Development of Synthetic Approaches for the Systematic Exploration of Chemical Space www.asn.leeds.ac.uk Prof. Adam Nelson School of Chemistry, University of Leeds, UK [email protected] Current research themes Chemical biology Synthetic Chemistry Current research themes Chemical biology Directed evolution of novel enzymes for synthetic chemistry Synthetic Chemistry Directed evolution of enzymes for application in parallel synthesis HO HO O HO HO sialic acid aldolase O OH O AcHN HO OH CO2H NHAc OH HO CO2H directed evolution R2 R1 OH O N O X O R1R2N CO2H X OH O CO2H O OH with Alan Berry, Gavin Williams, Tom Woodhall Creation of complementary enzymes for diastereoselective CC bond formation R R2 OH O 1N O mutant 1 O CO2H X mutant 2 2 R2 R OH OH R1 N R1 N OH CO2H O X CO2H O X O HO O J. Am. Chem. Soc. 2006, 128, 16238 with Alan Berry, Gavin Williams, Tom Woodhall Current research themes Chemical biology Synthetic Chemistry Directed evolution of novel enzymes for synthetic chemistry Synthetic strategies Chemical genetics Synthesis of bioactive ligands and libraries Tools for elucidating stem cell biology mechanisms Role of GSK-3 in regulating murine embryonic stem cell self-renewal H N O N O N H N O N O N OH Control 5 M 0.5 M 400 m scale bar In the presence of leukaemia inhibitory factor, inhibition of GSK-3 robustly enhances self-renewal of murine embryonic stem cells Chem. Biol. 2009, 16, 15 (highlight: Cell Stem Cell 2009, 4, 98) with Welham In sharp contrast, differentiation of human ESCs is promoted! 2 M TOPFlash luciferase reporter assay SOX17 DAPI HNF4 DAPI 0 2 5 M 50 m scale bar Chemically-directed differentiation yields definitive endoderm, which has the capacity to generate hepatocyte-like cells J. Cell Sci 2011, 124, 1992 with Welham Current research themes Chemical biology Synthetic Chemistry Directed evolution of Synthetic strategies novel enzymes for synthetic chemistry Diverse lead-like Natural productmolecules Chemical genetics inspired libraries Synthesis of bioactive ligands and libraries Tools for elucidating stem cell biology mechanisms The Organic Chemistry Universe is “Top Heavy” 25 million cyclic 100 Percentage of compounds compounds in CAS registry 80 HO 60 O O O 40 O H 20 0 0 20 40 60 80 100 2.5 million frameworks Cumulative percentage of frameworks See A. H. Lipkus et al, J. Org. Chem. 2008, 73, 4443 The Organic Chemistry Universe is “Top Heavy” 25 million cyclic 100 Percentage of compounds compounds in CAS registry 80 60 O 40 20 0 0 20 40 60 80 100 2.5 million frameworks Cumulative percentage of frameworks See A. H. Lipkus et al, J. Org. Chem. 2008, 73, 4443 The Organic Chemistry Universe is “Top Heavy” 25 million cyclic 100 Percentage of compounds compounds in CAS registry 80 1.3 million frameworks seen in just one compound! 60 Half of the compounds based on 0.25% of the frameworks 40 17% of compounds based on just 30 frameworks! 