Downloaded By: [University of Virginia] At: 14:33 12 June 2007 Radiation Effects Lerters, 1979, Vol. 50,pp. 3-7 0142-2448/79/5001-0003$04.50/0 @ 1979, Gordon and Breach, Science Publishers, Inc. Printed in the United States of America ENERGY DEPENDENCE OF THE MOLECULAR EFFECT I N SPUTTERING A.R.OLIVA-FLORIO: E.V.ALONS0, R.A.BARAGIOLA, J.FERRON and M.M.JAKAS C e n t r o At6mico B a r i l o c h e ' f - I n s t i t u t o B a l s e i r o t # 8400 - S.C. d e Bariloche, R.N., Argentina. (Received for Publication October 30, 1979) t t ABSTRACT: We r e p o r t measurements of s p u t t e r i n g y i e l d s o f Au f o r Xe and Xe2 impact i n t h e energy r a n g e 1-50 keV. I t was found t h a t n o n - l i n e a r e f f e c t s e x i s t w e l l o u t s i d e t h e r a n g e p r e d i c t e d i n a r e c e n t t h e r m a l s p i k e model. Many s p u t t e r i n g e x p e r i m e n t s have been a n a l y z e d u s i n g t h e l i n e a r COL l i s i o n c a s c a d e t h e o r y , however, s e v e r a l w o r k e r s have r e p o r t e d e v i d e n c e t h a t p o i n t s o u t t h a t i n c e r t a i n c o n d i t i o n s t h e v a l i d i t y range o f t h e l i n e a r c a s c a d e a p p r o x i m a t i o n i s e x c e e d e d , f o r example, when t h e e n e r g y d e n s i t y i n t h e c a s c a d e r e g i o n i s h i g h enough as n o t t o a l l o w any l o n g e r t o assume as n e g l i g i b l e t h e p r o b a b i l i t y o f c o l l i s i o n between mxringatams. T h i s c o n d i t i o n i s e a s i l y r e a c h e d u s i n g heavy m o l e c u l a r i o n beams, and r e s u l t s u s i n g t h e s e p r o j e c t i l e s have been r e p o r t e d 1-4 . To have some f u r t h e r i n s i g h t i n t h e e n e r g y dependence o f t h e s e mn-linear effects, w e have measured t h e s p u t t e r i n g y i e l d of b o t h atomic and d i a t o m i c X e i n c i d e n t on A u a t e n e r g i e s between 1 and 50 keV f o r X e and 2 . 5 and 1 2 keV/atom f o r X e 2 , u s i n g a q u a r t z c r y s t a l o s c i l l a t o r t e c h n i q u e . The g o l d was e v a p o r a t e d o n t h e f a c e o f t h e q u a r t z c r y s t a l a t a p r e s s u r e of 8 x lo-' T o r r o r less. The c r y s t a l s u s e d were AT c u t and s i m i l a r t o t h o s e used by E e r N i s s e 5 , and t h e s p u t t e r i n g y i e l d w a s c a l c u l a t e d as: s = k Nav Af M1 +- M2Nl M2 where k i s t h e c a l i b r a t i o n c o n s t a n t o f t h e c r y s t a l , measured to be 1 . 7 8 -2 -1 x 10-8g cm Hz , A f i s t h e f r e q u e n c y change and Nav i s Avogadro's num_ b e r . M1 and M 2 a r e t h e masses o f i n c i d e n t and t a r g e t atoms, respectively, and N1 i s t h e number o f i n c i d e n t atoms p e r u n i t area. The t e r m M1/M2 3 Downloaded By: [University of Virginia] At: 14:33 12 June 2007 4 A. R. OLIVA-FLORIA, E. V. ALONSO, R. A. BARAGIOLA, J. FERRON and hi. hi. J A M S measurements by o t h e r work er s 3' 7-11 f o r X e on Au.The 100 - 1 I I I t I I I 1 - a sponding y i e l d and e n e r g y p e r i n c i d e n t atom. I t i s found t h a t d i f f e r e n c e s w lie within the variations int r o d u c e d by t h e d i f f e r e n t measurement f l u e n c e s 3 , 5 with previous data . ~ - L "J 10 - 1 z Z w l s j P' - A - - A 3 % 1- l 0 0 measured a r e p l o t t ed di a taotmtihc ey correields I A I l l 1 mate of t h e sputterirg y i e l d in the linear collision ! I I l l I I 1 - ENEkGY PER ATOY [keV) cascade choose t h e one g i v e n by Figure 1 S p u t t e r i n g y i e l d s p e r atom f o r Au bombard Sigmund's theory i n g 1 2 , which i s : b e r g and Wehner8;0 fB Andersen and Bay3; V