On the Convergence of Domain Decomposition Algorithm for the Body with Thin Inclusion

DOI 10.1515/ama-2015-0006
acta mechanica et automatica, vol.9 no.1 (2015)
ON THE CONVERGENCE OF DOMAIN DECOMPOSITION ALGORITHM
FOR THE BODY WITH THIN INCLUSION
Andriy STYAHAR*, Yarema SAVULA*
*Faculty
of Applied Mathematics and Informatics, Department of Applied Mathematics,
Ivan Franko Lviv National University, Universytetska,1, 79000, Lviv, Ukraine
[email protected], [email protected]
Abstract: We consider a coupled 3D model that involves computation of the stress-strain state for the body with thin inclusion. For the description of the stress-strain state of the main part, the linear elasticity theory is used. The inclusion is modelled using Timoshenko theory
for shells. Therefore, the dimension of the problem inside the inclusion is decreased by one. For the numerical solution of this problem
we propose an iterative domain decomposition algorithm (Dirichlet-Neumann scheme). This approach allows us to decouple problems
in both parts and preserve the structure of the corresponding matrices. We investigate the convergence of the aforementioned algorithm
and prove that the problem is well-posed.
Key words: Elasticity Theory, Timoshenko Shell Theory, Steklov-Poincare Operator, Domain Decomposition
1. INTRODUCTION
A lot of structures, that occur in engineering, are inhomogeneous and contain thin parts and massive parts. Therefore, it is
important to develop both analytical methods and numerical algorithms for the analysis of the stress-strain state of such structures.
Different aspects of such problems were discussed in Dyyak
et al. (2012); Niemi et al. (2010); Savula et al. (2000); Vynnytska
and Savula (2008); Nazarov (2005) (in Vynnytska and Savula
(2008) the case of the bodies with thin inclusions is considered;
in Dyyak et al. (2012) the bodies with thin covers are considered;
in Nazarov (2005) asymptotic methods are used for the analysis
of the elastic bodies with thin rods). Papers Niemi et al. (2010)
and Savula et al. (2000) are devoted to the numerical solution
of the Girkmann problem. The discussion on the problems
of thermoelasticity the reader may find in Sulym (2007).
In this article, we consider a model for the description of the
stress-strain state for the 3D body with thin inclusion. The main
part of the body is modelled using the linear elasticity theory. The
thin part is modelled using the Timoshenko theory for shells. In
order to numerically solve this problem, we propose an iterative
domain decomposition algorithm which connects solutions in both
parts using coupling conditions. We prove the convergence of the
proposed algorithm and the existence and uniqueness of the
solution of the corresponding Steklov-Poincare interface equation.
The application of domain decomposition method allows us to
decouple problems in both parts and solve the problems independently in each part. As a result, it is possible to compute the
stress-strain state accurately even for small shell thicknesses
without having problems with stability issues of the coupled problem.
2. PROBLEM STATEMENT
Let us consider a problem of a stress-strain state of an elastic
body Ω1 with the inclusion in Ω2 (Fig. 1).
Fig. 1. Body with inclusion
Let us describe the stress-strain state of the body in Ω1 in rectangular coordinate system π‘₯1 , π‘₯2, π‘₯3 using the theory of linear
3
elasticity. Let us denote by Ξ£ = (σ𝑖𝑗 )𝑖,𝑗=1 the Cauchy stress
tensor. The components of Ξ£ are found from the relationships
1
πœ•π‘’π‘–
2
πœ•π‘₯𝑗
πœŽπ‘–π‘— = 𝐸1 (
+
πœ•π‘’π‘—
πœ•π‘₯𝑖
), 𝑖, 𝑗 = 1,2,3,
where: 𝐸1 is the Young’s modulus of the body in Ω1 ; u(x) =
(𝑒1 (π‘₯), 𝑒2 (π‘₯), 𝑒3 (π‘₯)) is the displacement vector with 𝑒𝑖 being
the displacements along the directions of π‘₯𝑖 , 𝑖 = 1,2,3.
Equilibrium equations for the body in Ω1 have the form:
πœ•πœŽ11
πœ•π‘₯1
πœ•πœŽ21
πœ•π‘₯1
πœ•πœŽ31
πœ•π‘₯1
+
+
+
πœ•πœŽ12
πœ•π‘₯2
πœ•πœŽ22
πœ•π‘₯2
πœ•πœŽ32
πœ•π‘₯2
+
+
+
πœ•πœŽ13
πœ•π‘₯3
πœ•πœŽ23
πœ•π‘₯3
πœ•πœŽ33
πœ•π‘₯3
= 𝑓1 ,
= 𝑓2 ,
(1)
= 𝑓3 ,
where: x ∈ Ω1 , f = (𝑓1 , 𝑓2 , 𝑓3 ) is the vector of volume forces.
In the following we assume that no volume forces act on the
body in Ω1 .
Let us denote by n = (𝑛1 , 𝑛2 , 𝑛3 ) outer normal vector and
by Ο„1 = (𝜏11 , 𝜏12 , 𝜏13 ), Ο„2 = (𝜏21 , 𝜏22 , 𝜏23 ) corresponding tangent vectors.
27
Andriy Styahar, Yarema Savula
On the Convergence of Domain Decomposition Algorithm for the Body with Thin Inclusion
Equations (1) are supplemented by the boundary conditions
of one of the following types.
Kinematic (Dirichlet) boundary conditions are of the form:
𝑒𝑛 =
𝑒𝑛0 ,
π‘’πœ1 =
π‘’πœ01 ,
π‘’πœ2 =
π‘’πœ02 ,
x ∈ 𝛀1 ,
(2)
where: 𝛀1 is the outer boundary of Ω1 ; 𝑒𝑛 , π‘’πœ1 and π‘’πœ2 are the
components of the displacement vector in the coordinate system
n, Ο„1 , Ο„2 ; 𝑒𝑛0 , π‘’πœ01 and π‘’πœ02 are the prescribed displacements
on 𝛀1 .
Static (Neumann) boundary conditions have the form:
0
0
0
πœŽπ‘›π‘› = πœŽπ‘›π‘›
, πœŽπ‘›πœ1 = πœŽπ‘›πœ
, πœŽπ‘›πœ2 = πœŽπ‘›πœ
, x ∈ 𝛀1 ,
1
2
(3)
where: πœŽπ‘›π‘› , πœŽπ‘›πœ1 and πœŽπ‘›πœ2 are the components of the stress
0
0
0
tensor in the coordinate system; n, Ο„1 , Ο„2 ; πœŽπ‘›π‘›
, πœŽπ‘›πœ
and πœŽπ‘›πœ
1
2
are the prescribed stresses on 𝛀1 .
It is possible to consider other types of boundary conditions,
for example mixed boundary conditions, that combine boundary
conditions (2) and (3).
For the description of the stress-strain state of the inclusion
Ω2 we use the equations of Timoshenko shell theory in the curvilinear coordinate system (πœ‰1 , πœ‰2 , πœ‰3 ) that hold on the median
surface Ω2βˆ— , where: Ω2 = {(πœ‰1 , πœ‰2 , πœ‰3 ): πœ‰1𝑏 ≀ πœ‰1 ≀ πœ‰1𝑒 , πœ‰2𝑏 ≀
β„Ž
β„Ž
πœ‰2 ≀ πœ‰2𝑒 , βˆ’ ≀ πœ‰3 ≀ }, β„Ž is the thickness of the inclusion
2
2
in Ω2 .
By Ω2βˆ— we denote the median surface of Ω2 (the projection
of Ω2 on the surface for which πœ‰3 = 0).
