ResearchReport TheImpactofTechnologyonContactCenterPerformance SPONSOREDBY: 1 ResearchReport THEIMPACTOFTECHNOLOGY ON CONTACTCENTERPERFORMANCE by BruceL.Belfiore SeniorResearchExecutive CenterforCustomerͲDrivenQualityTM and JohnChatterley DirectorofResearch BenchmarkPortalTM and Dr.NataliePetouhoff ResearchExecutive BenchmarkPortalTM with DeeBuell ResearchAssistant Angel&ChristoTonchev StatisticalAnalysts Sponsoredby: 2012 2 HelenThomas CopyEditor Copyright © 2012 The information contained in this document is the property of BenchmarkPortal.LLC. No part of this publication may be copied,scannedorreproducedwithouttheexpresswrittenconsentof BenchmarkPortal,LLC,126E.ConstanceAve.,SantaBarbara,CA93105. AdditionalcopiesmaybepurchasedbyeͲ[email protected]. 3 ACKNOWLEDGEMENTS Wewouldliketothankthemanymembersofourcontactcentercommunitywhoparticipated inthisresearch.Participationinvolvedcompletingsurveyswithquestionsoncontactcenter metricsandsupportingtechnology.Ourteamdideverythingpossibletosimplifytheprocess; however,wearewellawarethatparticipationrequiredadeterminedeffort,andwewishto acknowledgethateffortwithgratitude. WearealsogratefultoCiscoSystemsforsponsoringthisgroundbreakingstudy.Inparticular, wewishtothankLeonGrekinforhissupportandenthusiasmforthisproject. ColleagueswhospentsignificanttimeassistingthisstudyincludedDeeBuell,AngelandChristo Tonchev,andHelenThomas.Finally,wewouldliketothankourothercolleaguesat BenchmarkPortal,especiallyJoePerez,DaynePetersenandDruPhelpsfortheirsustained supportofthesurveyprocessduringthedataentryprocessandexplainingdefinitionsas needed.Ourappreciationgoes,aswell,toDavidRaiaforhispeerreviewofthedraft.Thank youall. BruceBelfiore JohnChatterley Dr.NataliePetouhoff 4 TableofContents Page 4 Acknowledgements ExecutiveSummary 7 7 7 Introduction KeyFindings BackgroundandPurposeofThisStudy 10 11 TechnologicalMaturityFramework ResearchMethodology 13 13 13 14 15 16 17 17 17 SurveyAssemblyandFielding DataQuality ParticipationbySector StatisticalAnalyticsApproach KPISelection MacroAnalysis DrillͲdownStatisticalAnalysis CombinedEffectAnalysis ResearchFindings:TechnologiesThatImproveKeyPerformanceMetrics 18 MacroFindings DrillͲdownAnalyses CombinedEffectResults 18 20 30 ConclusionsFromtheResearch 31 AppendixA–Biographies 32 AppendixB–Spearman’sCorrelationTables 38 AppendixC–TechnologyDrillͲdownChartsandTables 42 AppendixD–Surveys 47 AppendixE–AboutBenchmarkPortal 62 AppendixF–AboutCisco 63 5 ListofFigures Page Figure1.TheContactCenterMaturityModel 11 Figure2.PercentageofParticipantsbyIndustry 14 Figure3.KeyPerformanceMetrics 16 Figure4.KeyMetricsThatImproveasOverallTechnologicalMaturityIncreases 18 Figure5.TechnologiesThatImproveFirstContactResolution 20 Figure6.HypotheticalFinancialImpactofImprovedFirstCallResolution 21 Figure7.HypotheticalImprovementinCustomerSatisfaction 22 Figure8.TechnologyImpactonCostperCall(%) 22 Figure9.TechnologyImpactonCustomerSatisfactionTopBox(%) 23 Figure10.TechnologyImpactonCustomerSatisfactionBottomBox(%) 24 Figure11.TechnologyImpactonAgentSatisfactionTopBox(%) 25 Figure12.TechnologyImpactonInboundCallsperAgentperHour(%) 26 Figure13.TechnologyImpactonQueueTime 27 