Nenado- Of ed with Xe and Xe2. ' I Almen and Bruce7; A Rosem9 v i c e t a1 ;0 Vries"; X Sn(E) a S(E) = UO 8 EerNisse" ; 0 Szymonski and de Xe and O X e 2 , t h i s work; -Sigmund's theoretical prediction. Downloaded By: [University of Virginia] At: 14:33 12 June 2007 ENERGY DEPENDENCE OF THE MOLECULAR EFFECT IN SPUTTERING 5 where X i s a c a l c u l a b l e m a t e r i a l c o n s t a n t , U, i s t h e s u r f a c e b i n d i n g e n e r g y , t a k e n as 3.8 e V f o r g o i d l 3 , S,(E) i s t h e n u c l e a r s t o p p i n g power, which was c a l c u l a t e d by Lindhard e t a l l 4 , and a i s p l o t t e d i n r e f . 1 2 . The c a l c u l a t e d s p u t t e r i n g y i e l d s a r e a l s o shown i n F i g . 1 , and when comp a r e d w i t h t h e e x p e r i m e n t a l d a t a , it i s s e e n t h a t t h e agreement i s within t h e s t a t e d a c c u r a c y of t h e t h e o r y , a l t h o u g h t h e r e i s a d i f f e r e n c e i n t h e e n e r g y dependence similar t o what was found i n o t h e r cases (see, f o r example, f i g s . 1 7 and 1 8 of r e f . 1 2 ) . T h e r e i s no p r e v i o u s l y p u b l i s h e d d a t a f o r X e 2 on Au. However, w e may compare o u r o b s e r v e d enhancement i n t h e y i e l d s € o r m o l e c u l a r i o n s w i t h r e p o r t e d d a t a on i o n s of similar mass, T e 3 and Sb4 , i n c i d e n t a l s o on Au. The r a t i o o f m o l e c u l a r t o atomic y i e l d s are c o m p a r e d i n F i g . 2 a s a f u n c t i o n o f t h e i n c i d e n t e n e r g y p e r atom i n r e d u c e d u n i t s 1 4 In t h i s p r e s e n t a t i o n , t h e r e seems t o b e a d e f i n i t e e n e r g y d e p e n d e n c e , c h a r a c t e r i z e d by a r a n g e E < 0 . 0 1 , where n o n l i n e a r e f f e c t s a r e l a r g e r t h e h i g h e r t h e e n e r g y , and by a r e g i o n between E = 0.02 and t h e h i g h e s t e n e r g y where d a t a e x i s t s , which p r e s e n t s a broad maximun. A t h e r m a l s p i k e model h a s been d e v e l o p e d t o p r e d i c t t h e e n e r g y range . where t h e n o n l i n e a r e f f e c t s should a f f e c t 15 the sputtering yield I 1 I . 1 UT z E! L T h i s model h a s been a p - i, W m- plied f o r X e incident on A u , and e x t e n d e d f o r X e 2 on Au by assuming t h a t t h e energy p e r m i t volume i n t h e c a s c a d e i s t w i c e t h a t of t h e a t o m i c case, which cor- [L Q U I 0.001 0.01 r e s p o n d s t o assuming a 100% overlap i n t h e cas 0.1 ENERGY PER ATOM ( E UNITS) w r! U 3 z c a d e s of t h e i n d i v i d u a l p r o j e c t i l e s , and t h u s Figure 2 The molecular-to atomic y i e l d r a t i o s of Au r e p r e s e n t s a n upper bud as a f u n c t i o n of t h e reduced energy14, for: 0 Xe, t o t h e n o n l i n e a r effects t h i s work; 0 Te, Andersen and Bay3; Sb, Thompson e x p e c t e d from t h i s mkiel. and J o h a r 4 . Downloaded By: [University of Virginia] At: 14:33 12 June 2007 6 A. R. OLIVA-FLORIA, E. V. ALONSO, R. A. BARAGIOLA, J. FERRON and M. M. JAKAS I n t h i s case, t h e h e a t c o n d u c t i o n equation s u p p l i e s u s w i t h t h e s c a l i n g f a c t o r T ~ ~ ~ T~~~~ = J Zf o r t h e t i m e c o n s t a n t o f t h e c a s c a d e , w h i l e t h e slowing down t i m e o f t h e p r o j e c t i l e , T,, and r e c o i l atoms, T', a r e t a k e n t o b e t h e same f o r a t o m i c and m o l e c u l a r p r o j e c t i l e s . The r e s u l t s o f t h e s e c a l c u l a t i o n s a r e p l o t t e d i n F i g . 3 , where w e c a n see t h a t t h e mean energyper atom i n t h e c a s c a d e e x c e e d s U, for energies l e s s t h a n 9 2 KeV f o r X e and 1 7 5 KeV/ atom f o r X e 2 ( ~ = 0 . 