JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 106, NO. El2, PAGES 33,285-33,290, DECEMBER 25, 2001 Radiolysis of water ice in the outer solar system: Sputtering and trapping of radiation products D. A. Bahr, M. Famfi, R. A. Vidal, 1 and R. A. Baragiola Laboratoryfor SpaceResearch,EngineeringPhysics,Universityof Virginia, Charlottesville,Virginia, USA Abstract. We performed quantitativelaboratoryradiolysisexperimentson cubicwater ice between40 and 120 K, with 200 keV protons.We measuredsputteringof atomsand moleculesand the trappingof radiolyticmolecularspecies.The experimentswere done at fluencescorresponding to exposureof the surfaceof the Jovianicy satellitesto their radiation environmentup to thousandsof years.During irradiation, 02 moleculesare ejectedfrom the ice at a rate that growsroughlyexponentiallywith temperature;this behavioris the main reasonfor the temperaturedependenceof the total sputteringyield. 02 trappedin the ice is thermallyreleasedfrom the ice upon warming;the desorbedflux startsat the irradiation temperatureand increasesstronglyabove 120 K. Severalpeaksin the desorptionspectrum,which dependon irradiation temperature,point to a complex distributionof trappingsitesin the ice matrix. The yield of 02 producedby the 200 keV protonsand trapped in the ice is more than 2 ordersof magnitudesmallerthan usedin recent modelsof Ganymede.We also found small amountsof trapped H20 2 that desorb readily above160 K. directlyfrom the ice by the incidentradiation.The ejectionof H 2 and 02 from ice due to electronicprocesses inducedby fast Atmospheresaroundicy satellitesare generatedin part by ions (>10 keV/amu) dependson the squareof the electronic thermal evaporationof the surface ices. In addition, if the stoppingpowerdE/dx (or linear energytransfer(LET)) and atmosphere is thin with respectto penetrationby fast (keV to dependsstronglyon temperature[Brownet al., 1978;Ciavolaet MeV) chargedparticlesand Lyman a radiationfrom the Sun, al., 1982; Reimann et al., 1984; B•nit and Brown, 1990]. In another sourceof desorptionoccursthrough the processof addition,and as expected,other specieslike H and OH have sputtering or impact-desorption.That magnetosphericion been found to be ejected by ions of energiesbelow 10 keV, sputteringof icesis a sourceof atmospheresaroundicy satel- where momentumtransfer (knock-on) collisionsdominate lites was first pointed out by Lanzerottiet al. [1978], after sputtering[Haring et al., 1983, 1984; Bar-Nun et al., 1985]. laboratorystudiesdemonstratedsputteringyieldsof water ice Emission of those radicals has not been considered for the case for ionizingparticleswere much higher than expected[Mc- of electronicsputteringby more energeticions, more relevant Cracken,1974;Brownet al., 1978].Lanzerottiet al. [1978]pro- to the icy satellites.Sputteringyieldsof H 2 and 02 have been posedthat sputteringwasmore importantthan sublimationin studied in the electronic sputtering regime but have been that the desorbed producinggaseousatmospheresaround Ganymedeand Eu- quantifiedin the pastindirectlyby assuming ropa. Sincethen, surfaceerosionand atmospheregeneration flux consistsonly of these moleculesplus intact water moleby sputteringhave been modelednumeroustimes;represen- cules[Brownet al., 1984]. Evidencefor atmospherescame mainly from stellar occultativereferencesareJohnson[1990],Shiet al. [1995],Ip [1996], Ip et al. [1997],Johnsonand Jesser[1997],Johnsonand Quick- tations[Carlsonet al., 1973;Broadfootet al., 1979] and from enden[1997],Sauret al. [1998],and the paperscited therein. observationof optical emissionfrom the atmosphere[Hall et Photosputtering by solar radiationis an additionalminor at- al., 1995,1998;Barthet al., 1997;Feldmanet al., 2000].The first mosphericsource.It wasfirst postulatedby Carlson[1980]for indication of atmospheric oxygen around Europa and Saturn'sring