The equations of Timoshenko shell theory are of the form
(Pelekh, 1978):
(1βˆ’πœ—22 )
(πœ€π›Όπ›Ό + πœ—2 πœ€π›½π›½ ); 𝑇12 =
𝐸2 β„Ž
πœ€
2(1+πœ—2 ) 12
𝑇𝛼3 = π‘˜ β€² 𝐺 β€² β„Žπœ€π›Ό3 ;
𝐸2 β„Ž3
𝑀𝛼𝛼 =
12(1βˆ’πœ—22 )
(πœ’π›Όπ›Ό + πœ—2 πœ’π›½π›½ ); 𝑀12 =
𝐸2 β„Ž3
12(1+πœ—2 )
πœ’12
where: 𝛼, 𝛽 = 1,2, 𝛼 β‰  𝛽; π‘˜ β€² , 𝐺 β€² are constants that characterize transversely isotropic material; 𝐸2 is the Young’s modulus
of the shell, πœ—2 is the Poisson’s ratio.
The strains πœ€11 , πœ€22, πœ€12 , πœ€13 , πœ€23, πœ’11 , πœ’22 , πœ’12 are obtained from the relationships:
πœ€π›Όπ›Ό =
1 πœ•v𝛼
𝐴𝛼 πœ•πœ‰π›Ό
+
1
πœ•A𝛼
v
𝐴𝛼 𝐴𝛽 𝛽 πœ•πœ‰π›½
v𝛽
v𝛼
2πœ€π›Όπ›½ =
πœ’π›Όπ›Ό =
𝐴𝛼 πœ• 𝐴𝛼
𝐴𝛽 πœ•πœ‰π›½
+ π‘˜π›Ό 𝑀,
+
πœ•
𝐴𝛽 𝐴𝛽
𝐴𝛼 πœ•πœ‰π›Ό
; πœ€π›Ό3 = βˆ’π‘˜π›Ό v𝛼 +
1 πœ•π‘€
𝐴𝛼 πœ•πœ‰π›Ό
+ 𝛾𝛼
1 πœ•Ξ³π›Ό
1
πœ•A 𝛼
+
γ𝛽
𝐴𝛼 πœ•πœ‰π›Ό 𝐴𝛼 𝐴𝛽
πœ•πœ‰π›½
2πœ’π›Όπ›½ =
π‘˜π›½
π‘˜π›Ό πœ•v𝛼
πœ•π΄π›Ό π‘˜π›½ πœ•v𝛽
βˆ’
v𝛼
+
βˆ’
𝐴𝛽 πœ•πœ‰π›½ 𝐴𝛼 𝐴𝛽
πœ•πœ‰π›½ 𝐴𝛼 πœ•πœ‰π›Ό
γ𝛽
γ𝛼
πœ•
πœ•π΄π›½ 𝐴𝛼 πœ• 𝐴𝛼 𝐴𝛽 𝐴𝛽
π‘˜π›Ό
βˆ’
v
+
+
𝐴𝛼 𝐴𝛽 𝛽 πœ•πœ‰π›Ό 𝐴𝛽 πœ•πœ‰π›½ 𝐴𝛼 πœ•πœ‰π›Ό
where: 𝛼, 𝛽 = 1,2, 𝛼 β‰  𝛽; v1 = v1 (πœ‰1 , πœ‰2 ), v2 = v2 (πœ‰1 , πœ‰2 ),
𝑀 = 𝑀(πœ‰1 , πœ‰2 ), Ξ³1 = Ξ³1 (πœ‰1 , πœ‰2 ), Ξ³2 = Ξ³2 (πœ‰1 , πœ‰2 ) are the
displacements and angles of revolution in the shell;
β„Ž
+
𝑝𝑖+ = (1 + π‘˜1 ) (1 + π‘˜2 ) πœŽπ‘–3
,
π‘π‘–βˆ’
2
2
β„Ž
β„Ž
2
βˆ’
πœŽπ‘–3
,
2
βˆ’
= (1 βˆ’ π‘˜1 ) (1 βˆ’ π‘˜2 ) πœŽπ‘–3
, 𝑖 = 1,2,3.
+
πœŽπ‘–3
,
Here
𝑖 = 1,2,3 are the components of the stress
β„Ž
β„Ž
tensor on the top (πœ‰3 = ) and bottom (πœ‰3 = βˆ’ ) surfaces of the
2
2
shell. It is known that in the case of isotropic bodies we have
5
𝐸2
π‘˜β€² = , 𝐺′ =
.
)
6
2(1+πœ—2
On the outer edge of the thin part we impose boundary conditions either on the displacements v1 , v2 , 𝑀 and angles Ξ³1 , Ξ³2
or on the forces 𝑇11 , 𝑇22 , 𝑇13 , 𝑇23 and momenta 𝑀11 , 𝑀22 in the
shell (depending if the corresponding parts of the boundary are
subjected to load or free). At the outer surface of the shell we
+
βˆ’
prescribe to πœŽπ‘–3
and πœŽπ‘–3
, 𝑖 = 1,2,3 some given stresses.
The operator form of the equations of Timoshenko shell theory
is:
Ly = g,
(4)
with:
g = 𝐴1 𝐴2 (𝑔1 , 𝑔2 , 𝑔3 , 𝑔4 , 𝑔5 )𝑇
𝑔1 = 𝑝1+ + 𝑝1βˆ’ ; 𝑔2 = 𝑝2+ + 𝑝2βˆ’ ; 𝑔3 = 𝑝3+ βˆ’ 𝑝3βˆ’ ;
β„Ž
β„Ž
2
2
𝑔4 = (𝑝1+ βˆ’ 𝑝1βˆ’ ); 𝑔5 = (𝑝2+ βˆ’ 𝑝2βˆ’ )
where: 𝑇11 , 𝑇12 , 𝑇22 , 𝑇13 , 𝑇23 , 𝑀11 , 𝑀12 , 𝑀22 are the forces and
momenta in the shell; 𝐴1 = 𝐴1 (πœ‰1 , πœ‰2 ), 𝐴2 = 𝐴2 (πœ‰1 , πœ‰2 ), π‘˜1 =
π‘˜1 (πœ‰1 , πœ‰2 ), π‘˜2 = π‘˜2 (πœ‰1 , πœ‰2 ) correspond to Lame parameters
1
1
and median surface curvature parameters; π‘Ÿ1 = , π‘Ÿ2 = ;
π‘˜2
(πœ‰1 , πœ‰2 ) ∈ β„¦βˆ—2 ; 𝑝1+ , 𝑝1βˆ’ , 𝑝2+ , 𝑝2βˆ’ , 𝑝3+ , 𝑝3βˆ’ are given functions;
it holds:
28
𝐸2 β„Ž
𝑇𝛼𝛼 =
β„Ž
1 πœ•(𝐴2 𝑇11 )
1 πœ•π΄2
1 πœ•(𝐴12 𝑇12 )
βˆ’
𝑇22 + 2
+
𝐴1 𝐴2 πœ•πœ‰1
𝐴1 𝐴2 πœ•πœ‰1
𝐴1 𝐴2 πœ•πœ‰2
𝐴1
1 πœ• ( π‘Ÿ1 𝑀11 )
π‘˜2 πœ•π΄1
+π‘˜1 𝑇13 +
+
𝑀 =
𝐴1 𝐴2
πœ•πœ‰2
𝐴1 𝐴2 πœ•πœ‰2 12
= βˆ’(𝑝1+ + 𝑝1βˆ’ ),
1 πœ•π΄1
1 πœ•(𝐴1 𝑇22 )
1 πœ•(𝐴22 𝑇12 )
βˆ’
𝑇11 +
+
+
𝐴1 𝐴2 πœ•πœ‰2
𝐴1 𝐴2 πœ•πœ‰2
𝐴1 𝐴22 πœ•πœ‰1
𝐴2
1 πœ• ( π‘Ÿ2 𝑀22 )
π‘˜1 πœ•π΄2
+π‘˜2 𝑇23 +
+
𝑀 =
𝐴1 𝐴2
πœ•πœ‰2
𝐴1 𝐴2 πœ•πœ‰1 12
= βˆ’(𝑝2+ + 𝑝2βˆ’ ),
1 πœ•(𝐴2 𝑇13 )
1 πœ•(𝐴1 𝑇23 )
βˆ’π‘˜1 𝑇11 βˆ’ π‘˜2 𝑇22 +
+
=
𝐴1 𝐴2 πœ•πœ‰1
