EPIGENETIC MODIFICATION FOR THE FUTURE TREATMENT OF INFLAMMATORY DISEASE Peter J Barnes FRS, FMedSci National Heart & Lung Institute Imperial College, London, UK Inflammation 2010: RSC Meeting November 2010 Imperial College Royal Brompton Hospital THERAPEUTIC POTENTIAL OF EPIGENETICS EPIGENETICS: non genetic changes in chromatin structure resulting in changes in gene expression • DNA methylationmethylation- longlong-term changes, developmental • Histone modification DNA methylation • DNA methyltransferase inhibitors (e.g. azacytidine): azacytidine): reverse silencing of good genes • Stimulate methylation: silence bad genes • Applicable to lung cancer, inflammation? • Problems of specificity and targeting Histone modification • Involved in cancer, fibrosis, inflammation • Small molecule modifiers now identified (including existing therapies) 1 INFLAMMATORY GENE TRANSCRIPTION HAT = histone acetyltransferase Multiple transcription factors NFNF-B STATs mRNA APAP-1 CBP CREB HAT Core histones RNA polymerase II Histone acetylation Ac Ac Ac Ac Ac Ac Repressive chromatin Decreased transcription Inflammatory gene repression Ac Ac Ac Ac Ac Ac Active chromatin Increased transcription Inflammatory gene expression CHROMATIN STRUCTURE H4 H4 DNA * =Acetylation sites: Lysine residues 2 HISTONE ACETYLATION DNA Nucleosome H4 H3 H3 Histone octamer H2A H2B N terminal SGRGKGGKGLGKGGAKRHRK 5 8 12 -CH2-CH2-CH2-CH2-NH3+ Lysine 16 HAT HDAC Histone 4 -CH2-CH2-CH2-CH2-NHNH-COCO-CH3 -acetyl-Lysine HISTONE ACETYLATION AND GENE TRANSCRIPTION Gene repression Gene transcription DNA Nucleosome (histone octamers) RNA polymerase II Transcription factor Acetylation of Lys Histone deacetylation HDAC 11-11 COREPRESSORS Histone acetylation HATs: CBP, p300, pCAF etc COACTIVATORS 3 HISTONE ACETYLATION A549 cells HAT activity (dpm/µg protein) AntiAnti-acetylated histone H4 + ILIL-1ß Histone acetyltransferase ** 150 100 * 50 0 nucleus 0 0.01 0.1 1 IL-1ß (ng/mL) Ito K et al: Mol Cell Biol 2000 HISTONE ACETYLATION AND GENE EXPRESSION Inflammatory stimuli e.g. IL-1ß, TNF- IKK2 NF-κB regulated genes p65CXCL1, NF-B • Chemokines: CXCL1 CXCL8, CCL2, CCL2, CCL5, CCL5, CCL11 IB , CXCL8, • Cytokines: p50 GMTNFGM-CSF, activation TNF-α, ILIL-1β, ILIL-6 • Enzymes: iNOS, cPLA , COX2, MMPMMP-9 Inflammatory protein 2 COX (e.g. GM-CSF) • Receptors: NK1, NK2, bradykinin B1, B2 • Peptides:p65 endothelin-1 endothelin CBP Co-activators • Adhesion mols: : ICAM1 ICAM mols p50 HAT Acetylation Inflammatory Gene transcription Gene activation Gene repression 4 ACTIVATION OF INFLAMMATORY GENES INFLAMMATORY GENE REGULATION INFLAMMATION INFLAMMATORY PROTEINs INFLAMMATION Corticosteroids e.g. GMGM-CSF, ILIL-8 Coactivators e.g. CBP ↓ HAT ↑HDAC HDAC2 HAT Transcription factors e.g. NFNF-B Pol2 Histone acetylation AcAc- Core histones Repressed chromatin CLOSED Ac- mRNA Histone deacetylation Ac- mRNA AcAcAcAc- Activated chromatin OPEN Repressed chromatin CLOSED 5 EFFECT OF CORTICOSTEROID ON HDAC A549 