20 0 0 20 40 60 80 100 2.5 million frameworks Cumulative percentage of frameworks See A. H. Lipkus et al, J. Org. Chem. 2008, 73, 4443 Synthetic approaches to skeletallydiverse small molecules 1. Natural product-like molecules of unprecedented scaffold diversity H HO O OH OH 2. Skeletally-diverse drug like cores H N N H OH O Designed to retain lead-like properties after derivatisation Natural Products: Inspiration for libraries of useful ligands? Natural Products: Inspiration for libraries of useful ligands? HO H OH O HO O O O O O O OH OH NH2 O HO H H HO O (+)-Brefeldin A inhibits Arf1p and, hence, protein trafficking from ER to Golgi Lovastatin inhibits HMG-CoA reductase (anticholesterol agent) OH HO C10H21 Discodermolide inhibits microtubule polymerisation O O OH 10-Hydroxyasimicin binds to mitochondrial complex I (fungicide and anti-tumour agent) OH O O O Natural Products: Inspiration for libraries of useful ligands? HO H OH O HO O O O O O O OH OH NH2 O HO H H HO O (+)-Brefeldin A inhibits Arf1p and, hence, protein trafficking from ER to Golgi Lovastatin inhibits HMG-CoA reductase (anticholesterol agent) OH HO C10H21 Discodermolide inhibits microtubule polymerisation O OH O O OH 10-Hydroxyasimicin binds to mitochondrial complex I (fungicide and anti-tumour agent) O O Natural Products: Inspiration for libraries of useful ligands? HO H OH O HO O O O O O O OH OH NH2 O HO H H HO O (+)-Brefeldin A inhibits Arf1p and, hence, protein trafficking from ER to Golgi Lovastatin inhibits HMG-CoA reductase (anticholesterol agent) OH HO C10H21 Discodermolide inhibits microtubule polymerisation O OH O O OH 10-Hydroxyasimicin binds to mitochondrial complex I (fungicide and anti-tumour agent) O O Natural Products: Inspiration for libraries of useful ligands? HO H OH O HO O O O O O O OH OH NH2 O HO H H HO O (+)-Brefeldin A inhibits Arf1p and, hence, protein trafficking from ER to Golgi Lovastatin inhibits HMG-CoA reductase (anticholesterol agent) OH HO C10H21 Discodermolide inhibits microtubule polymerisation O OH O O OH 10-Hydroxyasimicin binds to mitochondrial complex I (fungicide and anti-tumour agent) O O Inspiration from Alkaloid Natural Products HO H H N O HO Morphine N H Me N H H HO Strychnine with Sarah Murrison, Christian Einzinger, Steve Bartlett and Dan Tetlow Inspiration from Alkaloid Natural Products R 1 N N N H N R2 N R1N R2 O 80-90% For similar cascades, see: S. A. Raw and R. J. K. Taylor, J. Am. Chem. Soc. 2004, 126, 12260. with Sarah Murrison, Christian Einzinger, Steve Bartlett and Dan Tetlow Inspiration from Alkaloid Natural Products R 1 N N N H N N R2 R1N R2 O N N R1N R2 R2 N 1 2 N RN R N with Sarah Murrison, Christian Einzinger, Steve Bartlett and Dan Tetlow Inspiration from Alkaloid Natural Products R1 N N N H N O N R2 R1N R2 R4 O R3 R4 O R3 O N R4 O R1N R2 N