𝐴1 𝐴2 πœ•πœ‰2
= βˆ’(𝑝3+ βˆ’ 𝑝3βˆ’ ),
1 πœ•(𝐴2 𝑀11 )
1 πœ•π΄2
βˆ’π‘‡13 +
βˆ’
𝑀 +
𝐴1 𝐴2
πœ•πœ‰1
𝐴1 𝐴2 πœ•πœ‰1 22
2
1 πœ•(𝐴1 𝑀12 )
β„Ž
+ 2
= βˆ’ (𝑝1+ βˆ’ 𝑝1βˆ’ ),
πœ•πœ‰2
2
𝐴1 𝐴2
1 πœ•π΄1
1 πœ•(𝐴1 𝑀22 )
βˆ’π‘‡23 βˆ’
𝑀 +
+
𝐴1 𝐴2 πœ•πœ‰2 11 𝐴1 𝐴2
πœ•πœ‰2
2
1 πœ•(𝐴2 𝑀12 )
β„Ž
+
= βˆ’ (𝑝2+ βˆ’ 𝑝2βˆ’ ),
2
πœ•πœ‰1
2
𝐴1 𝐴2
π‘˜1
DOI 10.1515/ama-2015-0006
y = (v1 , v2 , 𝑀, Ξ³1 , Ξ³2 )𝑇 , Ly = (𝑙1 , 𝑙2 , 𝑙3 , 𝑙4 , 𝑙5 )𝑇
πœ•(𝐴2 𝑇11 ) πœ•π΄2
1 πœ•(𝐴12 𝑇12 )
+
𝑇22 βˆ’
βˆ’
πœ•πœ‰1
πœ•πœ‰1
𝐴1 πœ•πœ‰2
𝐴
πœ• ( 1 𝑀11 )
πœ•π΄1
π‘Ÿ1
βˆ’π΄1 𝐴2 π‘˜1 𝑇13 βˆ’
βˆ’ π‘˜2
𝑀
πœ•πœ‰2
πœ•πœ‰2 12
𝑙1 = βˆ’
DOI 10.1515/ama-2015-0006
𝑙2 =
acta mechanica et automatica, vol.9 no.1 (2015)
ΞΎ = (πœ‰1 , πœ‰2 , πœ‰3 ): (πœ‰1 , πœ‰2 ) ∈ β„¦βˆ—2𝑖𝑛 ;
β„Ž
β„Ž
𝛀𝐼3 = {
}
πœ‰2 = πœ‰2𝑏 ; βˆ’ ≀ πœ‰3 ≀
2
2
πœ•π΄1
πœ•(𝐴1 𝑇22 ) 1 πœ•(𝐴22 𝑇12 )
𝑇11 βˆ’
βˆ’
βˆ’
πœ•πœ‰2
πœ•πœ‰2
𝐴2 πœ•πœ‰1
βˆ’π΄1 𝐴2 π‘˜2 𝑇23 βˆ’
πœ•(
𝐴2
𝑀 )
πœ•π΄2
π‘Ÿ2 22
βˆ’ π‘˜1
𝑀
πœ•πœ‰2
πœ•πœ‰1 12
𝑙3 = 𝐴1 𝐴2 π‘˜1 𝑇11 + 𝐴1 𝐴2 π‘˜2 𝑇22 βˆ’
β„Ž
βˆ—
𝛀𝐼4 = {ΞΎ = (πœ‰1 , πœ‰2 , πœ‰3 ): (πœ‰1 , πœ‰2 ) ∈ Ω2𝑖𝑛
; πœ‰3 = }
2
πœ•(𝐴2 𝑇13 ) πœ•(𝐴1 𝑇23 )
βˆ’
πœ•πœ‰1
πœ•πœ‰2
𝑙4 = 𝐴1 𝐴2 𝑇13 βˆ’
πœ•(𝐴2 𝑀11 ) πœ•π΄2
1 πœ•(𝐴12 𝑀12 )
+
𝑀22 βˆ’
πœ•πœ‰1
πœ•πœ‰1
𝐴1
πœ•πœ‰2
𝑙5 = 𝐴1 𝐴2 𝑇23 +
πœ•π΄1
πœ•(𝐴1 𝑀22 ) 1 πœ•(𝐴22 𝑀12 )
𝑀11 βˆ’
βˆ’
πœ•πœ‰2
πœ•πœ‰2
𝐴2
πœ•πœ‰1
Let us write down the weak formulation of the Timoshenko
shell theory problem. Without loss of generality we assume homogeneous boundary conditions. Let us define the following
function spaces: 𝑉 = {𝑣 ∈ 𝐻1 (β„¦βˆ—2 ): 𝑣 = 0, ΞΎ = (πœ‰1 , πœ‰2 , πœ‰3 ) ∈
𝛀2𝐷 }, 𝑉1 = 𝑉 5 , where 𝛀2𝐷 is the part of the outer boundary of Ω2
on which the kinematic boundary condition is prescribed.
The weak formulation of the problem (4) has the form:
find y ∈ 𝑉1 , such that:
π‘Ž(y, v) = 𝑔(v), βˆ€v ∈ 𝑉1 ,
(5)
where: π‘Ž(y, v) = (Ly, v), 𝑔(v) = (g, v).
Lemma. Assume that for the problem (4) there exist positive
constants π‘Ÿ10 , π‘Ÿ20 , 𝐴10 , 𝐴20 such that:
1. |π‘Ÿ1 | β‰₯ π‘Ÿ10 > 0; |π‘Ÿ2 | β‰₯ π‘Ÿ20 > 0;
2. |𝐴1 | β‰₯ 𝐴10 > 0; |𝐴2 | β‰₯ 𝐴20 > 0
almost everywhere in β„¦βˆ—2 .
Then the bilinear form π‘Ž(y, v) for the problem (5) of Timoshenko shell theory is continuous.
Proof. Firstly, we remark that from the assumption 1) it follows
that |π‘˜1 | ≀ π‘˜10 < ∞, |π‘˜2 | ≀ π‘˜20 < ∞. Moreover, the assumptions of the lemma do not restrict the class of the problems or the
algorithm that can be used for the numerical solution of this problem. Indeed, for the points, for which the assumptions do not hold,
the system becomes singular and can no longer be used for the
adequate description of the physical process that is being modeled.
The continuity of the bilinear form follows from the fact, that all
the coefficients in the system (4) are bounded by modulus almost
everywhere, and that the system (4) itself is linear.
The proof also uses the obvious inequality:
π‘Žπ‘ ≀
π‘Ž2 +𝑏 2
2
for π‘Ž, 𝑏 ∈ 𝑅.
In order to couple the models in both parts, adequate boundary conditions need to be specified. Let us denote by Ω2𝑖𝑛 part of
βˆ—
the inclusion that lies inside the body Ω1 and by Ω2𝑖𝑛
part of the
βˆ—
median surface Ω2 which is the projection of Ω2𝑖𝑛 on the surface
πœ‰3 = 0.