particlesand observedin the laboratoryby West- Ganymedecame from the ultraviolet emissionmeasurements of Hall et ai. [i995, i998], which supportedpredictionsby ley et al. [1995a,b]. Lanzerotti et al. [1978]andJohnsonet al. [1981]that sputtering The atmosphereabovewater ice surfaceswill contain not only water moleculesbut also dissociationfragments(H, O, of ice will produce02 atmospheresaroundthosesatellites.In OH) from collisions of the incidentradiationwith atmospheric contrast, finding condensed oxygen, 02, and ozone on water molecules,and productsof chemicalreactions(H2, 02, Ganymede[Spenceret al., 1995;Noll et al., 1996]was surprisetc.), both as neutralsand ions [Yungand McElroy,1977].In ing,sinceboththesespecies(but in particular02) are unstable addition to being createdin atmosphericradiation processes, in condensedform at the relatively low pressuresand high radicalsand stablemoleculescan alsobe producedand freed temperatures of this satellite. The existence of 03 on Ganymedewaspostulated[Nelsonet al., 1987;Noll et al., 1996] to explain a UV absorptionband seen in the ratio of reflec•Visitingscientist fromINTEC-CONICET,SantaFe, Argentina. tance spectraof the trailing and leadinghemispheresof this Copyright2001 by the American GeophysicalUnion. satellite.However,there are significantdifferencesin the positionsof Ganymede'sUV absorptionband measuredby Noll Paper number 2000JE001324. 0148-0227/01/2000JE001324509.00 et al. [1996]and by Hendrixet al. [1999].Solidozoneis consis1. Introduction 33,285 33,286 BAHR ET AL.: RADIOLYSIS OF OUTER SOLAR SYSTEM WATER ICE tent with the existenceof solid 02, detected in the visible reflectanceof the trailinghemisphereof Ganymedeby Spencer et al. [1995],Calvinet al. [1996],andCalvinand Spencer[1997]. These authorsproposedthat 02 is formed by radiolysisinducedby magnetospheric ions and that 02 is trappedin bubbles insidethe surfaceice. This interpretationwas questioned by Vidal et al. [1997]and by Baragiolaand Bahr [1998]on the groundsof laboratoryresultsthat showedthat 02 couldnot be retained in water ice in sufficientamounts to produce the observedabsorptionbandsin Ganymede.Also, studiesof 02 recordedthe differencebetweenmassspectraobtainedwith the ion beam on and off. The spectrometerwas calibrated routinelyusingsublimationfluxesfrom pure and mixed ices, measuredabsolutelywith the microbalance.To minimize interferencewith backgroundwater in the vacuumsystem,we usedisotopicwatercontaining 70% H2180and30% H2•60. The isotopiclabelingwasdoneusing•80 and not with the more commondeuterium(D20), becausethe largemassdifferencebetweenH and D may affectradiolyticprocesses. For determination of partial02 yieldsweused•802.In all cases we The uncertainties in the parabsorptionband shapesand positionsin the red (around600 correctedfor isotopicabundance. nm) showedthat 02 had to be in the form of a solid, not a tial sputteringyieldsamountedto ---30%. liquid or gas [Baragiolaand Bahr, 1998].These spectroscopic To searchfor the trappingof radiationproductsin icewe did desorption(TPD) of icesirradiated laboratory data imply that solid 02 exists at temperatures temperature-programmed much colder than the averagetemperaturesof Ganymede's to a fluence of 1.5 x 10•7 H+/cm 2 at 200 keV. The TPD surfaceice. Suchlow temperaturescould occur at very bright method consistsof warming the ice at a rate of ---1 K/min and of differentgasesevolvingfrom surfacepatches,where atmospheric02 could be condensed recordingthe partial pressures the ice with the mass spectrometer. For the TPD experiments [Baragiolaet al., 1999a].The hypothesisthat 02 formsradiowe did not use any heat shield around the sample,to avoid lyticallyinsidethe ice and is trappedin bubblesproducedby radiationdamageis alsoproblematicbecausethe 02 bandsare effectsdue to trappingand releaseof desorbedgasesby the indicatethe