
1303
1303
1192
1273
1366
926
915
1366
137.11
934
926
55:> E
180
1280
1370 E
181
1370
1378 E
!8;:>
l:J78
1386 E
183
9;t2
101
930
101
938
101
1052
101
1070
101
1078
101
1058
101
1074
101
1290
101
1370
101
1378
101
1288
101
1398
101
1296
101
1394
101
1402
101
1:?::15
101
101
1203
101
1206
101
1212
101
101
410
101
,l332
101
1374
942
1289
1066
~
·._.
1296
1394 E
184
':'
1390
1398
1074
1066
1394
1402 E
185
1398
1406
1082
1074
1402
1410 E
186
1280
1370
930
922
1&?88
1390 E
187
1378
1386
946
938
1398
1406 E
188
1325
1430
1366
1273
1332
1434 E
189
1430
1438
1374
1366
1434
1442 E
190
1438
1446
1382
1374
1'142
1450 E
191
1370
1280
1340
1458 E
192
1466 E
193
1332
1442
1450
I
::186
1378
1340
1'158
1390
1288
1348
1474 E
194
1458
1'165
1398
1390
1474
1482 E
195
1465
1'166
1406
1398
1490 E
196
507
4'17
1497
1498 E
197
1235
1512 E
199
1520 E
200
201
685
1505
1497
14Q8
1';()5
13.75
1:118
1325
1235
1 ~' 1 I
1511
1512
I lAO
1203
1519
1520
1340
1206
1~27
1528 E
1535
1527
1528
1535
1527
1355
1355
1212
1348
733
1212
735 E
203
1505
1546
1430
1325
1512
1550 E
20.q
1"'50
1558 E
?05
1'i"J4
67
•F.
:?OS
CHEXA
•E
206
CHEXA
+E
207
CHEXA
•F.
208
CHEXA
•E
209
CHEXA
+E
210
CHEXA
+F.
211
CHEXA
+E
212
CllEAM
CBEAM
CBEAM
CBEAM
CBFAM
CBF.AM
CBEAM
r:BEAM
r.BEAM
CBEAM
RDE2
F-i-1E2
f.'Pf2
RBE::?
Rl:lE2
RBE2
RDE2
RBE2
RBE2
RBE2
RBE3
+R31
~R32
PSOLID
MAT!
+Mil
PBEAM
+PI
MAT!
-+M21
CELAS2
CELAS2
CELAS2
CELA52
CELA52
CELAS2
SCELAS2
CELAS2
•cELAS2
CF.LAS2
SCELA52
SCELA52
SCELA52
SCELAS2
1442
206
1450
207
14'>8
?.C•8
1465
209
1466
210
1474
211
1482
212
1490
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
2'50
213
697
1498
101
1
3. 5•4
104
6 7-2
2
6 0+4
251
3'H
4'51
2'52
352
452
4'53
4'54
455
4'56
457
458
459
460
1434
101
1442
101
1340
101
14 '18
101
1465
101
13118
101
1474
101
1482
104
lOll
104
104
104
104
104
104
104
104
1646
16'54
16t->2
1670
1678
1746
1754
1762
1770
1778
739
1'505
1. 0+7
3 5+4
2
0
2 91+7
6 0+4
3 0•06
3. 0+06
3 o~o6
3. 0+06
3. 0+06
3 0+06
1 '5+05
1. 5+05
1 5+05
1 5+05
1. 5+05
1. 5+05
1. 5+05
1 ::'>+05
15~>4
1 ''f.~
14·16
1'1:-18
1558
1566 E
206
151::
15:,0
1434
J ~ ~32
1~;-o
1574 E
207
1'550
1 c:.~-R
!442
143'1
1574
1582 E
208
1~'5F.I
1 ~-ot.
I
=l""•(J
1442
1 r-,o~
1590 E
209
1520
1574
1458
1340
1 ~J;-!O
15Q8 E
210
1574
1 :}82
1465
11158
1 ~-98
1606 E
211
1582
1~90
14'66
1'165
1b(lb
1614 E
212
1678
1670
1662
1t54
1646
1778
1770
1762
1754
1746
12:'1456
123456
1234'56
123456
123456
12345h
123456
123456
123456
123456
1695
747
1546
0
3 7'5+6
2 0+4
014
6. 7-2
I 1 6+6
3 6+4
1694
1694
16'?4
1794
1794
1194
qo
234
898
1042
52
56
62
74
JA70 0.
-0
-0
-0
-0
-1
0
0
0
0
lh62 0
1 !>54 0
16116 {j
J6"r'4 0
P'70 0
17h2 0
1 7 54 0
1746 0
1794 0
78
~'.'II:-'~
\._.:...,
0 366~7
96';;96 0 269"'3
98666 0 16;'80
Q'"-i422 0 1C:07:l8
00000 0
~~ I ~1
;;:1.1
b~
. . -:
A35
fJGc·
8'>4
6'->1
1022
1020
1066
13?0
14'58
123
751
I ~166
.. . J..) ~~
fJ84
">10
89~·
938
1378
1442
~-J:'o
1434
1234:06
7~'j
759
1 <;··4
1 '51:-?
2
0
.l --4
,..,6-5
0 0
0
2
3
3
3
3
3
3
3
3
3
"l
t. . s 7
10:10
10;'8
1 ()74
1.NB
1465
687
7'1'1
t
~·-.s
691 R31
733 R32
1550
M11
6 7 ·-'2
7 4-4
1
-;'.'J7
~/I 1
~,nJ
7-?
2
3
~:;'2
;>;• 1
::-'~'.;
~·6--5
"
, n 7"J8
('
-93039
86
8'5
111
571
7-:"
123
l
93C·39 0 3t.b~~ 7
96296 0 26'16:1
Q8666 0 1-'S:}nt:·
3
1;-t-5
1 03-5 PI
M;;>t
{1
•
68
t-\.ELAS2
SCELAS2
SCELAS2
SCELAS2
CELAS2
CELAS2
CELAS2
CELAS2
CELAS2
CELAS2
CF.LAS2
CELAS2
CELAS2
SCELAS2
SCELAS2
SCELAS2
SCELAS2
ENDDATA
-~
'
46:2
463
464
465
466
467
468
469
470
471
472
.1173
474
475
476
477
478
I. 5+05
864
1. 5+05
870
882
890
192
196
200
218
1 5+05
1 5+05
1 5+05
1. 5+05
1 5+05
1 5+05
1. 5+05
1 5+05
1 5+05
1 5+05
1. 5+05
1. 5+05
1. 5+05
1. 5+05
1. 5+05
~26
1000
1008
1026
1034
1038
902
94
230
3
3
3
3
3
3
J
3
:3
3
:-l
3
3
3
3
3
3
© Copyright 2026 Paperzz