cells HDAC activity 75 HDAC activity (dpm) p65 (NF-B) immunoprecipitates HDAC2 protein ** ** 50 - * - IL-1ß Dex (10-10M) Anti-HDAC2 25 Anti-p65 0 IL-1ß - + + + + + Dex - - 12 10 8 6 Ito K et al: Mol Cell Biol 2000 CHROMATIN IMMUNOPRECIPITATION (ChIP) ASSAY GM-CSF promoter (-70-+32bp) AcK8 IP NS IL-1 Dex 10 8 6 6 (-log M) Acetylation of lysine 8 on histone H4 6 CORTICOSTEROID SUPPRESSION OF INFLAMMATORY GENES Inflammatory stimuli Corticosteroids e.g. ILIL-1ß, TNFTNF- NFNF-B Activated GR: highly specific for p65 GR p50 activated inflammatory gene complex (recognition of histone acetylation signature) Inflammatory protein CoCo-activators (e.g. GMGM-CSF) Recruitment p65 p50 CBP HAT Acetylation Inflammatory Gene transcription Gene activation GR HDAC2 CoCo-repressors Deacetylation Gene repression Inflammatory gene transcription EFFECT OF STEROID ON INFLAMMATORY GENES 7 ↓HDAC EXPRESSION IN COPD MACROPHAGES Histone deacetylases (HDAC1-11): (vs. TSA inducible TNF- prod) • reverse histone acetylation Alveolar macrophages • switch off gene transcription ↓HDAC→↑ TNFα HDAC activity • HDAC2 switches off inflammatory genes r=0.92, p=<0.001 • HDAC2 recruited by glucocorticoid receptors to (dpm/µg protein) HDAC activity TNF- production 1.5 150 IgG control HDAC1 1.0 HDAC2 100 activated inflammatory genes: smoker NonNon-smoker P<0.01 mediates suppression of inflammation by steroids 0.5 50 0 P<0.001 nonnon-smoker Smoker 0.0 0 50 NonNon-sm Smoker COPD 100 150 200 Total HDAC activity (dpm) Ito K et al: FASEB J 2001 CORRELATION OF HDAC TO STEROID RESPONSE Alveolar macrophage: normal smokers and nonnon-smokers ILIL-8 inhibition r = 0.88 p =0.0001 100 Inhibitory effect of Dex on TNF- (%) Inhibitory effect of Dex on TNF- (%) TNFTNF- inhibition 50 0 r = 0.65 p =0.024 100 50 0 0 50 100 150 200 HDAC activity dpm/mg protein 0 50 100 150 200 HDAC activity dpm/mg protein Ito K et al: FASEB J 2001 8 HDAC2 KNOCK-DOWN: RNAi Alveolar/sputum macrophages H1 KD H2 KD H2 KD Sc NT GM-CSF(ng/ml) HDAC2 3.0 2.0 1.0 0 * * Non-treated Ito K et al:: J Exp Med 2006 Scrambled Non-treated LPS HDAC2 KD LPS + Dex (10-6M) HDAC2 IN COPD LUNG Peripheral lung (surgical resection) 1.0 ** 3 ** 2 1 ↑ Histone acetylation of *IL-8 gene correlated with ↓ HDAC2 0.5 → Neutrophilic inflammation 1 *** 0 NonNormal COPD smokers smokers Ito K et al: N Engl J Med 2005 2 IL-8 promoter acetylation (x10-3M) HDAC2 IL-8 mRNA HDAC2 expression (ratio vs histone-1) 3 H4 acetylation of κB binding site on IL-8 promoter (ChIP) 0 0.0 NonNormal smokers smokers COPD IL-8 mRNA (RT-PCR) 9 HDAC2 AND STEROID RESPONSIVENESS IN COPD Alveolar macrophages HDAC2 COPD NT Em H2 HDAC activity COPD macrophages Plasmid vector with HDAC2 5.0 GMGM-CSF secretion Restores n=6 HDAC2 to normal 200 ** 100 GM-CSF (ng/ml) HDAC activity (ΔAFU) 300 non-smoker NT Em H2 0 ** 0 normal smoker COPD Ito K et al: J Exp Med 2006 2.5 Control Empty vector LPS HDAC2 vector HDAC1 vector LPS + dexamethasone (1μ (1μM) Sm COPD AntiAnti-NT O2.