Let 𝛀𝐼 be a boundary, common to both Ω1 and Ω2 . Let us divide 𝛀𝐼 into the following parts:
β„Ž
βˆ—
𝛀𝐼1 = {ΞΎ = (πœ‰1 , πœ‰2 , πœ‰3 ): (πœ‰1 , πœ‰2 ) ∈ Ω2𝑖𝑛
; πœ‰3 = βˆ’ }
2
ΞΎ = (πœ‰1 , πœ‰2 , πœ‰3 ): (πœ‰1 , πœ‰2 ) ∈ β„¦βˆ—2𝑖𝑛 ;
β„Ž
β„Ž
𝛀𝐼2 = {
}
πœ‰1 = πœ‰1𝑏 ; βˆ’ ≀ πœ‰3 ≀
2
2
Fig. 2. Cross-section of the body in Ω by the plane π‘₯1 = const.
Fig. 2 shows the cross-section of the body in Ω by the plane
π‘₯1 = const and the connection between rectangular π‘₯1 , π‘₯2, π‘₯3
and curvilinear πœ‰1 , πœ‰2 , πœ‰3 coordinate systems.
On each part of 𝛀𝐼 the following coupling conditions are prescribed (Pelekh, 1978):
ο€­ on 𝛀𝐼1 (inner part of bottom surface of Ω2 ):
β„Ž
β„Ž
𝑒𝑛 = 𝑀, π‘’πœ1 = βˆ’v1 + 𝛾1 , π‘’πœ2 = βˆ’v2 + 𝛾2 ,
2
πœŽπ‘›π‘› =
βˆ’
βˆ’πœŽ33
,
πœŽπ‘›πœ1 =
2
βˆ’
βˆ’πœŽ13
,
πœŽπ‘›πœ2 =
βˆ’
βˆ’πœŽ23
;
(6)
ο€­ on 𝛀𝐼2 (inner edge of Ω2 ):
π‘’πœ1 = 𝑀, π‘’πœ2 = βˆ’v2 βˆ’ πœ‰3 𝛾2 , 𝑒𝑛 = v1 + πœ‰3 𝛾1 ,
β„Ž
β„Ž
β„Ž
∫2β„Ž πœŽπ‘›π‘› π‘‘πœ‰3 = 𝑇11 , ∫2β„Ž πœŽπ‘›πœ1 π‘‘πœ‰3 = 𝑇13 , ∫2β„Ž πœŽπ‘›πœ2 π‘‘πœ‰3 = 𝑇12 ,
βˆ’
βˆ’
2
β„Ž
2
β„Ž
βˆ’
2
βˆ’
2
β„Ž
2
β„Ž
βˆ’
2
2
∫ πœŽπ‘›π‘› πœ‰3 π‘‘πœ‰3 = 𝑀11 , ∫ πœŽπ‘›πœ2 πœ‰3 π‘‘πœ‰3 = 𝑀12 ;
(7)
ο€­ on 𝛀𝐼3 (inner edge of Ω2 ):
π‘’πœ2 = 𝑀, π‘’πœ1 = βˆ’v1 βˆ’ πœ‰3 𝛾1 , 𝑒𝑛 = v2 + πœ‰3 𝛾2 ,
β„Ž
β„Ž
β„Ž
∫2β„Ž πœŽπ‘›π‘› π‘‘πœ‰3 = 𝑇22 , ∫2β„Ž πœŽπ‘›πœ2 π‘‘πœ‰3 = 𝑇23 , ∫2β„Ž πœŽπ‘›πœ1 π‘‘πœ‰3 = 𝑇12 ,
βˆ’
βˆ’
2
β„Ž
2
β„Ž
βˆ’
2
βˆ’
2
β„Ž
2
β„Ž
βˆ’
2
2
∫ πœŽπ‘›π‘› πœ‰3 π‘‘πœ‰3 = 𝑀22 , ∫ πœŽπ‘›πœ1 πœ‰3 π‘‘πœ‰3 = 𝑀12 ;
(8)
ο€­ on 𝛀𝐼4 (inner part of top surface surface of Ω2 ):
β„Ž
β„Ž
𝑒𝑛 = βˆ’π‘€, π‘’πœ1 = v1 + 𝛾1 , π‘’πœ2 = v2 + 𝛾2 ,
2
πœŽπ‘›π‘› =
+
βˆ’πœŽ33
,
πœŽπ‘›πœ1 =
+
𝜎13
,
2
πœŽπ‘›πœ2 =
+
𝜎23
.
(9)
3. DOMAIN DECOMPOSITION ALGORITHM
For the numerical solution of the model domain decomposition algorithm can be used.
The approximate solutions in both domains are connected using Dirichlet-Neumann scheme (Quarteroni and Valli, 1999). Do29
Andriy Styahar, Yarema Savula
On the Convergence of Domain Decomposition Algorithm for the Body with Thin Inclusion
main decomposition algorithm has the following form:
1. set an initial guess Ξ»0 for the unknown displacements on the
interface 𝛀𝐼 , set πœ€ > 0;
2. for π‘˜ = 0,1, … solve the boundary value problem in Ω1 with
the displacements equal to Ξ»k to obtain the approximation for
the forces and momenta in Ω2 using (6)-(9);
3. solve the corresponding problem in Ω2 to find the displacements π‘’π‘›π‘˜ , π‘’πœπ‘˜1 , π‘’πœπ‘˜2 on 𝛀𝐼 ;
4. update the displacements Ξ»k on 𝛀𝐼 :
ο€­ on 𝛀𝐼1 :
π‘˜
π‘˜
πœ†π‘˜+1
11 = (1 βˆ’ πœƒ)πœ†11 + πœƒπ‘’π‘› ,
π‘˜
π‘˜
πœ†π‘˜+1
13 = (1 βˆ’ πœƒ)πœ†13 + πœƒπ‘’πœ2 ;
π‘˜
π‘˜
πœ†π‘˜+1
12 = (1 βˆ’ πœƒ)πœ†12 + πœƒπ‘’πœ1 ,
ο€­ on 𝛀𝐼2 :
π‘˜
π‘˜
πœ†π‘˜+1
21 = (1 βˆ’ πœƒ)πœ†21 + πœƒv1 ,
π‘˜+1
π‘˜
πœ†23 = (1 βˆ’ πœƒ)πœ†23 + πœƒπ‘€ π‘˜ ,
π‘˜
π‘˜
πœ†π‘˜+1
25 = (1 βˆ’ πœƒ)πœ†25 + πœƒπ›Ύ2 ;
π‘˜
π‘˜
πœ†π‘˜+1
22 = (1 βˆ’ πœƒ)πœ†22 + πœƒv2 ,
π‘˜+1
π‘˜
πœ†24 = (1 βˆ’ πœƒ)πœ†24 + πœƒπ›Ύ1π‘˜ ,
ο€­ on 𝛀𝐼3 :
π‘˜
π‘˜
πœ†π‘˜+1
31 = (1 βˆ’ πœƒ)πœ†31 + πœƒv2 ,
π‘˜+1
π‘˜
πœ†33 = (1 βˆ’ πœƒ)πœ†33 + πœƒπ‘€ π‘˜ ,
π‘˜
π‘˜
πœ†π‘˜+1
35 = (1 βˆ’ πœƒ)πœ†35 + πœƒπ›Ύ1 ;
π‘˜
π‘˜
πœ†π‘˜+1
32 = (1 βˆ’ πœƒ)πœ†32 + πœƒv1 ,
π‘˜+1
π‘˜
πœ†34 = (1 βˆ’ πœƒ)πœ†34 + πœƒπ›Ύ2π‘˜ ,
DOI 10.1515/ama-2015-0006
ο€­ on 𝛀𝐼1 :
πœ‘11 = 𝑒𝑛 , πœ‘12 = π‘’πœ1 , πœ‘13 = π‘’πœ2 ;
ο€­ on 𝛀𝐼2 :
πœ‘21 = v1 , πœ‘22 = v2 , πœ‘23 = 𝑀, πœ‘24 = 𝛾1 , πœ‘25 = 𝛾2 ;
ο€­ on 𝛀𝐼3 :
πœ‘31 = v2 , πœ‘32 = v1 , πœ‘33 = 𝑀, πœ‘34 = 𝛾2 , πœ‘35 = 𝛾1 ;
ο€­ on 𝛀𝐼4 :
πœ‘41 = 𝑒𝑛 , πœ‘42 = π‘’πœ1 , πœ‘43 = π‘’πœ2 .