speciestrappedin the seenmainlyin Ganymede'sequatorialregion,where the ener- shield.The measurements ice, but one must bear in mind the possibilityof chemical getic particle flux is mostly excludedby its magneticfield. reactionsbetween trapped speciesduring warming. When Argumentson the controversyof this topic have been pubcomparingdesorptionof water and radiolyticproducts,we lishedrecently[Johnson, 1999;Baragiolaet al., 1999a]. took into account that water evolves from the whole area of the Understandingand modelingsurfaceprocesses in icy satelfilm (---1 cm2),whilethe products originateonlyfrom the litesare madedifficultby the scarcityof laboratorysimulations irradiated area(0.33cm2).ThustheTPD spectra of sublimated made under pertinentconditions.It is thereforeof interestto water representboth irradiatedand unirradiatedregions. obtain quantitativeresultson absoluteyieldsfor productionof molecular02 and other speciesby radiolysisthat can be applied to astronomicalproblems.This is one of the motivations 3. Results of the research described below. Another motivation for these measurementscomesfrom recent discussions aroundthe possibilityof life in Europa by Chyba[2000],who has proposed that radiolytic02 producedin Europa'ssurfaceice canmigrate to an underlyingoceanand fuel microbiallife at depthswhere photosynthesis is not possible. 3.1. Sputtering We measuredthe partial sputteringyields of H20 and 02 from ice at 120 K due to 200 keV protonsat 48ø incidence,a situationtypical of the ion flux at the icy Galilean satellites. The yieldswere 0.7 _ 0.2 H20/proton and0.9 _ 0.3 O2/proton. Thesevalueswere obtainedfor fluencesabove10TMH+/cm2, above the range where 02 emission varies with fluence [Reimennet el., 1984].The QMS revealeda verystrongflux of The experimentalarrangementat the Laboratoryfor Space H atoms, which has not yet been quantified.As stated in Researchat the University of Virginia has been describedin section1, H 2 is alsodesorbedduringirradiation,but measureseveralpublications[Westley et al., 1995a;Shi et al., 1995;Vidal ment of its flux was not possiblein our experimentsusing et al., 1997;Baragiolaet al., 1999b].Ice filmswere grownon a proton beamsowingto the backgroundH 2 gasarrivingfrom cooled, gold-coated,quartz crystalmicrobalancethat has a the ion accelerator.The yield of H 2 wasestimatedby Browne! sensitivity of ---10TM H20/cm2,or abouta tenthof a monolayer. el. [1984]to be twicethat of 02. We foundthat sputteringof Vapor from a glassampoulefilled with degassedpure water 02 increasesnearly exponentiallywith ice temperaturebewasdirectedperpendicularly ontothe goldsubstratethrougha tween about 40 K and 120 K, in agreementwith Brown e! el. 12 mm diameterarrayof microcapillaries, whichwere ---50/•m [1984],while the sputteringof H20 is independentof temperin diameter and 500 /•m long. The substratetemperatureof ature below 120 K. The separatestudy of the temperature will be publishedelsewhere.The main conclusion ---150 K and the perpendicularincidenceof the condensing dependences is that the sputteringat 120 moleculeswere conditionsthat led to cubiccrystallineice of from our absolutemeasurements 02 molecules. low porosity[Westley et al., 1998].The ice filmswere invisible K is dominatedby emissionof synthesized to the eye,implyingthe existenceof veryfew imperfectionslike defectsor grain boundarieswhich could provideshort-circuit 3.2. Thermal Desorption diffusionpathsfor trapped gases. Temperature-programmed desorption experiments were A massanalyzedbeam of 200 keV protons from an ion doneafter everyirradiationexperimentat a heatingrate of ---1 accelerator was rastered and collimated to a diameter of 5 mm K/min. In Figure 1 we showthermaldesorptionspectrafor a 7 before impactingthe sample.The currentwaslimited to ---200 /•m water ice sampleirradiated at 80 K and in Figure 2 for nA to