- + NO. superoxide nitric anions oxide Ito K et al: BBRC 2004 HDAC2 activity AntiAnti-HDAC2 ONOO- (dpm/HDAC2) C 0.75 NitrotyrosineNitrotyrosine-HDAC2 Exhaled Peroxynitrite 0.50 400 Peroxynitrite (nM) HDAC2 immunoprecipitates Nitro--Tyr/HDAC2 ratio Nitro NITRATION AND HDAC2 ACTIVITY p<0.001 0.25 300 0 200 Normal Smoker COPD 0.50 100 peroxynitrite 0.25 3-nitrotyrosine HDAC2 activity stable 0 N COPD Osoata G et al: Chest 2009 Altered function? 10 PEROXYNITRITE INDUCES STEROID RESISTANCE GM-CSF (% of control) Human airway epithelial cells 100 SINSIN-1: peroxynitrite generator 75 IL-1ß + SIN-1 (500µM) 50 25 IL-1ß 0 C -12 -11 -10 -9 -8 -7 -6 [Dexamethasone (-log M)] Ito K et al: BBRC 2004 CORTICOSTEROID RESISTANCE IN COPD Barnes PJ: Ann Rev Physiol 2009 Cigarette smoke ANTIOXIDANTS .O 2 NO iNOS Peroxynitrite THEOPHYLLINE HDAC activator COPD Inflammation NO Tyr146 HDAC2 iNOS INHIBITORS Peroxynitrite scavengers Tyr253 NO Ub Destruction by Ub 28S proteasome Ub Ub Proteasome inhibitors Ub Ub E3 ligase inhibitors Inflammatory genes Osoata G et al: BBRC 2009 Inflammatory Inflammatory genes genes Response Responsetotosteroids steroids 11 CORTICOSTEROID RESISTANCE Nitrative stress Oxidative stress Peroxynitrite Cell membrane ↑PI3K-δ P Ub Akt Ub Ub Ub NO Ub Tyr UbUbUb P ↓↓HDAC2 HDAC2 ↓HDAC2 Steroid resistance PI3K-Akt PATHWAY Oxidative stress Akt (PKB) HDAC2 P P STEROID RESISTANCE To Y et al: Am J Respir Crit Care Med 2010 PI3K activation ** 0.09 0.06 0.03 0.00 PI3K-)/GNB2L1 110α 110α 110β PI3K 110β 110γ 110γ 110δ 110δ pAkt / Akt 0.12 Peripheral lung 0.4 Normal COPD PI3KPI3K- mRNA * 0.3 0.2 0.1 0.0 Normal COPD 12 HDAC activity (AFU/10µg) THEOPHYLLINE AS HDAC ACTIVATOR 20000 COPD macrophages: nuclear lysates ** 15000 therapeutic concentrations: Theophylline in low • activates HDAC- esp when reduced • via a novel mechanism (not PDE/adenosine antag) antag) • markedly potentiates steroid effects • reverses steroid resistance 10000 5000 0 B/L Ito K et al: PNAS 2002, Cosio B et al: J Exp Med 2004 Theo (10-6M) Cosio B et al: J Exp Med 2004 THEOPHYLLINE RESTORES STEROID RESPONSE C IL-8 (ng/ml) 7.5 Alveolar macrophages: smokers HDAC inhibitor 5.0 * 2.5 0.0 Cntrl LPS Cosio B et al: J Exp Med 2004 Theo Dex (1μ (1μM) (1nM) Theo +Dex TSA 13 THEOPHYLLINE EFFECT ON ChIP ANALYSIS H4 acetylation at κB site Histone acetylation of NFNF-κB site of ILIL-8 promoter 0.6 ChIP analysis + TNFTNF-α TNFTNF-α + smoke 0.4 ** 0.2 ** *** 0 Cntl TNF-α Theo Dex Marwick J et al: BBRC 2008 Dex+ Theo TNF-α + CSM Theo Dex Dex+ Theo EFFECT OF THEOPHYLLINE IN SMOKING MICE Theophylline 3 mg/kg p.o. p.o. (plasma concentration 1.5 mg/L) Alveolar Macrophages (% non-treated) Lung HDAC activity * ** HDAC activity (mg of standard) 20 10 100 Similar results with inhaled Reversed theophylline by HDAC NS NS inhibitor No detectable plasma levels (TSA) TSA) Daily cigarette x 11 days 50 ↑ Neutrophils ↑ Macrophages SteroidSteroid-resistant inflammation 0 Smoking Lung Inflammation - + Fox JC