Synthesis directed at the disruption of a protein-protein interaction in asthma Alan C. Spivey RSC/BMCS 2nd Symposium on Chemical Biology for Drug Discovery AstraZeneca, Alderley Park 20th-21st March 2012 Format of presentation • Asthma & allergic disorders – Background & biochemical cascade – The hIgE/FceRI protein protein interaction (PPI) – Therapeutic proof-of-concept - Xolair® • Peptide-based antagonists – Synthesis & activity • Development of the germyl-Stille Reaction – A photolabile safety-catch system • The synthesis of aspercyclide A & its C19 methyl ether – Racemic total synthesis, optical resolution – Asymmetric synthesis – Emerging SAR data Asthma & allergic disorders – UK figures • The prevalence of asthma is increasing worldwide: – – – – 10.8 million sufferers in the UK (~20%) 12.5 GP consultations pa (183,000 bed days) NHS annual asthma bill ~£890 million Cost of lost work days estimated ~£1.2 billion Nasser Allergy 2008, 1624 [DOI] Asthma & allergic disorders - Medication • The majority of current medications address ‘downstream’ symptoms, e.g. – Asthma: b2-adrenergic agonist bronohidilators e.g. albuterol – Hay fever: H1 antagonist anti-histamines e.g. diphenhydramine – Eczema: anti-inflammatories vs. leukotrienes e.g. zafirlukast – Anaphylactic shock: injection of adrenaline (epinephrine) Stinson C & EN 1997, Jan 6, 25 [DOI] The allergic response – Overview of the cascade Block PPI Gould Ann.Rev. Immunol. 2003, 21, 579 Proof-of-principle – Antibody therapy • XolairTM (Genentech, Novartis) was approved by the European Commission in Oct 2005 for the treatment of chronic asthma in all 25 EU member states - Humanised monoclonal anti-IgE antibody (~149 kDa) - Prescribed for severe asthma/hey fever - Subcutaneous injections required every 2-4 weeks - Expensive (£10K/patient/year) http://www.xolair.com/ The IgE-FceRI protein-protein complex (1) • The ligand (IgE): – Y-shaped C2 symmetric dimer (L-H)2 – Heavy (e) chain is involved in FceRI binding – Heavy chain comprises 1 variable (Ve) and 4 constant (Ce1, Ce2, Ce3, & Ce4) domains • The receptor (FceR1): – membrane bound, comprising 4 subunits (abg2) – extracellular a subunit is involved in IgE binding – comprises two small (86 residue) globular domains a1 & a2 Gould & Sutton Nat. Rev. Immunol. 2008, 8, 205 [DOI] The IgE-FceRI protein-protein complex (2) • Characteristics of PPI: – High affinity - Ka 10-10 M-1 – Biphasic interaction where initial ‘sensitisation’ is reversible – Large surface area - 1830 Å2 – Only a small proportion of cross-linking is required to initiate exocytosis? • Implications for antagonist design: – require high binding affinity for competitive inhibition – require good bio-availability to attain high intra-cellular concentration PDB 1F6A Jardetzky 2000 [DOI] Gould & Sutton Nat. Rev. Immunol. 2008, 8, 205 [DOI] The IgE-FceRI protein-protein complex (3) PDB 1F6A Jardetzky 2000 [DOI] Peptide-based antagonists of the IgE-FceRI PPI PDB 1F6A Jardetzky 2000 [DOI] Peptide antagonists of IgE-FceRI PPI • • Non-’epitope’ peptides: Zeta-loop (binds to receptor) b-hairpin (binds to receptor) [V6, A12] MCD IC50 = 36 nM IC50 = 1 μM IC50 = 0.6 µM Starovasnik, Structure 2004, 12, 1289 [DOI] Starovasnik,, Biochemistry 2001, 40, 9828 [DOI] Buku, Chem. Bio. Drug. Des. 2008, 72, 113 [DOI] Epitope peptides: a2(C-C’) mimetic (binds to IgE) Ro 25-7162 a2(C-F) mimetic (binds to IgE) IC50 = 30 μM IC50 = 40 μM Sutton, Biochem. Soc. Trans. 