avoidsignificantsampleheating.The angleof incidence similarirradiationsdone at 120 K. The water ice film disapwas 48ø with respectto the surfacenormal. The partial sput- pears at ---180 K; the precise temperature dependson the tering yieldsof H20 and 02 were determinedwith a quadru- thicknessof the film and the heating rate. After the film is pole massspectrometer (QMS) tunedto differentmasses. We removed,the partial pressures fall fast,at a rate determinedby 2. Experimental Approach BAHR ET AL.: RADIOLYSIS OF OUTER SOLAR SYSTEM WATER ICE 33,287 the pumpingspeedand adsorption/desorption at the system walls(thisisdifferentfor waterthanfor 02). Besideswater,the H•O_ 2.0X10'7 other speciesthat can be clearlyidentifiedare 02 and H202. Thermal desorptionspectraof 02 from the irradiatedwater ice havea structurethat may be relatedto irradiation-induced 1.0x10'7 defectsand phasetransformations in ice. Amorphousice crystallizesinto the cubiccrystallineform at 120-140 K, depending •o 0.0 ' I'','','',' ß .... ' I' on heatingrate and nanostructure[Sackand Baragiola,1993]. Cubicice transformsinto hexagonalice at 160-190 K, depend• 02 ing on conditionsthat are not well understood[Hobbs,1974]. Althoughour films are originallycrystalline(cubic),they may u35xl 0.,ou) be renderedpartially amorphousby ion irradiation, particularly at the lower temperatures,and that is a possiblereason whywe observestructurein the sublimationof waterbelow150 a. o :', : ', : ', :', . . . . ß. K in films irradiated at 80 K. Another possibilityis that sublimation is altered by complex defectsor thermally activated H202. chemicalreactions.An importantfindingis that 02 desorbsup to the temperatureswhere the water film is removedcomlx10 -• _ _ pletely. If the trapped 02 would not move duringwarming, then the desorbed 02 signal would drop once the ionirradiated layer had evaporated(the films are --•2.5 times 0 . I . I . I . I . I_.1•. I • I , thickerthan the ion range). In contrast,the persistenceof 02 90 100 110 120 130 140 150 160 170 180 190 200 desorptionuntil the whole film is removedimplies that 02 Temperature (K) diffusesinsidethe film duringwarming.We alwaysobservea peak in 02 desorptionjust before the film disappears.This Figure 2. Same as Figure 1 exceptthat the irradiation temsuggests a higher bindingcloseto the ice-substrateinterface. peratureis 120 K and the heatingrate is 1.5 K/min. The 02 thermal desorptionspectrado not changemuchwith irradiationtemperaturebelow80 K, exceptfor the appearance of a "surface"peak at around40 K whenirradiatingbelowthat temperature. Thispeak,whichamounts to 2 x 10•s 02, cor- versustime curve during TPD. When this value is dividedby responds to 02 that hasprecipitatedto the surfaceof the film the total energyof the projectiles(fluence x 200 keV), we and desorbslike solid02 [Vidalet al., 1997].The total amount obtainGt, the numberof trapped02 per 100 eV of deposited We findGt • 2.6 x 10-4 O2/100eV, independent of of trapped02 was obtainedfrom the integralof the pressure energy. the irradiationtemperaturebetween40 K and 120K (Table 1). ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' ß Onecanobtaina totalradiation yieldG by addingto Gt the 2xl 0'7 ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I o 1xl 0'7 • o :', :', :, ....... o ß 02 tween 0.2 and 4 x 10-6 at the fluenceof 1.5 x 10]7 H/cm 2. The concentrationof H202 amountsto 0.001-0.02%, much lower u)lx10 '•ø •- 0 :', : contributionGs due to sputtered02 (GTotal= Gt q- Gs), but G t is the relevantnumber to usewhen calculatingthe formation of radiolytic 02 bubbles.We list also in Table 1 other publishedvaluesfor liquid and solidwater obtainedby indirect chemicalmethods[Lefort, 1955; Ghormleyand Stewart,1956; Baverstock and Bums, 1976] and by massspectrometry[Baragiola et al., 1999a]. Figures1 and 2 alsoshowdesorptionof hydrogenperoxide, a