0 7 4 and 0.14 res p e c t i v e l y ) and t h e time c o n s t a n t o f t h e cascade exceeds both and T' f o r e n e r g i e s h i g h e r t h a n 1 6 and 1 3 K e V / a t o m ( E = 0.13 and 0 . 0 1 0 ) f o r X e T, and X e 2 r e s p e c t i v e l y . T h u s , a c c o r d i n g -10 t o t h i s model, w e s h o u l d e x p e c t a s i g n i f i c a n t c o n t r i b u t i o n o f mnlinear -13 effects to the sputtering yield i n t h e r a n g e between 1 3 and 1 7 5 KeV/ atom f o r X e 2 , and 1 6 and 9 2 KeV f o r X e . F o r atomic X e , t h e r e i s no clear i n c r e a s e o r d e v i a t i o n on t h e e n e r g y dependence t h a t e n a b l e s u s t o d e f i n e a t h r e s h o l d f o r t h e a p p e a r a n c e of n o n l i n e a r e f f e c t s , and f u r t h e r m o r e , as w a s mentioned b e f o r e , t h e r e i s good agreement in the absolute values of o u r measured d a t a and c a l c u l a t e d yields. Examining F i g . 2 i t i s e v i d e n t t h a t f o r m o l e c u l a r p r o j e c t i l e s non- -15 1 10 100 10 E IKEV) Figure 3 Energy d e n s i t y and time c o n s t a n t i n t h e thermal spike15 vs i n c i d e n t atom t energy f o r Au bombarded with Xe' and Xe2. To is t h e slowing down t i m e of t h e p r o j e c t i l e and U, t h e s u r f a c e binding energy. l i n e a r e f f e c t s t a k e p l a c e a t e n e r g i e s which a r e w e l l o u t s i d e t h e r a n g e p r e d i c t e d by t h e t h e r m a l s p i k e model. W e a t t r i b u t e t h i s f a i l u r e of t h e model t o t h e no c o n s i d e r a t i o n of d e n s e s u b c a s c a d e s 1 6 , which a r e c o n n e c t e d w i t h f l u c t u a t i o n s i n t h e d e p o s i t i o n o f e n e r g y , whose m a g n i t u d e a t t h e surface, according t o a recent c a l ~ u l a t i o n ~ would ~ , b e of t h e same Downloaded By: [University of Virginia] At: 14:33 12 June 2007 ENERGY DEPENDENCE OF THE MOLECULAR EFFECTS ON SPUlTERINC I order as the mean value of the deposited energy, as well as to the small number of atoms involved in the cascade at low energies, which makes the applicability of the thermal approach questionable. Acknowledgements This work was supported in part by the Multinational Program in Physics of the Organization of American States. We thank Dr.E.P.EerNisse for providing us with the crystals used in this work. References * Major, Fuerza Aerea Argentina t Comisidn Nacional de Energfa Atemica # Universidad Nacional de Cuyo 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. H.H.Andersen and H.L.Bay, Rad.Effects, 19, 139 (1973). - 953 (1974). H.H.Andersen and H.L.Bay, J.Applied Phys.45, H.H.Andersen and H.L.Bay, J.Applied Phys.46, 2416 (1975). D.A.Thompson and S.S.Johar, Applied Phys.Lett.34, - 342 (1979). E.P.EerNisse, J.Nucl.Mater, 53, 226 (1974). A.R.Oliva-Florio, E.V.Alonso, R.A.Baragiola and J.Ferron, to be pub1ished. 0.Almen and G.Bruce, Nucl.Instrum.MethodsIll1257 (1961). D.Rosenberg and D.K.Wehner, J.Applied Phys.2,1842 (1962). T.M.Nenadovit5, 2 .B.FotiriE and T.S.Dimitrijevi6, Surf .Sci.=, 607 (1972) E.P.EerNisse, Applied Phys.Lett.29, 14 (1976). M.Szym6nski and A.E.de Vries, Phys.Lett.63A, 359 (1977). P.Sigmund, Phys.Rev.184, - 383 (1969). K.A.Gschneider, Sol.State Phys.g, 275 (1964). J.Linhard, M.Scharff and H.C.Schidtt, Kgl.Danske Videnskab. Selbskab, Mat-Pys.Medd. 33, NO14 (1963); J.Lindhard, V.Nielsen and M.Scharff, ibid 36, NO10 (1968). P.Sigmund, Applied Phys.Lett. 251 169 (1974). K.L.Merkle and P.O.Pronko, J.Nucl.Mater, 53, 231 (1974). M.M.Jakas, Phys.Lett.A, 72, 4 2 3 (1979). .
© Copyright 2026 Paperzz