H ca. 10 analogues R3 OH N C O N 4 R O R3 O N R1N R2 N H R1N R2 N H ca. 10 analogues Yields from imine typically 65-95% with Sarah Murrison, Christian Einzinger, Steve Bartlett and Dan Tetlow Substituents can control the scaffold R1 R1 N HN N N R1 R1 N N N O R4 R5 4 R O N N R2 R3 H N R1 Bu N H R4 R3 O R3 O R2 Bu O 3 R N N H R3 N HN O O R1 R2 N O N O N R1N R2 R1N R2 N H R1 N N N with Sarah Murrison Aim To develop reliable methodology for the diversityoriented synthesis of ‘natural product-like’ molecules Important guiding features: • broadly similar structural features to natural products but targeting different regions of biologically-relevant chemical space • high skeletal, stereochemical and substitutional diversity • amenable to parallel synthesis Aim Simple building blocks ca. 5 reaction types Skeletally diverse products Angew. Chem. Int. Ed. 2009, 48, 104 (VIP article) See also following News and Views articles in Nature (Schreiber), Nature Chem. Biol. (Waldmann); Highlights in Angew. Chem. (Spring) and Nature Chem; follow-up articles in C&E News and Science (editors’ choice); and selection by Biology Faculty of 1000. Aim H OH N Ns OH OH NsN O O ca. 5 reaction types Skeletally diverse Simple building products blocks HO H HO O OH OH HO Ph H OH OH OH Angew. Chem. Int. Ed. 2009, 48, 104 (VIP article) See also following News and Views articles in Nature (Schreiber), Nature Chem. Biol. (Waldmann); Highlights in Angew. Chem. (Spring) and Nature Chem; follow-up articles in C&E News and Science (editors’ choice); and selection by Biology Faculty of 1000. Fluorous-tagged synthesis A fluorous tag can be used as an alternative to solid support The approach combines the benefits of solution phase and solid phase chemistry FluorousSolid Phase Extraction (FSPE) allows rapid purification O HN C4H9 O HN O HN C4H9 O F non-fluorinated eluted with 8:2 MeOHH2O (fluorophobic wash) C7F16 fluorinated eluted with MeOH (fluorophilic wash) Science, 1997, 275, 823; Synlett, 2001,1488 An iterative DOS approach HO OAc HO O HO OAc HO O O OAc OAc HO HO OAc O OTBS HO OAc OAc C8F17 Ts N O NHNs Linker and Mitsunobu reactions: J. Org. Chem 2008, 73, 2752 Silaketal formation: Org. Biomol. Chem. 2008, 6, 1734 OH Ph An iterative DOS approach HO OAc HO O HO OAc HO O O OAc OAc HO HO OAc O OTBS HO OAc OAc C8F17 Ts N O NHNs Linker and Mitsunobu reactions: J. Org. Chem 2008, 73, 2752 Silaketal formation: Org. Biomol. Chem. 2008, 6, 1734 OH Ph An iterative DOS approach HO OAc HO O HO O O OAc OAc HO HO OAc O OTBS HO OAc OAc C8F17 Ts N O Ns N OAc Linker and Mitsunobu reactions: J. Org. Chem 2008, 73, 2752 Silaketal formation: Org. Biomol. Chem. 2008, 6, 1734 OH Ph An iterative DOS approach HO OAc HO O HO O O OAc OAc HO HO OAc O OTBS HO OAc OAc C8F17 Ts N O Ns N OH Linker and Mitsunobu reactions: J. Org. Chem 2008, 73, 2752 Silaketal formation: Org. Biomol. Chem. 2008, 6, 1734 OH Ph An iterative DOS approach HO OAc HO O HO O OAc O OAc OAc OH HO HO Ph OAc O OTBS O HO HO OAc C8F17 Ts N O Ns N OH Linker and Mitsunobu reactions: J. Org. Chem 2008, 73, 2752 Silaketal formation: Org. Biomol. Chem. 2008, 6, 1734 An iterative DOS approach HO OAc HO O HO O OAc O OAc OAc OH HO HO Ph OAc O OTBS O HO BriPr2Si OAc C8F17 Ts N O Ns N O OH Linker and Mitsunobu reactions: J. Org. Chem 2008, 73, 2752 Silaketal formation: Org. Biomol. Chem. 2008, 6, 1734 An iterative DOS approach HO OAc HO O HO O O OAc OAc HO HO OAc C8F17 Ts N O Ns N O O OH Ph OAc O OTBS HO OAc O Si i Pr2 Linker and Mitsunobu reactions: J. Org. Chem 2008, 73, 2752 Silaketal formation: Org. Biomol. Chem. 2008, 6, 1734 An iterative DOS approach HO OAc HO O HO O O OAc OAc HO HO OAc C8F17 Ts N O Ns N O O OH Ph OAc O OTBS HO OAc [Ru] O Si i Pr2 Linker and Mitsunobu reactions: J. Org. Chem 2008, 73, 2752 Silaketal formation: Org. Biomol. Chem. 2008, 6, 1734 An iterative DOS approach HO OAc HO O HO O O OAc OAc HO HO OAc C8F17 Ts N O Ns N [Ru] O O Si i Pr2 OH Ph OAc O OTBS HO OAc O Linker and Mitsunobu reactions: J. Org. Chem 2008, 73, 2752 Silaketal formation: Org. Biomol. Chem. 2008, 6, 1734 An iterative DOS approach HO OAc HO O HO O O OAc HO OAc HO OAc O OTBS HO OAc OAc C8F17 Ts N O Ns N H H [Ru] O SiiPr2 O O Linker and Mitsunobu reactions: J. Org. Chem 2008, 73, 2752 Silaketal formation: Org. Biomol. Chem. 2008, 6, 1734 OH Ph An iterative DOS approach HO OAc HO O HO O O OAc OAc HO HO OAc O OTBS HO OAc OAc C8F17 Ts N [Ru] O Ns N H H O SiiPr2 O O Linker and Mitsunobu reactions: J. Org. Chem 2008, 73, 2752 Silaketal formation: Org. Biomol. Chem. 2008, 6, 1734 OH Ph An iterative DOS approach HO OAc HO O HO O O OAc OAc HO HO OAc O OTBS HO OAc OAc [Ru] C8F17 Ts N O Ns N H H O SiiPr2 O O Linker and Mitsunobu reactions: J. Org. Chem 2008, 73, 2752 Silaketal formation: Org. Biomol. Chem. 2008, 6, 1734 OH Ph An iterative DOS approach HO OAc HO OAc O HO O O OAc HO HO OAc O OTBS HO OAc OAc Ns N H H OH OH O Linker and Mitsunobu reactions: J. Org. Chem 2008, 73, 2752 Silaketal formation: Org. Biomol. Chem. 2008, 6, 1734 OH Ph An iterative DOS approach HO OAc HO OAc O HO OAc HO O O OAc HO HO OAc OH Ph OAc O OTBS HO OAc 'spiro' 'fused' 'diene' 'terminating' 'open chain' Ns N H H OH OH O Linker and Mitsunobu reactions: J. Org. Chem 2008, 73, 2752 Silaketal formation: Org. Biomol. Chem. 2008, 6, 1734 Skeletally diverse natural productlike compounds: Iteration 1 OH OH OH OH OH NHNs NHNs NHNs Linker and Mitsunobu reactions: J. Org. Chem 2008, 73, 2752 Silaketal formation: Org. Biomol. Chem. 2008, 6, 1734 Skeletally diverse natural productlike compounds: Iteration 1 OH O HiPr2Si OAc OH O H Pr2Si OAc i O O OH O H Pr2Si i OH O i H Pr2Si H NNs HO OAc OAc OAc OH O HiPr2Si H NNs HO H NNs HO O OAc OAc OAc 1. Mitsunobu or silyl ether