moleculethat hasalsobeenseenin our previousexperiments with water ice photolyzedat 40 K [Westley et al., 1995a,b]. The amount of trapped H202 appearserratic, With G valuesbe- than the 0.13% value reportedfor Europa [Carlsonet al., 1999]. This result is consistentwith the infrared reflectance .... ', : I : ', : l H•O• 2xl 0 1xl 0'•2 studiesof Moore and Hudson [2000],who could not find detectable amountsof peroxide after irradiatingpure ice with protons(infraredspectroscopy is lesssensitivethanmassspectrometry). In our experimentswe found no trapped ozone within our sensitivityand can set the limit of its concentration to an order of magnitudebelow that of H202. 0 , I . i . I . •1, I , I . • ,1 I , , I , 90 100 110 120 130 140 150 160 170 180 190 200 Temperature (K) Figure 1. Temperature-programmeddesorption from a 7 •m watericefilmirradiatedat 80 K by 1.5 x 10•7 H+/cm2 at 200 keV and 48ø incidence.The heatingrate is 1.1 K/min. 4. Discussion One cannoticein Table 1 very differentvaluesof G. Part of the reasonis that differenttypesof irradiatingparticlesvaryin thewaytheydeposittheir energy,producingdifferentdensities of radicals.Ions like 200 keV protonshave sucha high stop- 33,288 BAHR ET AL.: RADIOLYSIS OF OUTER SOLAR SYSTEM WATER ICE Table 1. RadiolyticProductionof 02 From CondensedWater G (Total) O2/100eV G t (Trapped) O2/100eV Radiation Energy,MeV T, K 0.15 He 3 x 10-3 T 0 3.1 X 10 -2 8 x 10-3 •/ Ne He 1.25 30 6 '-'300 ---300 ---300 He H H H H 29 0.08 0.2 0.2 0.2 ---300 70 120 80 40 1.6 x 10 -3 2 x 10-4 7 x 10-4 4 2.7 2.4 2.6 x X x x 10-s 10-4 10-4 10-4 Reference a Lefort [1955] 77 GS 1956 BB 1976 BB 1976 BB 1976 BB 1976 Baragiolaet al. [1999a] this work this work this work aGS 1956,Ghormleyand Stewart[1956];BB 1976,Bayerstock and Bums [1976]. ping power (---60 eV/nm) that they producea "continuous" molecules, makingthe absorptionstrengthstronglydependent track of ionizationsand excitationsin the solid.The densityuœ •0IIpimseanddenbity. Tiiu• ritei.8-%banddcptligivcb71• 2 X ionizations(evaluatedfrom the stoppingpower and track ra- 10•9-2X 1020O2/cm 2 for solid02, depending onthecrystaldius)is sohighthat there is efficientrecombinationof radicals line phaseof 02 [Landauet al., 1962;Vidal et al., 1997;Baralike OH, H, and O into moleculeslike HO 2 and H202, without giolaet al., 1999a].If the condensed 02 wasa liquid,• • 2 x the need of intertrack diffusionalprocesses. HO 2 and H202 102•O2/cm2; evenhighervalues wouldholdif the02 molecules are precursorsto the formationof 02 by a subsequentelec- were presentas densegasinsidebubbles.Cooperet al. [2001] tronic excitation[Bumset al., 1981;Siegeret al., 1998]. Direct calculatedenergyfluxesof ions and electronsand sputtering productionof 02 in a singleion track,proposedbyBumset al. rates on the icy satellitesusingrecent Galileo data. They give [1981],is unlikely,judgingfrom the very smallpartial sputter- totalenergy fluxesof 5.4 x 109keV cm-2 s-• (Ganymede's ing yield of 02 from water ice in the low fluence(singleion poles)and2.6 x 108keV cm-2 s-• (Ganymede's equator), impact)limit for denselyionizingMeV Ne ions[Reimannetal., whichproduceerosionratesof 0.004and0.0008/xm/yr,respec1984]. tively.Notice the decreaseof the energyflux on Ganymede's It is important to note the differencebetween the total equatordue to the satellite'smagneticfield. amountof 02 produced(measuredby GTotal)andthe amount WithGt • 2.6 x 10-4 thebuildupof trapped02 is2.1 x of 02 that maybe trappedin the ice.There hasbeenconfusion 10•3cm-2 yr-• in Ganymede's equatorial region.Theamount in the literature betweenthesetwo quantities.What needsto of trapped02 wouldbe lessthan2 x 10•6/cm 2 for a regolith be used to calculatetrapped 02 is the restrictedvalue G t, turnovertime of 100-1000 years causedby micrometeorite whichis lower than G Tota I. It is alsoimportantto realize that impact [Spencer,1987]. This