1997, 25, 387 [DOI] Danho, Proc. Am. Peptide Symp. 1997, June 1419, 539 [DOI] The IgE-FceRI protein-protein complex - Hotspots PDB 1F6A Jardetzky 2000 [DOI] The AB loop - Ce3/Ce4 Hinge region • Site directed mutant hIgE (Phe349Ala) → just 10% mediator release (degranulation assay) – • Presta J. Biol. Chem. 1994, 269, 26368 [DOI] Phe349 is situated in the middle of the ‘Omega’ loop at terminus of the Ce3 A-B b-strand: PDB 1F6A Jardetzky 2000 [DOI] A disulfide-constrained A-B loop mimetic • Simple disulfide constrained A-B loop epitope: Helm Allergy 1997, 52, 1155 [DOI] Tolan amino acids as peptide loop constraints • ...what if we introduced a more rigid constraint than a disulfide? – – • b-turn mimetics: e.g. ‘tolan’ amino acid: Kemp Tetrahedron Lett. 1995, 36, 4175 [DOI] ...what about a suite of regioisomeric tolan amino acids & analogues? With John McKendrick & Ratnasothy Srikaran J. Org. Chem. 2003, 68, 1843 [DOI] A tolan-constrained A-B loop mimetic • Synthesis of 2,2’-tolan constrained peptide via ‘on-resin’ Sonogashira macrocyclisation: – Only rink amide resin allows for cyclisation With John McKendrick & Ratnasothy Srikaran J. Org. Chem. 2003, 68, 1843 [DOI] An array of tolan-constrained A-B loop mimetics Synthesis of the tolan amino acids • NB. Installation of Ser353 allows for higher yielding subsequent macrocyclisations : With Danny Offermann Synthesis of hydrogenated 2,2’-tolans • The fully saturated 2,2’-bibenzyl amino acid: • The partially saturated 2,2’-stilbene amino acid: With Danny Offermann Synthesis of the constrained A-B loop mimetics With Danny Offermann Constrained A-B loop mimetics – ELISA activity • ELISA data for the array of tolan & tolan-derived constrained A-B loop mimetics: – linker & sequence dependent activity IC50 = 660 ±70 mM with Danny Offermann & Jimmy Sejberg J. Org. Chem. 2012, 77, ASAP. Ongoing work... • Co-crystallisation with both proteins – • with Brian Sutton & Mary Holdom, KCL Increase affinity by synthetic mutagenesis? – Use of germyl-Stille coupling... with Bingli Mo & Jimmy Sejberg The germyl-Stille reaction R R Ge Cl O Where is germanium in the periodic table? • Group 14: C, Si, Ge, Sn, Pb Ge vs Si & Sn • features: – Susceptibility to ipso-SEAr – intermediate between Si and Sn – Better stability towards nucleophiles & bases cf. Si & Sn • e.g. Vasella Helv. Chim. Acta, 1996, 79, 255 – – Essentially non-toxic like Si cf. Sn! Interesting and unique germylene etherate chemistry [Ge(II) cf. carbene) – Expensive: GeCl4 ~£300 /100 g... Fluorous-tagged arylgermanes - Synthesis C8F17 GeCl2·O O I £ GeCl3 C8F17 mW 300 W H2O, c.HCl 20 min [78%] OMe 1) (>2eq) BrMg 2) 4M HCl in dioxane C8F17 R R Ge Ar 1) 4M HCl in dioxane 2) Ar-MgBr C8F17 R = 2-NapMe, Ar = p-Tol [71%] R = 2-NapMe, Ar = Ph [83%] R = 2-NapMe, Ar = p-ClC6H4 [80%] R = 2-NapMe, Ar = p-CF3C6H4 [84%] R = 2-NapMe, Ar = o-MeOC6H4 [87%] RMgX (Xs.) • Cl Cl Ge C8F17 R = 2-NapMe [86%] • Zhang Chem. Rev. 2004, 104, 2531 [DOI] R R Ge OMe [84%] OMe features can ‘tune’ steric and electronic properties of R groups for specific applications fluorous-tag allows rapid purification by FC on fluorous SiO2 with David Whitehead & Joseph Hannah Pd(0) catalysed cross-coupling • Sn couples readily as SnR3: Stille coupling – • review: Stille Angew. Chem. Int. Ed. 1986, 98, 508 [DOI] Si requires an eletronegative ligand and nucleophilic activation: Hiyama-Denmark coupling – review: Denmark Aldrichimica Acta 2003, 36, 75 [DOI] • what is required for Ge coupling? – review: with Chris Gripton & Joseph Hannah Curr. Org. Synth. 