Let S be a Steklov-Poincare operator for our problem and
S𝑖 , 𝑖 = 1,2 be local Steklov-Poincare operators corresponding to
the domains Ω𝑖 . Steklov-Poincare operator for the boundaryvalue problem is an operator that transforms boundary conditions
of one type into boundary conditions of another type. In our case,
Steklov-Poincare operator transforms the displacements on the
boundary into loads on the boundary.
Let us multiply interface conditions (6) by 𝐴1 𝐴2 (1 βˆ’
β„Ž
β„Ž
1
2
β„Ž
2
β„Ž
β„Ž
βˆ’π‘˜1 ) (1 βˆ’ π‘˜2 ); (7) and (8) – by ; (9) – by 𝐴1 𝐴2 (1 +
+π‘˜1 ) (1 + π‘˜2 ).
2
2
The Steklov-Poincare operator can be written in the form:
ο€­ on 𝛀𝐼4 :
π‘˜
π‘˜
πœ†π‘˜+1
41 = (1 βˆ’ πœƒ)πœ†41 + πœƒπ‘’π‘› ,
{SΟ†, ψ}𝛀𝐼 = {S1 Ο†, ψ}𝛀𝐼 + {S2 Ο†, ψ}𝛀𝐼 , where:
π‘˜
π‘˜
πœ†π‘˜+1
42 = (1 βˆ’ πœƒ)πœ†42 + πœƒπ‘’πœ1 ,
{S1 Ο†, ψ}𝛀𝐼 =
π‘˜
π‘˜
πœ†π‘˜+1
43 = (1 βˆ’ πœƒ)πœ†43 + πœƒπ‘’πœ2 ,
= βŒ©βˆ’π΄1 𝐴2 (1 βˆ’ π‘˜1 ) (1 βˆ’ π‘˜2 ) πœŽπ‘›π‘› (Ο†), πœ“11 βŒͺ𝛀𝐼1 +
β„Ž
β„Ž
2
β„Ž
2
β„Ž
2
β„Ž
2
β„Ž
2
β„Ž
2
β„Ž
2
β„Ž
2
β„Ž
2
β„Ž
2
β„Ž
2
2
where πœƒ > 0 is a relaxation parameter;
5. if β€–Ξ»k+1 βˆ’ Ξ»k β€– β‰₯ πœ€, then go to step 2, otherwise the algorithm ends.
In the following we assume that the variational problems corresponding to the domains Ω1 , Ω2 and Ω have unique solutions
(Hsiao and Wendland, 2008; Vynnytska and Savula, 2012; Dyyak
and Savula, 1997).
Let us prove the convergence of the domain decomposition
algorithm and the existence and uniqueness of the solution of the
corresponding Steklov-Poincare equation.
For this purpose let us introduce on the common boundary
of both domains the function Ο† ∈ Ξ›, with:
+ βŒ©βˆ’π΄1 𝐴2 (1 βˆ’ π‘˜1 ) (1 βˆ’ π‘˜2 ) πœŽπ‘›πœ1 (Ο†), πœ“12 βŒͺ𝛀𝐼1 +
Ξ› = {Ο† = (πœ‘1 , Ο†2 , Ο†3 , Ο†4 )},
+ βŒ©βˆ’ ∫ πœŽπ‘›πœ1 (Ο†)π‘‘πœ‰3 , πœ“23 βŒͺ𝛀𝐼2 +
β„Ž
Ο†1 = (πœ‘11 , πœ‘12 , πœ‘13 ), πœ‘1𝑖 ∈ 𝐻1 (𝛀𝐼1 ), 𝑖 = 1,2,3;
Ο†2 = (πœ‘21 , πœ‘22 , πœ‘23 , πœ‘24 , πœ‘25 ),
πœ‘2𝑖 = πœ‘2𝑖 (πœ‰2 ) ∈
1
𝐻 2 (𝛀𝐼
2
),
𝑖 = 1,2,3,4,5;
Ο†3 = (πœ‘31 , πœ‘32 , πœ‘33 , πœ‘34 , πœ‘35 ),
1
πœ‘3𝑖 = πœ‘3𝑖 (πœ‰1 ) ∈ 𝐻 2 (𝛀𝐼3 ),
𝑖 = 1,2,3,4,5;
Ο†4 = (πœ‘41 , πœ‘42 , πœ‘43 ), πœ‘4𝑖 ∈ 𝐻1 (𝛀𝐼4 ), 𝑖 = 1,2,3.
We remark, that the choice of the space Ξ› is motivated by the
specifics of the model and is based on the regularity of the corresponding functions on each part of the interface 𝛀𝐼 .
The connection between the functions πœ‘π‘–π‘— and the displacements on the interface is the following:
30
+ βŒ©βˆ’π΄1 𝐴2 (1 βˆ’ π‘˜1 ) (1 βˆ’ π‘˜2 ) πœŽπ‘›πœ2 (Ο†), πœ“13 βŒͺ𝛀𝐼1 +
+ βŒ©βˆ’π΄1 𝐴2 (1 + π‘˜1 ) (1 + π‘˜2 ) πœŽπ‘›π‘› (Ο†), πœ“41 βŒͺ𝛀𝐼4 +
+ βŒ©βˆ’π΄1 𝐴2 (1 + π‘˜1 ) (1 + π‘˜2 ) πœŽπ‘›πœ1 (Ο†), πœ“42 βŒͺ𝛀𝐼4 +
+ βŒ©βˆ’π΄1 𝐴2 (1 + π‘˜1 ) (1 + π‘˜2 ) πœŽπ‘›πœ2 (Ο†), πœ“43 βŒͺ𝛀𝐼4 +
1
β„Ž
2
β„Ž
βˆ’
2
β„Ž
2
β„Ž
βˆ’
2
β„Ž
2
β„Ž
βˆ’
2
β„Ž
2
β„Ž
βˆ’
2
β„Ž
2
β„Ž
βˆ’
2
β„Ž
2
β„Ž
βˆ’
2
β„Ž
2
β„Ž
βˆ’
2
β„Ž
2
β„Ž
βˆ’
2
β„Ž
2
β„Ž
βˆ’
2
β„Ž
2
β„Ž
βˆ’
2
+ βŒ©βˆ’ ∫ πœŽπ‘›π‘› (Ο†)π‘‘πœ‰3 , πœ“21 βŒͺ𝛀𝐼2 +
β„Ž
1
+ βŒ©βˆ’ ∫ πœŽπ‘›πœ2 (Ο†)π‘‘πœ‰3 , πœ“22 βŒͺ𝛀𝐼2 +
β„Ž
1
1
+ βŒ©βˆ’ ∫ πœŽπ‘›π‘› (Ο†)πœ‰3 π‘‘πœ‰3 , πœ“24 βŒͺ𝛀𝐼2 +
β„Ž
1
+ βŒ©βˆ’ ∫ πœŽπ‘›πœ2 (Ο†)πœ‰3 π‘‘πœ‰3 , πœ“25 βŒͺ𝛀𝐼2 +
β„Ž
1
+ βŒ©βˆ’ ∫ πœŽπ‘›π‘› (Ο†)π‘‘πœ‰3 , πœ“31 βŒͺ𝛀𝐼3 +
β„Ž
1
+ βŒ©βˆ’ ∫ πœŽπ‘›πœ1 (Ο†)π‘‘πœ‰3 , πœ“32 βŒͺ𝛀𝐼3 +