trapped amount is insignificant G is not a radiolyticconstantbut that it dependson the typeof compared with• = 2 x 10•9-2x 1020O2/cm 2 column density radiation[Spinksand Woods,1990],fluence,the phaseof ice of solid02 that canbe inferredfrom banddepths.Thusenergy [Plonkaet al., 2000], temperature,and the presenceof impualone(usingour measuredvaluesof G t andthe rities in the ice, which may "scavenge"radicals.All thesefac- considerations total energy fluxes expectedin the equatorialregion)rule out tors are probablybehind the large variation in the valuesreradiolytic 02 bubbles in ice as the sourceof the absorption ported in the literature. bands of condensed 02 on Ganymede. The inefficiencyof 02 productionfrom ice can be understoodfrom the existingknowledgeabout radiolysisof water ice. Oxygenatoms(but not 02) are a primary,althoughun- 5. Conclusions likely, productof dissociationof water molecules.Especiallyat Our experimentsshowedthat the sputteringof water ice at low temperatures,the dissociatedO will likely recombineim120 K is dominatedby the emissionof 02. Warmingof radiomediatelywith OH, losingkinetic energyto the surrounding molecules(cageeffect). A fractionof O can escapethe cage lyzedice releasedtrappedradiationproducts.Thermaldesorpwith a probabilitythat increaseswith the temperatureof the tion of 02 wasalreadyseenat the irradiationtemperatureand ice. However, sinceoxygenatomsare very reactive,they will very stronglyabove 120 K. We also found small amountsof more than an order of magrapidly form HO2, H202, and perhapsmore complexmole- trappedH202, at concentrations with cules,especiallyin the presenceof trappedcharges.Thus the nitude smallerthan reportedfor Europa but consistent infrared reflectance experiments of proton irradiation of oxyejectedatomicoxygenatomscomemostlikelyfrom the surface gen-free ice. The amount of 02 trapped in ice was higher than layer. We now discussthe productionof 02 trappedin the ice in in our previousexperiments,likely owing to higher impact andmorecompacticesamples. The radiationyieldG comparisonwith observations of condensed02 in Ganymede. energies The maximumdisk-averagedstrengthof the 02 red bandsin of 02 producedand trappedin the ice per 100 eV of energy Ganymede'strailing hemisphere,1.8%, givesdifferent values depositedby the 200 keV protonsis more than two ordersof of the 02 columndensitydependingon the phaseassumedfor magnitude smaller than yields used in recent models of thesolid02.Thisisbecause thedouble transitions X 35;•---> Ganymede,which assumethe productionof 02 bubblesor ions [Johnson a•Aa (v = 1, 2) forming theabsorption bands at577nmand inclusionsin ice by impingingmagnetospheric 628 nm [Landau et al., 1962] require a pair of adjacent02 andJesser, 1997].Thereforeit is morelikelythat the 02 bands BAHR ET AL.' RADIOLYSIS OF OUTER SOLAR SYSTEM WATER ICE 33,289 seen on Ganymede result from some other mechanism,like condensationof atmosphericoxygenon the surface. Haring, R. A., R. Pedrys, D. J. Oostra, A. Haring, and A. E. de Vries, Reactive sputtering of simple condensedgasesby keV ions: Mass spectra,Nucl. Instrum. MethodsPhys.Res., Ser. B, 5, Acknowledgments.We acknowledgesupport from NSF-Astronomy,NASA Officeof SpaceResearchandthe NASA Cassiniprogram. References Hendrix,A. R., C. A. Barth, and C. W. Hord, Ganymede'sozone-like absorber:Observationsby the Galileo ultravioletspectrometer,J. Geophys.Res., 104, 14,169-14,178, 1999. Hobbs,P. V., Ice Physics,Clarendon,Oxford, England,1974. Ip, W.-H., Europa'soxygenexosphereand its magnetospheric inter- Baragiola,R. A., and D. A. Bahr, Laboratorystudiesof the optical propertiesand stabilityof oxygenon Ganymede,J. Geophys.Res., Ip, W.-H., D. J. Williams,R. W. McEntire,andB. Mauk, Energeticion sputteringeffectsat Ganymede,Geophys.Res.Lett., 24, 2631-2634, 476-482, 1984. action, Icarus, 120, 317-325, 1996. 