formation; 2. FSPE with Chris Cordier, Stuart Leach and Daniel Morton Skeletally diverse natural productlike compounds: Iteration 1 O OAc O Si i Pr2 >98% (98%) O O Si i Pr2 O Si i Pr2 Ns N OAc OAc O O Si Pr2 O O O OAc i 61% (>95%) OAc Ns N OAc 86% OAc 90% Si i Pr2 O 58% (>95%) 85% (>95%) O O Ns N OAc 92% 1. Mitsunobu or silyl ether formation; 2. FSPE with Chris Cordier, Stuart Leach and Daniel Morton Skeletally diverse natural productlike compounds: Iteration 1 O OH O Si i Pr2 >98% (>95%) [4 h] O O OH >98% [52 h] O Si i Pr2 Si i Pr2 O OH O O Si Pr2 O O OH i >98% [10 h] OAc Ns N [no reaction after 100 h] Ns N O >98% [48 h] Si i Pr2 O O OH 96% OH >95% Ns N OH 98% 1. NH3, MeOH; 2. FSPE with Chris Cordier, Stuart Leach and Daniel Morton Skeletally diverse natural productlike compounds: Iteration 2 Ns N OH Ns N OH Ns N OH Ns N OH Ns N OH Ns N OH O Si O iPr 2 OH O Si iPr O OH 2 Linker and Mitsunobu reactions: J. Org. Chem 2008, 73, 2752 Silaketal formation: Org. Biomol. Chem. 2008, 6, 1734 Skeletally diverse natural productlike compounds: Iteration 2 Ns N Ns N OH i H Pr2Si O OH 2Si HiPr O Ph Ns N OH O i H Pr2Si Ns N OH NNsH O Ns N O Ns N OH HiPr 2Si O Si iPr 2 O OH HO O Ph O O OH H NsN O O Si iPr 2 HiPr2Si O OH Ph 1. Mitsunobu or silyl ether formation; 2. FSPE with Chris Cordier, Stuart Leach and Daniel Morton Skeletally diverse natural productlike compounds: Iteration 2 Ns N O iPr Si 2 Ns N O iPr Si 2 O O Ph Ns N Ns N O O iPr Si 2 NNsH O Ns N O O iPr Si 2 Ns N O O O Ph iPr Si 2 O O Si iPr 2 NsN O O O Si iPr 2 O O Ph 1. Mitsunobu or silyl ether formation; 2. FSPE with Chris Cordier, Stuart Leach and Daniel Morton Skeletally diverse natural productlike compounds: Iteration 2 Ns N O iPr Si 2 Ns N O Pr2Si i O [Ru] Ph O [Ru] [Ru] Ns N O O iPr Si 2 Ns N O O iPr Si 2 O Ns N NNsH [Ru] Ns N O O [Ru] O Ph iPr O Si O NsN O [Ru] [Ru] O Si O 2Si O [Ru] O Ph 1. Metathesis with Chris Cordier, Stuart Leach and Daniel Morton Skeletally diverse natural productlike compounds: Iteration 2 Ns N O iPr Si 2 Ns N O [Ru] Ph O iPr Si 2 O [Ru] [Ru] Ns N O O iPr Si 2 Ns N O O Ns N NNsH [Ru] Ns N O iPr Si 2 O O [Ru] O Ph iPr Si 2 O Si O iPr 2 NsN O [Ru] [Ru] O O Si iPr 2 O [Ru] O Ph 1. Metathesis with Chris Cordier, Stuart Leach and Daniel Morton Skeletally diverse natural productlike compounds: Iteration 2 Ns N O iPr Si 2 Ns N O [Ru] Ph O iPr Si 2 O [Ru] [Ru] Ns N O O iPr Si 2 Ns N O O Ns N NNsH [Ru] Ns N O iPr Si 2 O O [Ru] O Ph iPr Si 2 O Si O iPr 2 NsN O [Ru] [Ru] O O Si iPr 2 O [Ru] O Ph 1. Metathesis with Chris Cordier, Stuart Leach and Daniel Morton Skeletally diverse natural productlike compounds: Iteration 2 Ns N i Ns N O Pr2Si O [Ru] Ns N Ph O O i Pr2Si [Ru] Ns N O [Ru] HH O Ns N O i Pr2Si O [Ru] O H H Ns N NNsH [Ru] O Pr2Si i H O H O [Ru] O Ph i O O Si Pr2 i NsN [Ru] O O Si i Pr2 Pr2Si O O [Ru] Ph 1. Metathesis with Chris Cordier, Stuart