2004, 1, 111 [DOI] Requirement for di-halogermanes • Ge requires 2 × electronegative ligands and nucleophile activation – initial results: (cf. conditions of Hiyama Tetrahedron Lett. 1997, 38, 439 [DOI] Br OEt R R Ge CF3 O – OEt O CF3 Me Me (1 eq) CF3 Pd(OAc)2 (5 mol%) PPh3 (10 mol%) NaOH (6 eq) THF, 70 °C, 24 h R2 = Me2 [0%] R2 = Me,Cl [0%] R2 = Cl2 [36%] CF3 optimised conditions: Cl Cl Ge Ar-Br (1eq) R PdCl2(MeCN)2 (10 mol%) dppp (20 mol%) KF (6 eq) DMF, 120 °C, 8 h Ar R # 1 R Me 2 3 4 5 6 7 8 9 Me Me OMe OMe OMe OMe OMe OMe Ar 4-AcC6H4 3,5-(CF3)2C6H3 1-Nap Ph 3-CF3C6H4 3,5-(CF3)2C6H3 1-Nap 3-Py 4-NO2C6H4 Yield/% 60 63 79 36 51 71 56 44 47 with Chris Gripton A safety-catch germyl-Stille reaction? • Target: • Safety-catch R groups must: • • confer stability to a wide range of reaction conditions prior to activation (i.e. retain unique advantages of Ge vs. Si or Sn vis-à-vis stability to strong bases and nucleophiles) be selectively activated with in presence of wide range of FGs – ‘magic bullet’ conditions Photo-oxidative ‘activation’ of benzylic ‘R’ groups • 2-naphthylmethyl groups can be selectively 'activated' by photo-oxidation with Cu(II) • mechanism: – cf. Otsuji Chem. Lett. 1988, 229 [DOI] OEt 2-Nap Ge 2-Nap O OMe OEt O Ph Ge Ph OMe with Chris Gripton, Joseph Hannah & Chih-Chung Tseng Appl. Organomet. Chem. 2007, 21, 572 [DOI] The photolysis apparatus • ...a tower PC case: ...a Cathodeon HPW 125W lamp Convenient monitoring – 19F NMR • sequential photooxidation of both groups monitored by 19F NMR: OMe 2-Nap C8F17 Ge 2-Nap OMe Cu(BF4)2 (4 eq) MeCN:MeOH (3:1) h, pyrex filter 10 min OMe 2-Nap C8F17 F Ge OMe ~1 h C8F17 FF Ge OMe with Chih-Chung Tseng Scope of germyl-Stille aryl-aryl cross-coupling 2-Nap C8F17 2-Nap Ge R Cu(BF4)2 (4 eq) MeCN:MeOH (3:1) h, pyrex filter ~2 h C8F17 OMe (2 eq) F F Ge R PdCl2(MeCN)2 (10 mol%) P(2-Tol)3 (15 mol%) TBAF·3H2O (2.7 eq), CuI (1 eq) DMF, 120 °C, 16 h Ar-Br (2 eq) Ar R # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 R 4-OMe 4-OMe 4-OMe 4-OMe 4-Me 4-Me 4-Me 4-Me H H H H 4-Cl 4-Cl 4-Cl 2-OMe 2-OMe 2-OMe 2-OMe 4-CF3 4-CF3 Ar 3,5-(CF3)2C6H3 4-ClC6H4 4-BnOC6H4 1-Nap 3,5-(CF3)2C6H3 4-ClC6H4 4-BnOC6H4 1-Nap 3,5-(CF3)2C6H3 4-ClC6H4 4-BnOC6H4 1-Nap 3,5-(CF3)2C6H3 4-BnOC6H4 1-Nap 3,5-(CF3)2C6H3 4-ClC6H4 4-BnOC6H4 1-Nap 3,5-(CF3)2C6H3 4-ClC6H4 Yield/% 96 85 65 75 84 69 48 71 74 63 40 60 71 42 75 65 49 11 27 26 11 with Chih-Chung Tseng, Joseph Hannah & Chirs Gripton Chem. Comm. 2007, 2926 [DOI] Total synthesis of aspercyclide A – a natural product antagonist of the IgE-FceRI PPI Aspergillus sp. Small molecule antagonists of IgE-FceRI PPI • Fluorescein dyes MW ~700–1100 Da – e.g. Na2-Rose Bengal – Cheng (Heska Corp.) US patent 5,965,605 12th Oct 1999 – IC50 = 0.5 mM (MW = 1017 Da) • (+) Aspercyclide A MW 410 Da – – – Soil fungus metabolite ex. Aspergillus sp. Singh (Merck) Tetrahedron Lett. 2004, 45, 7605 [DOI] IC50 of 200 mM (MW = 410 Da) X-ray MM2 (±)-Aspercyclide A – Syntetic strategy • Features & strategy – – – – – – • 11 membered ring labile paraquinol trans-alkene anti-1,2-diol hindered ester di-ortho-substituted biaryl ether Aryl-alkene Germyl-Stille key step? Anti-1,2-diol formation & ring