et al: ATS 2007 + Theo ** 0 NT Dex Theo Dex+ Theo 14 REVERSAL OF SMOKESMOKE-INDUCED INFLAMMATION A/J Mice Drugs Cigarette smoke (4%, 30 min) Neutrophils (x104 cells/ml) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 days BAL BAL Neutrophils NS NS 1.0 Theophylline 10mg/kg orally (plasma conc 4.0± 4.0±0.9mg/L) 0.9mg/L) ** 0.5 ** 0.0 Smoke Dex Theo Air To Y et al: AJRCCM 2010 Dex+Theo COPD PATIENTS: CORTICOSTEROIDS + THEOPHYLLINE Fluticasone F+T combination Theophylline Placebo n=30 4 75 8 wk Sputum neutrophil elastase Sputum neutrophils 150 HDAC activity 1000 p < 0.01 PBMCs 750 HNE (μg/mL) 100 Total HDAC activity [relative light units] Neutrophils (%) 0 Induced sputum Plasma theophylline~8mg/L 10 3 500 No 50 difference in fluticasone or theophylline alone treatment 25 0 Baseline 250 p<0.01 0 FP FP+T FP + theo 0 Baseline p<0.01 FP&T Ford P et al: Chest 2010 15 STEROID RESISTANCE IN SMOKING ASTHMATICS NONNON-SMOKING ASTHMA SMOKING ASTHMA Cigarette smoke Inflammatory stimuli Corticosteroids Oxidative stress Peroxynitrite GR NFNF-B NFNF-B HDAC2 GMGM-CSF ILIL-8 eotaxin HDAC2 Histone Histone acetylation Steroid acetylation resistance Steroid response GMGMCSF GM--CSF GM ILIL8 IL--8 IL eotaxin eotaxin Histone acetylation THEOPHYLLINE + ICS IN SMOKING ASTHMATICS Serum theophylline 5 mg/l Change in PEF (L/min) 40 P=0.06 P=0.008 Theophylline + inhaled BDP (n=22) 30 20 10 0 Theophylline (n=23) 1 -10 14 Duration (days) 28 Inhaled BDP (n=23) -20 Spears M et al: ERJ 2009 16 HOW DOES THEOPHYLLINE RESTORE HDAC? ** 125 ** 15 10 5 0 Oxidative stress Immunoprecipitated PI3KPI3K-δ A549 cells * Enzyme activity (NT-100) HDAC activity (g of standard) U937 cells NonNontreated treated Theo (1μM) LY Intact (IC50=134µ =134µM) Black Box PI3K 100 Theophylline 75 50 HDAC2 activity 25 H2O2 stimulated (IC50=2.1µ 2.1µM) 0 9 8 7 6 5 4 3 Steroid sensitivity [Theophylline (-log10M)] H2O2 [200 μM] LY: LY 294002, non-selective PI3K inhibitor PI3K-δ INHIBITION IN VIVO A/J Mice Drugs Cigarette smoke (4%, 30 min) Neutrophils (x104 cells/ml) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 days *** 2.0 BAL NS IC87114: PI3KPI3K-δ inhibitor LY294002: pan PI3K inhibitor NS 1.0 ** 0 Air Dex Smoke Dex+IC IC ** Dex+LY 17 BAL Neutrophils/ml x 103) PI3K-δ NULL MICE 250 200 Sham Smoke + budesonide Smoke SteroidSteroid-resistant SteroidSteroidSteroidSteroid-resistant responsive 150 * 100 50 0 Wild type (balb/c) PI3K-γ null PI3K-δ null Marwick J et al: AJRCCM 2009 UNEXPECTED SYNERGY Borisy AA et al: PNAS 2003 Cells x106 5 4 Brown Norwayscreening: rats: inhaled ovalbumin challenge High throughput synergy Targeting multiple interacting pathways Inhaled administration 3 2 *** 1 0 B/L Vehicle Bud NT Bud+NT (CRx-170) 18 NORTRIPTYLENE AND HDAC REVERSAL Effect of nortriptylene hydrochloride HDAC activity U937 cells 1.0 0.5 40 20 0 0 PI3Kδ PI3Kδ inhibition 4 Imminoprecipitated enzyme 3 pAkt/Akt 60 % Inhibition HDAC activity (fold change) p<0.05 IC50=0.82μ =0.82μM (No effect