Leach and Daniel Morton Skeletally diverse natural productlike compounds: Iteration 2 i i Pr2 Si O O Pr2Si O O Ns N Ph Ns N [Ru] i Pr2 Si O O Ns N HH H [Ru] i Pr2 Si O O O Ns N O H O Si i Pr2 H O NNs Ph [Ru] O [Ru] [Ru] Ns N H Ns N O [Ru] Ns N O O [Ru] Si i Pr2 i Pr O Si 2 O O Ph [Ru] 1. Metathesis with Chris Cordier, Stuart Leach and Daniel Morton Skeletally diverse natural productlike compounds: Iteration 2 iPr 2Si iPr 2 O Si O O O Ph iPr NsN iPr 2 Si O HH O O O NsN 2 Si O H H H O H NsN NsN O NsN O NsN NNs iPr Ns Ph N O iPr Si 2 O Ph 1. Metathesis O 2 O Si O iPr 2 O Si O with Chris Cordier, Stuart Leach and Daniel Morton Skeletally diverse natural productlike compounds: Iteration 2 HO HO OH HO Ph NsN NsN HO OH HO HO HO HH O H H O H NsN NsN NsN NsN O O NNs Ns Ph N HO HO HO HO Ph HO HO 1. HF, pyridine; 2. FSPE; 3. purify with Chris Cordier, Stuart Leach and Daniel Morton What can go ‘wrong’? Competitive cyclisations O O i Si Pr2 Ns N What can go ‘wrong’? Competitive cyclisations O O Si iPr 2 Ns N i iPr 2 Si O NNs O HO Pr2 Si O O Ns N HO OH HO Macrocycle-tethered cross-metathesis i.e. first building block sometimes skipped H Ns N H Ns N Skeletally diverse natural productlike compounds: Iteration 2 OH Ns N Ns N OTBS OTBS Ns N Ns N OH N Ns OH OTBS OTBS Ns N OH Ns N OH N Ns OH OH OH 1. Metathesis with Stuart Leach, Chris Cordier and Daniel Morton Skeletally diverse natural productlike compounds: Iteration 2 i N Ns Ns N Ns N Pr2 Si O O Ns N OTBS OTBS O Ns N O O O i i N Ns Pr2 Ph Si O O i i Ns N O OTBS OTBS Ns N Pr2 Si O O Pr2 Si O O N Ns Pr2 Si O O O 1. Metathesis with Stuart Leach, Chris Cordier and Daniel Morton Skeletally diverse natural productlike compounds: Iteration 2 N Ns Ns N i Ns N Pr2 Si O O Ns N OTBS OTBS O Ns N O O O i i N Ns Pr2 Ph Si O O i i Ns N O OTBS OTBS Ns N Pr2 Si O O Pr2 Si O O N Ns Pr2 Si O O O 1. Metathesis with Stuart Leach, Chris Cordier and Daniel Morton Skeletally diverse natural productlike compounds: Iteration 2 NNs Ns N OH NsN OH Ns N Ns N OH OH OH NsN Ph OH OH OH OH O OH NsN O O O O O OH NsN NsN OH OH OH 1. Metathesis with Stuart Leach, Chris Cordier and Daniel Morton Classification of product scaffolds OH H O OH OH N Ns NH Ns Ns N Ns N O HO HO OH OH HO HO OH OH OH HO Ph O O H H OH H H HO OH NsN NNs H OH O HO H Ns N NsN HO O O For an hierarchical scaffold classification, see: Waldmann et al, J. Chem. Inf. Model., 2007, 47, 47 For the natural product scaffold ‘tree’: Proc. Natl. Acad. Sci. 2006, 103, 10606 Classification of product scaffolds OH H O OH OH N Ns NH Ns Ns N Ns N O HO HO OH OH HO HO OH OH OH HO Ph O O H H OH H H HO OH NsN NNs H OH HO O H Ns N NsN HO O O For an hierarchical scaffold classification, see: Waldmann et al, J. Chem. Inf. Model., 2007, 47, 47 For the natural product scaffold ‘tree’: Proc. Natl. Acad. Sci. 2006, 103, 10606 Classification of product scaffolds