B esterification • Boeckman modified Takai-Utimoto Condensation – Boeckman J. Org. Chem. 1998, 63, 3524 [DOI] via • Hindered ester formation with di-ortho-substituted benzoate X-ray with James Carr Ring A synthesis and vinyl germane formation • (E)-Vinyl germane synthesis – • cf. (E)-selective hydroboration: Srebnik Tetrahedron Lett. 1996, 37, 3283 [DOI] Ring A synthesis – Porco Jr Org. Lett. 2001, 3, 1649 [DOI] X-ray with James Carr Biaryl ether formation & germyl-Stille macrocyclisation • Biaryl ether formation – vinyl germane substrate – • cf. Kulkarni Tetrahedron 1988, 44, 5145 [DOI] germyl-Stille macrocyclisation with James Carr & Jimmy Sejberg Org. Biomol.Chem. 2011, 6814 Biaryl ether formation & Heck macrocyclisation • Biaryl ether formation – terminal alkene substrate – • Kulkarni Tetrahedron 1988, 44, 5145 [DOI] Heck macrocyclisation – cf. Nolan J. Organomet. Chem. 2003, 687, 269 [DOI] Entry Additive Ratio A:B:C Conversion ArBr - 0 : 1 : 4.2 100% ArBr AgI (1 eq.) 10 : 5 : 1 30% ArI AgI (1 eq.) 2.5 : 10 : 1 75% (52% isolated) Aromatic Finklestein: Buchwald J. Am. Chem. Soc. 2002, 124, 14884 [DOI] with James Carr Deprotection & oxidation • Acetal hydrolysis & benzylic oxidation... • Need a new C19 OH protecting group… X-ray with James Carr Use of PMB protection – synthesis of (±)-aspercyclide with James Carr & Daniel Offermann Chem. Commun., 2010, 46, 1777 [DOI] Aspercyclide A & its C19 Me ether – ELISA activity • Racemic ‘Nat Prod’ vs. C19 Me ether – – – • ELISA (±)-C19 Me ether is equipotent wrt parent! IC50 ~50 mM Enantiomers of C19 Me ether – – – – Separation by CSP-HPLC (Chiralpak IA) ELISA (+)-C19 Me ether has natural configuration 10 fold more IC50 ~50 mM Entry IC50 (µM) 1 Compound (% ee) (+)-asp (98.4) 2 (–)-31 (98.8) 483 ± 105 3 (±)-31 56 ± 2 40 ± 1 CD curve for (+)-aspercyclide with Jimmy Sejberg, Helena Dennison & Mary Holdom (KCL) Enantioselective synthesis of ()-aspercyclide A cf. Krische J. Org. Chem. 2011, 76, 2350 [DOI] with Jimmy Sejberg SAR studies - Ongoing work... • Synthesis of analogues → SAR – • with Helena Dennison & Jimmy Sejberg Co-crystallisation with protein, SPR , NMR... – – with Lucy Smith, IC with Brian Sutton & Andrew Beavil, KCL SAR studies – aspercyclide C19 OMe analogues... • A-ring analogues → SAR • B-ring analogues → SAR with Jimmy Sejberg, Helena Dennison & Lucy Smith SAR studies – aspercyclide C19 OMe analogues... • Macrocycle ‘strap’ analogues → SAR • Dibenzofuran A-ring & ‘strap’ analogues → SAR with Jimmy Sejberg, Helena Dennison & Lucy Smith SAR studies – aspercyclide C19 OMe analogues... • Dibenzofuran B-ring & ‘strap’ analogues → SAR with Jimmy Sejberg, Helena Dennison & Lucy Smith Acknowledgements • peptides: John McKendrick & Ratnasothy Srikaran (Birgit Helm @MBB, Sheffield), Daniel Offermann, Bingli Mo, Jimmy Sejberg & Lucy Smith (Robin Leatherbarrow @IC; Andrew Beavil @KCL; Brian Sutton @KCL; Mary Holdom @KCL) Germyl-Stille: Chris Gripton, (Jan Scinski @GSK), Joseph Hannah & Chih-chung (Jimy) Tseng aspercyclide A: James Carr (Steve Lindell @)Bayer CropScience), Daniel Offermann , Jimmy Sejberg & Helena Dennison (Keith Spencer & Kevin Foote@Arrow Therapeutics/AstraZeneca; Fabienne Saab @KCL) X-ray: Chris Frampton @ Pharmorphix & Andrew J.P. White @IC • EPSRC, Pfizer, Roche, Bayer CropScience, AstraZeneca, Novartis, Wellcome Trust, MRC, EU FP7 Marie Curie • • •
© Copyright 2026 Paperzz