β„Ž
1
+ βŒ©βˆ’ ∫ πœŽπ‘›πœ2 (Ο†)π‘‘πœ‰3 , πœ“33 βŒͺ𝛀𝐼3 +
β„Ž
1
+ βŒ©βˆ’ ∫ πœŽπ‘›π‘› (Ο†)πœ‰3 π‘‘πœ‰3 , πœ“34 βŒͺ𝛀𝐼3 +
β„Ž
1
+ βŒ©βˆ’ ∫ πœŽπ‘›πœ1 (Ο†)πœ‰3 π‘‘πœ‰3 , πœ“35 βŒͺ𝛀𝐼3 ,
β„Ž
DOI 10.1515/ama-2015-0006
acta mechanica et automatica, vol.9 no.1 (2015)
{S2 Ο†, ψ}𝛀𝐼 =
Therefore, we obtain:
β„Ž
β„Ž
2
β„Ž
2
β„Ž
βˆ’
= βŒ©βˆ’π΄1 𝐴2 (1 βˆ’ π‘˜1 ) (1 βˆ’ π‘˜2 ) 𝜎33
, πœ“11 βŒͺ𝛀𝐼1 +
{S2 Ο†, Ο†}𝛀𝐼 β‰₯ 𝑐 2 βˆ«β„¦βˆ— ((
βˆ’
+ βŒ©βˆ’π΄1 𝐴2 (1 βˆ’ π‘˜1 ) (1 βˆ’ π‘˜2 ) 𝜎13
, πœ“12 βŒͺ𝛀𝐼1 +
2
2
β„Ž
β„Ž
βˆ’
+ βŒ©βˆ’π΄1 𝐴2 (1 βˆ’ π‘˜1 ) (1 βˆ’ π‘˜2 ) 𝜎23
, πœ“13 βŒͺ𝛀𝐼1 +
2
2
β„Ž
β„Ž
+
+ βŒ©βˆ’π΄1 𝐴2 (1 + π‘˜1 ) (1 + π‘˜2 ) 𝜎33
, πœ“41 βŒͺ𝛀𝐼4 +
2
2
β„Ž
β„Ž
+
+ 〈𝐴1 𝐴2 (1 + π‘˜1 ) (1 + π‘˜2 ) 𝜎13
, πœ“42 βŒͺ𝛀𝐼4 + 〈𝐴1 𝐴2 (1
2
2
β„Ž
β„Ž
1
+
+π‘˜1 ) (1 + π‘˜2 ) 𝜎23
, πœ“43 βŒͺ𝛀𝐼4 + 〈 𝑇11 , πœ“21 βŒͺ𝛀𝐼2 +
2
2
β„Ž
1
1
1
+ 〈 𝑇12 , πœ“22 βŒͺ𝛀𝐼2 + 〈 𝑇13 , πœ“23 βŒͺ𝛀𝐼2 + 〈 𝑀11 , πœ“24 βŒͺ𝛀𝐼2 +
β„Ž
β„Ž
β„Ž
1
1
1
+ 〈 𝑀12 , πœ“25 βŒͺ𝛀𝐼2 + 〈 𝑇22 , πœ“31 βŒͺ𝛀𝐼3 + 〈 𝑇12 , πœ“32 βŒͺ𝛀𝐼3 +
β„Ž
β„Ž
β„Ž
1
1
1
+ 〈 𝑇23 , πœ“33 βŒͺ𝛀𝐼3 + 〈 𝑀22 , πœ“34 βŒͺ𝛀𝐼3 + 〈 𝑀12 , πœ“35 βŒͺ𝛀𝐼3
β„Ž
β„Ž
β„Ž
+(
βŒ©π‘’, 𝑣βŒͺ𝛀𝐼 = βˆ«π›€ 𝑒𝑣𝑑𝛀𝐼 , βˆ€π‘£ ∈
𝐼
βˆ€π‘’ ∈ (𝐻 (𝛀𝐼 )) .
Let Q, Q1 , Q 2 be preconditioners of the domain decomposition algorithm for the Dirichlet-Neumann scheme (Quarteroni and
Valli, 1999), where: Q = Q1 + Q 2 , {Q1 Ο†, ψ}𝛀𝐼 = {S1 Ο†, ψ}𝛀𝐼 ,
{Q 2 Ο†, ψ}𝛀𝐼 = {S2 Ο†, ψ}𝛀𝐼 .
In the case of Dirichlet-Neumann scheme the preconditioners
Q, Q1 and Q 2 coincide with Stelkov-Poincare operators S, S1 and
S2 respectively.
Let us investigate the properties of the Steklov-Poincare operators S, S1 , S2 .
The linearity and symmetry of S2 follows directly from the linearity of the corresponding operator in β„¦βˆ—2 , median surface of Ω2 .
Theorem. Operator S2 is continuous and positive–definite on Ξ›.
Proof. Let us rewrite operator S2 in the form:
β„Ž
β„Ž
2
2
2
+
= βˆ«β„¦βˆ— 𝐴1 𝐴2 ((1 + π‘˜1 ) (1 + π‘˜2 ) 𝜎33
βˆ’ (1 βˆ’ π‘˜1 ) (1 βˆ’
2
β„Ž
β„Ž
βˆ’
βˆ’π‘˜2 ) 𝜎33
)𝑀
Μƒπ‘‘β„¦βˆ—2 + βˆ«β„¦βˆ— 𝐴1 𝐴2 ((1 + π‘˜1 ) (1 +
2
β„Ž
β„Ž
β„Ž
β„Ž
2
β„Ž
2
β„Ž
2
2
2
+
βˆ’
+π‘˜2 ) 𝜎13
+ (1 βˆ’ π‘˜1 ) (1 βˆ’ π‘˜2 ) 𝜎13
) vΜƒ1 π‘‘β„¦βˆ—2 +
2
β„Ž
βˆ’
βˆ’π‘˜2 ) 𝜎13
) Ξ³Μƒ1 π‘‘β„¦βˆ—2
2
β„Ž
2
β„Ž
+ βˆ«β„¦βˆ— 𝐴1 𝐴2 ((1 + π‘˜1 ) (1 +
2
2
β„Ž
β„Ž
β„Ž
2
β„Ž
2
β„Ž
β„Ž
2
1
2
2
+
βˆ’
+π‘˜2 ) 𝜎23
+ (1 βˆ’ π‘˜1 ) (1 βˆ’ π‘˜2 ) 𝜎23
) vΜƒ2 𝑑Ω2βˆ— +
2
β„Ž
2
β„Ž
1
βˆ’
βˆ’π‘˜2 ) 𝜎23
) Ξ³Μƒ2 𝑑Ω2βˆ— + 〈 𝑇11 , vΜƒ1 βŒͺ𝛀𝐼2 + 〈 𝑇12 , vΜƒ2 βŒͺ𝛀𝐼2 +
1
2
β„Ž
1
1
πœ•v2
) +(
πœ•πœ‰2
πœ•π‘€ 2
πœ•πœ‰2
) +(
) +(
2
πœ•Ξ³1
) +(
πœ•πœ‰2
πœ•Ξ³2 2
πœ•πœ‰2
+
β„Ž πœ•Ξ³1 2
+
πœ•πœ‰1
β„Ž πœ•Ξ³ 2
2
2 πœ•πœ‰1
) + (βˆ’
πœ•v2
+
πœ•πœ‰1
β„Ž πœ•Ξ³ 2
) + (βˆ’
πœ•v1
2 πœ•πœ‰1
πœ•π‘€ 2
) +(
πœ•πœ‰2
πœ•π‘€ 2
) + (βˆ’v1 + Ξ³1 ) + (βˆ’v2 + Ξ³2 ) +
β„Ž πœ•Ξ³2
+(
πœ•πœ‰1
+𝑀
2
πœ•πœ‰2
1
+
2 πœ•πœ‰2
) + (βˆ’
πœ•v2
+
πœ•πœ‰2
2
β„Ž
2
2 πœ•πœ‰2
) +
2
β„Ž
2
2
+ c22 β€–Ο†2 β€–2 1
+ c32 β€–Ο†3 β€–2 1
+
2
𝐻 (𝛀𝐼2 )
𝐻 2 (𝛀𝐼3 )
πœ•v1
β„Ž πœ•Ξ³1 2
πœ•v2
β„Ž πœ•Ξ³2 2
πœ•v1
) 𝑑Ω2βˆ—
+c42 βˆ«β„¦βˆ— ((
2
+
πœ•v1
β„Ž πœ•Ξ³1
2 πœ•πœ‰2
2
πœ•πœ‰1
) +(
β„Ž
+
2 πœ•πœ‰1
πœ•v2
πœ•πœ‰2
2
+
) +(
β„Ž πœ•Ξ³2
2 πœ•πœ‰2
2
πœ•πœ‰1
) +(
2
β„Ž
+
2 πœ•πœ‰1
πœ•π‘€ 2
πœ•πœ‰1
) +(
) +(
πœ•πœ‰2
πœ•π‘€ 2
πœ•πœ‰2
+
) +
+ (v1 + Ξ³1 ) + (v2 + Ξ³2 ) + 𝑀 2 ) π‘‘β„¦βˆ—2 ,
2
2
𝑐𝑖 > 0, 𝑖 = 1, 2, 3, 4.