OH H O OH OH N Ns NH Ns Ns N Ns N O HO HO OH OH HO HO OH OH OH HO Ph O O H H OH H H HO OH NsN NNs H OH HO O H Ns N NsN HO O O For an hierarchical scaffold classification, see: Waldmann et al, J. Chem. Inf. Model., 2007, 47, 47 For the natural product scaffold ‘tree’: Proc. Natl. Acad. Sci. 2006, 103, 10606 Classification of product scaffolds OH H O OH OH N Ns NH Ns Ns N Ns N O HO HO OH OH HO HO OH OH OH HO Ph O O H H OH H H HO OH NsN NNs H OH HO O H Ns N NsN HO O O For an hierarchical scaffold classification, see: Waldmann et al, J. Chem. Inf. Model., 2007, 47, 47 For the natural product scaffold ‘tree’: Proc. Natl. Acad. Sci. 2006, 103, 10606 Classification of product scaffolds HN NH HN N H N H NH HN H N HN O HN O O O HN O O HN N H O N H O O O O N H O O O O O O H N O N H O O O O O O O O For an hierarchical scaffold classification, see: Waldmann et al, J. Chem. Inf. Model., 2007, 47, 47 For the natural product scaffold ‘tree’: Proc. Natl. Acad. Sci. 2006, 103, 10606 Classification of product scaffolds NsN HN HN NH N H N H HN O O HN H N H N O O NH HN O O N Ns HN O N Ns O O H N O O N Ns HN O O Ph O O O O O O O O O Ph O HO NNsH O O O O Angew. Chem. Int. Ed. 2009, 48, 104 H N O N H Classification of product scaffolds NsN NNs NsN NsN Ns N Ns N N Ns N Ns NsN OH OH O O OH NsN O O NNs NsN O OH H N NsH H O OH NsN O H O N Ns O OH OH HO OH HO HO O Ns H N OH NH Ns NsN OH O O OH OH HO HO Ph H O O O H O O Ns N O N Ns OH HO HO HO HO O H OH H O HO O OH HO NsN HO O OH O HO O HO Ph HO H HO O OH O O HO OH HO N Ns OH HO O Angew. Chem. Int. Ed. 2009, 48, 104 HTS collections often focus on a narrow range of cores Commerical HTS collection (106 compounds) N NH random selection N N 104 compounds core analysis N Cl O N O Distribution of ring systems With Stuart Warriner Most common saturated ring systems in a commercial HTS library O N N 826 N 844 N 384 O 102 N 129 N N N N 434 N 4 4 19 none N N S 3 18 N N N N N N N 2 5 N N 8 N N N 7 N 10 others 3 others none 4 3 1 <5 With Stuart Warriner The Linchpin Strategy inert B B A C A A STEP 3 Nucleophilic addition B A R1 FG1 R3B(OR)2 R2 C STEP 1 activated O A C "Linchpin" reagent FG1 B STEP 2 R3 R1 B A C Nu O R2 (Rh) JACS 1998, 120, 5579 (Miyaura) R1 LG R1 RMgBr (Cu) JOC 2007, 72, 2558 (Feringa) RNH2 (Ir) ACIE 2004, 43, 4797 (Hartwig); ACIE 2008, 47, 7652 (Helmchen) with Steve Marsden (Leeds), David House, Gordon Weingarten and Amanda Campbell (GSK) Application of the Linchpin Strategy in the Synthesis of Heterocycles Oxidation R1 R2 NH2 N B(OR)2 [Rh(cod)Cl]2 KOH R1 O R1 R3 R2 H2N Reduction O R1 R3 R2 N H R2 R3 R3 R1 R2 in situ cyclisation N H O Tetrahydroquinolines with up to >99% ee accessible with 2-NHBoc boronic esters (cat. DuanPhos) Jo Horn, John Li and Rachael Shearer The Ir-catalysed substitution may be extended to polar amines 2 mol% [Ir(dbcot)Cl]2 4 mol% ligand R2NH2 OCO2Me + R1 