103, 25,865-25,872, 1998. Baragiola,R. A., C. L. Atteberry,D. A. Bahr, and M. Peters,Origin of solidoxygenon Ganymede:Reply to commentby R. E. Johnsonon "Laboratorystudiesof the opticalpropertiesand stabilityof oxygen on Ganymede,"J. Geophys.Res., 104, 14,183-14,187,1999a. Baragiola, R. A., C. L. Atteberry, D. A. Bahr, and M. M. Jakas, Solid-stateozonesynthesis by energeticions,Nucl. Instrum.Methods Phys.Res.,Ser. B, 157, 233-238, 1999b. Bar-Nun, A., G. Herman, M. L. Rappaport,and Y. Mekler, Ejection of H20 , 02, H 2 andH fromwatericeby 0.5-6 keV H + andNe+ ion bombardment,Surf. Sci., 150, 143-156, 1985. Barth, C. A., et al., Galileo ultravioletspectrometerobservationsof atomic hydrogenin the atmosphereof Ganymede,Geophys.Res. Lett., 24, 2147-2150, 1997. 1997. Johnson, R. E., EnergeticChargedParticle Interactionswith Atmospheres and Surfaces,Springer-Verlag,New York, 1990. Johnson,R. E., Commenton "Laboratorystudiesof the opticalpropertiesand stabilityof oxygenon Ganymede"by Rafil A. Baragiola and David A. Bahr, J. Geophys.Res.,104, 14,179-14,182, 1999. Johnson,R. E., and W. A. Jesser,02/03 microatmospheres in the surfaceof Ganymede,Astrophys. J., 480, L79-L82, 1997. Johnson,R. E., and T. I. Quickenden,Photolysisand radiolysisof water ice on outer solarsystembodies,J. Geophys.Res.,102, 10,98510,996, 1997. Johnson,R. E., L. J. Lanzerotti,W. L. Brown,and T. P. Armstrong, Erosionof Galilean satellitesby Jovianmagnetospheric particles, Science,212, 1027-1030, 1981. Bayerstock,K. F., and W. G. Burns,Primaryproductionof oxygen Landau,A., E. J. Allin, and H. L. Welsh,The absorption• spectrumof from irradiatedwater as an explanationfor decreasedradiobiologsolidoxygen in thewavelength regionfrom12,000 A to 33003,, ical oxygenenhancementat high LET, Nature,260, 316-318, 1976. Spectrochim. Acta, 18, 1-19, 1962. B6nit, J., and W. L. Brown,Electronicsputteringof oxygenand water Lanzerotti,L. J., W. L. Brown,J. M. Poate,and W. M. Augustyniak, molecules fromthinfilmsof watericebombarded byMeV Ne+ ions, On the contributionof waterproductsfrom Galileansatellitesto the Nucl. Instrum.MethodsPhys.Res.,Ser.B, 46, 448-451, 1990. Jovianmagnetosphere,Geophys.Res.Lett., 5, 155-158, 1978. Broadfoot,A. L., et al., Extremeultravioletobservations fromVoyager Lefort, M., Chimie des radiationsdes solutionsaqueuses,in Actions 1 encounterwith Jupiter,Science,204, 979-982, 1979. Chiniqueset Biologiques desRadiations,vol. 1, editedby M. HaissinBrown,W. L., L. J. Lanzerotti, J. M. Poate, and W. M. Augustyniak, sky,chap.II, p. 203, Masson,Paris,1955. "Sputtering"of ice by MeV light ions,Phys.Rev. Lett., 40, 1027McCracken,G. M., Desorptionof adsorbedand condensedgaseson 1030, 1978. metalsby deuterons,Vacuum,24, 463-467, 1974. Brown,W. L., et al., Electronicsputteringof low temperaturemolecMoore, M. R., and R. L. Hudson, IR detectionof H202 at 80 K in ular solids,Nucl. Instrum.MethodsPhys.Res., Ser. B, 1, 307-314, ion-irradiatedlaboratoryicesrelevantto Europa,Icarus,145, 2821984. Burns,W. G., R. May, and K. F. Bayerstock,Oxygenas a productof water radiolysisin high-LET tracks,Radiat. Res.,86, 1-19, 1981. Calvin, W. M., and J. R. Spencer,Latitudinal distributionof 02 on Ganymede:Observations with the Hubble SpaceTelescope,Icarus, 288, 2000. Nelson, R. M., A. L. Lane, D. L. Matson, G. J. Veeder, B. J. Buratti, and E. F. Tedesco,Spectralgeometricalbedosof the Galilean satellites from 0.24 to 0.34 micrometers: Observations with the Inter- nationalUltraviolet Explorer,Icarus,72, 358-380, 1987. Calvin,W. M., R. E. Johnson,and J. R. Spencer,02 on Ganymede: Noll, K. S., R. E. Johnson,A. L. Lane, D. L. Domingue,and H. A. Weaver, Detection of ozone on Ganymede,Science,273, 341-343, Spectralcharacteristicsand plasma formation mechanisms,Geo1996. phys.Res.Lett., 23, 673-676, 1996. Carlson,R. W., Photo-sputtering of ice and hydrogenaroundSaturn's