Therefore, the operator S2 is coercive on Ξ›.
Let us prove the continuity of S2 . The continuity of S2 follows
from the continuity of the operator for the problem (4) in Ω2βˆ— .
Using the continuity of the operator for the problem (4), we
get:
{S2 Ο†, ψ}𝛀𝐼 ≀ 𝐢 2 (βˆ«β„¦βˆ— ((
+(
πœ•Ξ³1
πœ•πœ‰1
2
) +(
πœ•Ξ³2
πœ•πœ‰1
2
2
) +(
πœ•v1 2
) +(
πœ•v2 2
πœ•πœ‰1
πœ•v 2
πœ•πœ‰1
πœ•v 2
πœ•πœ‰2
πœ•πœ‰2
1
) +(
2
πœ•Ξ³2 2
πœ•πœ‰2
) + v12 + v22 + 𝑀 2 + Ξ³12 +
× (βˆ«β„¦βˆ— ((
2
πœ•v
Μƒ1
πœ•πœ‰2
2
) +(
) +(
πœ•v
Μƒ2 2
πœ•π‘€
Μƒ 2
Μƒ1 2
πœ•Ξ³
πœ•πœ‰1
πœ•πœ‰1
πœ•πœ‰1
) +(
πœ•v
Μƒ2
πœ•πœ‰2
2
) +(
πœ•π‘€
Μƒ 2
πœ•πœ‰2
) +(
) +(
1/2
) +(
πœ•πœ‰2
1/2
Ξ³22 ) 𝑑Ω2βˆ— )
πœ•πœ‰1
) +(
) +
πœ•πœ‰1
πœ•π‘€ 2
πœ•v
Μƒ1 2
) +(
πœ•π‘€ 2
Μƒ1
πœ•Ξ³
πœ•πœ‰2
2
) +(
Μƒ2
πœ•Ξ³
πœ•πœ‰2
πœ•πœ‰2
Μƒ2 2
πœ•Ξ³
πœ•πœ‰1
) +
) + ṽ12 +
, 𝐢 > 0.
As a result, S2 is continuous.
Let us consider now the local Steklov-Poincare operator S1
and rewrite it in the form:
β„Ž
β„Ž
β„Ž
2
β„Ž
2
β„Ž
2
β„Ž
2
β„Ž
2
β„Ž
2
β„Ž
2
β„Ž
2
β„Ž
2
β„Ž
2
β„Ž
2
2
= βŒ©βˆ’π΄1 𝐴2 (1 βˆ’ π‘˜1 ) (1 βˆ’ π‘˜2 ) πœŽπ‘›π‘› (Ο†), 𝑒𝑛 βŒͺ𝛀𝐼1 +
+ βŒ©βˆ’π΄1 𝐴2 (1 βˆ’ π‘˜1 ) (1 βˆ’ π‘˜2 ) πœŽπ‘›πœ1 (Ο†), π‘’πœ1 βŒͺ𝛀𝐼1 +
+ 〈 𝑇22 , vΜƒ2 βŒͺ𝛀𝐼3 + 〈 𝑇12 , vΜƒ1 βŒͺ𝛀𝐼3 + 〈 𝑇23 , 𝑀
ΜƒβŒͺ𝛀𝐼3 +
+ βŒ©βˆ’π΄1 𝐴2 (1 + π‘˜1 ) (1 + π‘˜2 ) πœŽπ‘›π‘› (Ο†), 𝑒𝑛 βŒͺ𝛀𝐼4 +
+ 〈 𝑀22 , Ξ³Μƒ2 βŒͺ𝛀𝐼3 + 〈 𝑀12 , Ξ³Μƒ1 βŒͺ𝛀𝐼3 .
+ βŒ©βˆ’π΄1 𝐴2 (1 + π‘˜1 ) (1 + π‘˜2 ) πœŽπ‘›πœ1 (Ο†), π‘’πœ1 βŒͺ𝛀𝐼4 +
Let us substitute the corresponding left-hand sides from the
Timoshenko shell theory model equations (4). As a result, we can
prove the continuity and coercitivity of the local Steklov-Poincare
operator 𝑆2 taking into account properties of the operator (4). It is
known, that the operator (4) is coercive (Vynnytska and Savula,
2008).
+ βŒ©βˆ’π΄1 𝐴2 (1 + π‘˜1 ) (1 + π‘˜2 ) πœŽπ‘›πœ2 (Ο†), π‘’πœ2 βŒͺ𝛀𝐼4 +
β„Ž
1
β„Ž
1
β„Ž
1
β„Ž
β„Ž
β„Ž
) +
×
) +(
2
πœ•Ξ³1 2
+ βŒ©βˆ’π΄1 𝐴2 (1 βˆ’ π‘˜1 ) (1 βˆ’ π‘˜2 ) πœŽπ‘›πœ2 (Ο†), π‘’πœ2 βŒͺ𝛀𝐼1 +
β„Ž
1
) +
(10)
+ 〈 𝑇13 , 𝑀
ΜƒβŒͺ𝛀𝐼2 + 〈 𝑀11 , Ξ³Μƒ1 βŒͺ𝛀𝐼2 + 〈 𝑀12 , Ξ³Μƒ2 βŒͺ𝛀𝐼2 +
β„Ž
1
) +
{S1 Ο†, ψ}𝛀𝐼 =
+
+ βˆ«β„¦βˆ— 𝐴1 𝐴2 ((1 + π‘˜1 ) (1 + π‘˜2 ) 𝜎23
βˆ’ (1 βˆ’ π‘˜1 ) (1 βˆ’
2
) +(
+vΜƒ22 + 𝑀
Μƒ 2 + Ξ³Μƒ12 + Ξ³Μƒ22 ) 𝑑Ω2βˆ— )
+
+ βˆ«β„¦βˆ— 𝐴1 𝐴2 ((1 + π‘˜1 ) (1 + π‘˜2 ) 𝜎13
βˆ’ (1 βˆ’ π‘˜1 ) (1 βˆ’
2
πœ•πœ‰2
πœ•πœ‰1
2
) +(
2
+(
2
2
πœ•v1
πœ•Ξ³1 2
πœ•πœ‰1
{S2 Ο†, Ο†}𝛀𝐼 β‰₯ c12 βˆ«β„¦βˆ— ((βˆ’
+(
{S2 Ο†, ψ}𝛀𝐼 =
β„Ž
) +(
πœ•π‘€ 2
πœ•πœ‰1
) +(
From (10) it follows that:
+
βˆ—
1
2
πœ•πœ‰1
2
πœ•v2 2
πœ•πœ‰1
+v12 + v22 + 𝑀 2 + Ξ³12 + Ξ³22 ) 𝑑Ω2βˆ— , 𝑐 β‰  0.