on PI3Kα, PI3Kγ) 0.001 0.01 PI3K activity p<0.05 2 1 0.1 1 Control H2O2 H2O2 + [Nortiptylene (μM)] NH (1μM) 0 Control H2O2 H2O2 + NH (1μM) REVERSAL OF CORTICOSTEROID RESISTANCE Oxidative stress Antioxidants Nrf2 activators (sulforaphane) Cell membrane ↑PI3K-δ ↓ PI3KPI3K-δ P Akt ↓ AktAkt-1 P HDAC2 ↑↓HDAC2 Reversal Steroid of steroid resistance resistance THEOPHYLLINE Nortriptyline PI3KPI3K-δ inhibitors Akt inhibitors HDAC2 activators? Macrolides (non(non-antibiotic) 19 MACROLIDES ↓HDAC2 TRANSCRIPTION MacrolidesREVERSE prevent decrease in promoter activity Relative luminescence HDAC2 promoter activity 1 Non-antibiotic macrolide Erythromycin 0.8 0.6 0.4 0.2 0 Normoxia Hypoxia EM EM703 EPIGENETIC MODIFICATION OF HISTONES Phosphorylation Kinases Phosphatases Kinase inhibitors P Ser Acetylation HAT HDAC2 HAT inhibitors Lys AcAc- activators HDAC Nitration Denitrases NO Tyr Ubiquitination Ub E3 ligases Proteasome Deubiquitinases inhibitors Ub SUMOylation HISTONES (H3, H4) Lys Su Methylation HMT Demethylases Methyltransferase Lys inhibitors Arg Me Inflammatory genes 20 METHYLATION AND STEROID ACTION GM-CSF release (ng/ml) 5-aza-dC: 5-aza-2’-deoxycytidine: Methytransferase inhibitor ** 1.4 1.2 1.0 ** 0.8 0.6 0.4 0.2 0 IL-1ß Mometasone Kagoshima M et al: Eur J Pharmacol 2001 Mometasone + 5-aza-dC EFFECT OF STEROID ON HISTONE METHYLATION TGFTGF-β1 promoter AntiAnti-diMeH3K9 ChIP ** 1.25 Enrichment of IP DNA HMT associates with GR Contr 1.00 GR ** 0.75 0.50 IP: SUV39H1 (HMT) IB: GR 0.25 0.00 FP (10-8M) Contr IL-1β IL-1β + FP FP: fluticasone propionate 21 CORTICOSTEROID INHIBITION OF TGF-β1 IL-1 TGF-β1 CBP p65 GR Steroid HDAC2 RNA Pol2 MeH3K9 AcH4 MeH3K9 MeH3K4 AcH3 TGFTGF-1 mRNA SUV TGF-1 Promoter SUV = histone methyltransferase Lee K et al: J Immunol 2006 • • • CONCLUSIONS Multiple histone modifications regulated by enzymes involved in regulation of inflammatory genes acetylation, methylation, phosphorylation, nitration, ubiquitination, ubiquitination, sumoylation HDAC2 recruitment mediates antiinfl effects of corticosteroids ↓ in COPD: - due to oxidative/nitrative stress HDAC2 activity restored by gene transfer, theophylline reverse corticosteroid resistance in COPD cells • Theophylline ↑ in HDAC2 mediated by PI3Kδ PI3Kδ inhibition • Histone methylation (H3K9) ↑ by corticosteroids HMT (SUV39H1) recruited by corticosteroids • New therapeutic approaches targeting epigenetic changes now possible 22 ACKNOWLEDGEMENTS NHLI Imperial College Royal Brompton Hospital Ian Adcock Caterina Brindicci Borja Cosio Gaetano Caramori Fan Chung Louise Donnelly Paul Ford Mark Hew Kaz Ito Ellen Jazrawi Masa Kagoshima Vicki Katsaounou Vera Keatings John Marwick Grace Osoata Yasuo To Loukia Tsaprouni Satoshi Yamamura Jim Hogg (UBC, Vancouver) Mary FitzGerald (Argenta) Argenta) Yasuo Kizawa (Nihon University) Neil Thomson (Glasgow University) FUNDED BY: Wellcome Trust MRC Asthma UK GSK MitsubishiMitsubishi-Tanabe Novartis Pfizer 23
© Copyright 2026 Paperzz