Plonka, A., E. Szajdzinska-Pietek,J. Bednarek, A. Hallbrucker, and E. Mayer, Unexpectedradical generationon •/-irradiating metarings,Nature,283, 461, 1980. stableforms of water at 77 K, Phys.Chem. Chem.Phys.,2, 1587Carlson,R. W., et al., An atmosphereon Ganymedefrom its occulta130, 505-516, 1997. tion of SAO 186800 on 7 June 1972, Science,182, 53-55, 1973. Carlson,R. W., et al., Hydrogenperoxideon the surfaceof Europa, Science,283, 2062-2064, 1999. Chyba,C. E., Energyfor microbiallife on Europa,Nature,403, 381382, 2000. Ciavola, G., G. Foti, L. Torrisi, V. Pirronello, and G. Strazzulla, Mo- lecularerosionof ice by keV ion bombardment,Rad. Eft., 65, 167172, 1982. Cooper, J. F., R. E. Johnson,B. H. Mauk, H. B. Garrett, and N. Gehrels,Energeticion and electronirradiation of the icy Galilean 1593, 2000. Reimann,C. T., et al., Ion-inducedmolecularejectionfrom D20 ice, Surf. Sci., 147, 227-240, 1984. Sack,N.J., andR. A. Baragiola,Sublimationof vapor-deposited water ice below 170 K, and its dependenceon growthconditions,Phys. Rev. B, 48, 9973-9978, 1993. Saur, J., D. F. Strobel, and F. M. Neubauer, Interaction of the Jovian magnetospherewith Europa: Constraints on the neutral atmosphere,J. Geophys.Res.,103, 19,947-19,962,1998. l•. satellites,Icarus, 149, 133-159, 2001. Feldman, P. D., M. A. McGrath, D. F. Strobel, H. W. Moos, K. D. J. Schou,Sputteringof water ice surfacesand the productionof extendedneutral atmospheres, J. Geophys.Res.,lee, 26,387-26,395, Retherford, and B.C. Wolven, HST/STIS ultraviolet imaging of polar aurora on Ganymede,Astrophys. J., 535, 1085-1090,2000. Ghormley, J. A., and A. C. Stewart, Effects of •/-radiation on ice, Sieger,M. T., W. C. Simpson,andT. M. Orlando,Productionof 02 on icy satellitesby electronicexcitationof low-temperaturewater ice, J. Am. Chem. Soc., 78, 2934-2939, 1956. Hall, D. T., D. F. Strobel, P. D. Feldman, M. A. McGrath, and H. A. Spencer,J. R., Thermal segregationof water ice on the Galilean Weaver, Detection of an oxygen atmosphereon Jupiter's moon Europa, Nature, 373, 677-679, 1995. Hall, D. T., P. D. Feldman, M. A. McGrath, and D. F. Strobel, The far-ultravioletoxygenairglowof Europa and Ganymede,Astrophys. J., 499, 475-481, 1998. Haring, R. A., A. Haring, F. S. Klein, A. C. Kummel, and A. E. de Vries, Reactivesputteringof simplecondensedgasesby keV heavy ion bombardment,Nucl. Instrum.MethodsPhys.Rev.,211,529-533, 1983. 1995. Nature, 394, 554-556, 1998. satellites, Icarus, 69, 297-313, 1987. Spencer,J. R., W. M. Calvin,andM. J. Person,Charge-coupled device spectraof the Galileansatellites:Molecularoxygenon Ganymede,J. Geophys.Res., lee, 19,049-19,056, 1995. Spinks,J. W. T., and R. J. Woods,An Introductionto RadiationChemistry,John Wiley, New York, 1990. Vidal, R. A., D. Bahr, R. A. Baragiola,and M. Peters,Oxygenon Ganymede:Laboratorystudies,Science,276, 1839-1842, 1997. Westley, M. S., R. A. Baragiola, R. E. Johnson,and G. Baratta, 33,290 BAHR ET AL.: RADIOLYSIS OF OUTER SOLAR SYSTEM WATER ICE Photodesorption from low temperaturewater ice in interstellarand circumsolargrains,Nature, 373, 405-407, 1995a. Westley, M. S., R. A. Baragiola, R. E. Johnson,and G. Baratta, Ultraviolet photodesorptionfrom water ice, Planet.SpaceSci., 43, 1311-1315, 1995b. D. A. Bahr, R. A. Baragiola,and M. Famfi, Laboratoryfor Space Research,EngineeringPhysics,Universityof Virginia, Charlottesville, VA 22904,USA. ([email protected]) R. A. Vidal, INTEC-CONICET, Gtiemes 3450, 3000 Santa Fe, Ar- gentina. Westley,M. S., G. A. Baratta,and R. A. Baragiola,Density,porosity and index of refraction of ice films formed by vapor depositionat low-temperatures, J. Chem.Phys.,108, 3321-3326, 1998. Yung, Y. L., and M. B. McElroy, Stabilityof an oxygenatmosphereon (ReceivedJuly 18, 2000;revisedMarch 20, 2001; acceptedApril 13, 2001.) Ganymede,Icarus,30, 97-103, 1977.
© Copyright 2026 Paperzz