with βŒ©π‘’, 𝑣βŒͺ𝛀𝐼 being a bilinear form:
𝐻1/2 (𝛀𝐼 ),
πœ•Ξ³2
2
πœ•v1 2
2
β„Ž
2
β„Ž βˆ’β„Ž 𝑛𝑛
2
β„Ž
1 2
β„Ž βˆ’β„Ž π‘›πœ2
2
1
+ βŒ©βˆ’ ∫ 𝜎 (Ο†)π‘‘πœ‰3 , 𝑒𝑛 βŒͺ𝛀𝐼2 +
+〈 ∫ 𝜎
(Ο†)π‘‘πœ‰3 , π‘’πœ2 βŒͺ𝛀𝐼2 +
31
Andriy Styahar, Yarema Savula
On the Convergence of Domain Decomposition Algorithm for the Body with Thin Inclusion
1
β„Ž
+ βŒ©βˆ’ ∫2β„Ž πœŽπ‘›πœ1 (Ο†)π‘‘πœ‰3 , π‘’πœ1 βŒͺ𝛀𝐼2 +
β„Ž
Proof: Follows from the theorem about the convergence of domain decomposition algorithms (Dirichlet-Neumann scheme)
(Quarteroni and Valli, 1999).
βˆ’
1
2
β„Ž
2
β„Ž
βˆ’
2
β„Ž
2
β„Ž
βˆ’
2
+ βŒ©βˆ’ ∫ πœŽπ‘›π‘› (Ο†)π‘‘πœ‰3 , 𝑒𝑛 βŒͺ𝛀𝐼3 +
β„Ž
1
+ βŒ©βˆ’ ∫ πœŽπ‘›πœ2 (Ο†)π‘‘πœ‰3 , π‘’πœ2 βŒͺ𝛀𝐼3 +
β„Ž
β„Ž
1 2
β„Ž βˆ’β„Ž
2
4. CONCLUSIONS
+ 〈 ∫ πœŽπ‘›πœ1 (Ο†)π‘‘πœ‰3 , π‘’πœ1 βŒͺ𝛀𝐼3 .
Since the Steklovβˆ’Poincare operator for the problem of linear
1
3
elasticity theory is linear, continuous and coercive on (𝐻 2 (𝛀𝐼 ))
(Hsiao and Wendland, 2008), and using the continuous and com1
pact embedding 𝐻1 (𝐷) βŠ‚βŠ‚ 𝐻 2 (𝐷) for a strong Lipschitz domain 𝐷 (Hsiao and Wendland, 2008), we get that the operator S1
is linear, continuous and positive on Ξ› (assuming that the corresponding tensions are prescribed as boundary conditions on each
part of the interface 𝛀𝐼 ).
It is obvious that the Steklov-Poincare operator S is therefore
linear, continuous and coercive.
As a result, the preconditioner operators Q, Q1 and Q 2 are also linear and continuous, and the operators Q and Q 2 are coercive. Moreover, operator Q 2 is symmetric.
By Lax-Milgram lemma, the corresponding Steklov-Poincare
equation has unique solution.
Let us state the theorem about the convergence of domain
decomposition algorithm (Niemi et al., 2010).
Theorem: (the convergence of domain decomposition algorithm).
Let:
ο€­ operator Q 2 be continuous and coercive on a Hilbert space 𝑋;
ο€­ operator Q1 be continuous on 𝑋;
ο€­ operator Q 2 be symmetric and operator Q be coercive on 𝑋.
Then for arbitrary Ξ»0 ∈ 𝑋 iterations:
k
Ξ»k+1 = Ξ»k + πœƒQβˆ’1
2 (G βˆ’ QΞ» )
converge in 𝑋 to the solution of the equation:
QΞ» = G
for arbitrary πœƒ satisfying 0 < πœƒ < πœƒπ‘šπ‘Žπ‘₯ .
Therefore, we have formulated and proven the following
Theorem: Let:
ο€­ the Steklov-Poincare operator corresponding to the problem
of linear elasticity (1) with corresponding boundary conditions
be continuous, symmetric and coercive on the corresponding
trace spaces defined in Hsiao and Wendland (2008);
ο€­ the assumptions of Lemma hold;
ο€­ 𝐴1 , 𝐴2 , π‘˜1 , π‘˜2 ∈ 𝐿2 (β„¦βˆ—2 ).
ο€­ Then the iterative Dirichlet-Neumann scheme for the problem
(1)-(4), (6)-(9) with the Dirichlet boundary conditions imposed
on the outer edge of the thin part is convergent for some relaxation parameter πœƒ where 0 < πœƒ < πœƒπ‘šπ‘Žπ‘₯ .
32
DOI 10.1515/ama-2015-0006
We propose a domain decomposition algorithm for the computation of the stress-strain state of the body with thin inclusion.
Based on the fact, that the corresponding problems in both parts
can be solved separately, one can efficiently solve them preserving the structure and properties of the resulting matrices in both
parts. Since the inclusion is modeled using Timoshenko shell
theory, the dimension of the problem in the thin part is decreased.
We prove that the corresponding Steklov-Poncare interface
equation is well-posed and that the proposed algorithm converges
for the appropriately chosen relaxation parameter, which gives the
theoretical background for implementation of the proposed algorithm.
REFERENCES
1. Dyyak I., Savula Ya., Styahar A. (2012), Numerical investigation
of a plain strain state for a body with thin cover using domain
decomposition, Journal of Numerical and Applied Mathematics,
3 (109), 23–33.
2. Dyyak I., Savula Ya. (1997), D-Adaptive mathematical model of solid
body with thin coating, Mathematical Studies, 7 (1), 103–109.
3. Hsiao G.C., Wendland W.L. (2008), Boundary integral equations,
Springer.
4. Nazarov S. (2005), Asymptotic analysis and modeling of a jointing
of a massive body with thin rods, Journal of Mathematical Sciences,
127 (5), 2192-2262.
5. Niemi A.H., Babuska I., Pitkaranta J., Demkowicz L. (2010), Finite
element analysis of the Girkmann problem using the modern hpversion and the classical h-version, ICES Report, 10-47.
6. Pelekh B. (1978), Generalized shell theory, Lviv (in Russian).
7. Quarteroni A., Valli. A. (1999), Domain decomposition methods
for partial differential equations, Oxford.
8. Savula Ya., Mang H., Dyyak I., Pauk N. (2000), Coupled boundary
and finite element analysis of a special class of two-dimensional
problems of the theory of elasticity, Computers and Structures,
75 (2), 157-165.
9. Sulym H. (2007), Bases of mathematical theory of thermoelastic
eqiulibrium of deformable solids with thin inclusions, Research and
Publishing Center of Shevchenko Scientific Society, Lviv
(in Ukrainian).
10. Vynnytska L., Savula Ya. (2008), The stress-strain state of elastic
body with thin inclusion, Ph.-Math. Modeling and Information
Techonogies, 7, 21-29 (in Ukrainian).
11. Vynnytska L., Savula Ya. (2012), Mathematical modeling and
numerical analysis of elastic body with thin inclusion, Computational
Mechanics, 50 (5), 533-542.