HN R2 R1 4 mol% nBuNH2 , DMSO, 55 °C DMSO OH Ph NH OH N H Ph 85%, 93% ee N H NH2 Ph O 83%, 69% ee N N H 66%, 97% ee OH MOMO N H MOMO COOMe 74%, d.r. 92.8 Matched N H COOMe 74%, d.r. 90:10 Mismatched S N H COOMe 84%, d.r. 88:12 Matched OH S N H COOMe 74%, d.r. 69:31 Mismatched High levels of catalyst control are observed Paolo Tosatti Ir-enabled synthesis of lead-like cores P N R' Paolo Tosatti Ir-enabled synthesis of lead-like cores BocHN BocHN MOMO OCO2Me OCO2Me OCO2Me Paolo Tosatti Ir-enabled synthesis of lead-like cores NR1R2 BocHN NR1R2 BocHN NR1R2 MOMO Paolo Tosatti Ir-enabled synthesis of lead-like cores NR1R2 BocHN NR1R2 BocHN NR1R2 MOMO Paolo Tosatti Ir-enabled synthesis of lead-like cores NR1R2 BocHN NR1R2 BocHN NR1R2 MOMO Paolo Tosatti Ir-enabled synthesis of lead-like cores O Boc N NBn NR1R2 BocHN NR1R2 BocHN NR1R2 MOMO Paolo Tosatti Ir-enabled synthesis of lead-like cores O Boc N 2 NBn 2 NR1R2 BocHN NR1R2 2 BocHN NR1R2 MOMO 2 Paolo Tosatti Ir-enabled synthesis of lead-like cores O Boc N O NBn N H O OH NR1R2 H N O N H OH BocHN H O NR1R2 H NH NH N BocHN O N NR1R2 MOMO H O N NH H O NH N Paolo Tosatti Ir-enabled synthesis of lead-like cores O Boc N O NBn N H O OH NR1R2 H N O N H OH BocHN H O NR1R2 H NH NH N BocHN O N NR1R2 MOMO H O N NH H O NH N Paolo Tosatti Ir-enabled synthesis of lead-like cores O Boc N O NBn N H O OH NR1R2 H N O N H OH BocHN Ms Bn N Ph N Boc H O NR1R2 H NH NH N BocHN O N NR1R2 MOMO P N H R' N O NH H O NH N Paolo Tosatti Ir-enabled synthesis of lead-like cores O Boc N O NBn N H O OH NR1R2 H N O N H OH BocHN Ms Ph Bn N H O NR1R2 NH O NH N BocHN N Boc H N NR1R2 O HN N N PMP MOMO P N H R' N O NH H O NH N Ph Paolo Tosatti Robert Hodgson Joanne Holland Chrissie Carter Stephen Bartlett Neetu Kaushal Claire Crawford Matthew Edmundson Chris Cordier Mandy Bolt Catherine Joce Adrian Fowkes Sarah Murrison Martin Fisher Nicole Timms John Li Adam Daniels Tom James Charles Lardeau Giorgia Magnatti Acknowledgments PhD students Alexis Perry Tom Woodhall Ben Whittaker Alan Ironmonger Mark Anstiss Karen Dodd Lorna Farnsworth Stuart Leach Catherine O’Leary-Steele Rebecca White Angela Kinnell Tom Harman Paolo Tosatti Ivan Campeotto Rachael Shearer Mark Dow Christian Einzinger Jenny Stockwell Alun Myden Academic collaborators Steve Marsden Stuart Warriner Paul Ko Ferrigno Melanie Welham (Bath) Postdocs Blandine Clique Mike Harding Silvie Domann Gavin Williams Tamara Belyaeva Stephen Worden Teresa Damiano Heather Bone Gordon McKiernan Dan Morton Jon Shepherd Louise Horsfall Ieuan Davies Jackie Ouzman Joachim Horn Francesco Marchetti Sushil Maurya Sophie Gore Paul Maclellan Industrial Collaborators Ben McKeever-Abbas (AZ) David House (GSK) Gordon Weingarten (GSK) Amanda Campbell (GSK) Acknowledgments EPSRC (Advanced Research Fellowship 2004-9) BBSRC Wellcome Trust GSK AstraZeneca
© Copyright 2026 Paperzz