Figure14.TechnologyImpactonfirstContactResolutionEͲmail(%) 27 Figure15.TechnologyImpactonCostperContactEͲmail(%) 28 Figure16.TechnologyImpactonCostperContact–Chat(%) 28 Figure17.TechnologyImpactonFirstContactResolutionChat%) 29 Figure18.CombinedEffectsAnalyses 30 6 EXECUTIVESUMMARY INTRODUCTION Contactcentersspendmillionsofdollarseachyearontechnologyinhopesofimprovingtheir company’scompetitiveposition,operationalperformanceandcoststructure.Managersoften assumethatmoresophisticatedcontactcentertechnologywillprovidebetterperformance andwillimproveKeyPerformanceIndicators,suchascustomersatisfaction,firstcontact resolutionandcostpercontact. Whilethetruthofthisassumptionissometimestrackedandmeasuredbyindividualcenters undergoingatechnologyupgradeprocess,therehasneverbeenastatisticallyvalidresearch study,involvingmanydiversecontactcenters,thatindicateswhetherarelationshiptrulydoes existbetweenmoreadvancedtechnologyandbetterperformance.Thisresearchpaperisthe firstofitskindtocollectandanalyzedatafromalargenumberofcontactcenterstodetermine theexistenceandintensityofthisrelationship.Itincludesvalidateddatasetsfrom143contact centers,representingabroadcrossͲsectionofindustries. KEYFINDINGS Thisresearchprovidespositive,statisticallyrelevantevidenceshowingthatmoreadvanced contactcentertechnologyprovidesbettercontactcenterperformance.Moreadvanced technologiesresultinmoreeffectiveandefficientcustomerinteractions.Forinstance,they: x ImproveCustomerSatisfaction. x LowerCostperCall x IncreaseFirstContactResolution x IncreaseCallsHandledperAgentperHour x ReduceQueueTime x ImproveAgentSatisfaction Inparticularthestudyshowedthatcontactcenterswithmoreadvancedtechnologies: x Improvetheirfirstcallresolutionratebetween4%to13%usingtechnologiessuchas: o Contactdataanalytics o Advancedroutingcapabilities o Advancedreportingandanalyticaltools x ReportCostsPerCallthatarelowerbyasmuchas35%withtechnologiessuchas: 7 o o o o x PresenceͲbasedexpertescalation MultiͲcriteriaskillsͲbasedrouting Courtesycallbacks IntegrationofAppsandCTI(computerͲtelephonyintegration) ImproveTopBoxCustomerSatisfaction(i.e.,customerswhoratetheiroverall satisfactionwithaninteractionas5outof5)bybetween5%and7%usingtechnologies like: o CradleͲtoͲGraveReporting o ContactDataAnalytics o WorkforceManagement x x x x ImproveBottomBoxCustomerSatisfaction(i.e.,customerswhoratetheiroverall satisfactionwithaninteractionas1outof5)between39%and66%using: o WorkforceManagement o SpeechRecognition o CallRecording&Retrieval o TouchͲtoneIVR(DTMF) ImproveCallsperAgentperHourbetween6%and18%usingtechnologieslike: o MultiͲCriteriaRouting o CTI&AppsIntegration o PresenceͲBasedExpertEscalation o UnifiedCrossͲChannelRouting o NaturalLanguageIVR ImproveTopBoxAgentSatisfaction(i.e.agentswhoratetheiroverallsatisfactionwith theirworkas1outof5)between4%to11%withtechnologiesincluding: o AdvancedReporting&Analytics o AgentDesktopwithCTI o CTI&AppsIntegration o RealͲtimeAgentFeedbackTools ReduceAverageQueueTimebetween12%to43%withtechnologiesincluding: o PresenceͲBasedExpertEscalation o CourtesyCallͲBackwhileinQueue o BlendedRouting o MultiͲCriteriaRouting x ImproveMultiͲChannel(eͲmailandchat)performancebyimplementingtechnologies suchas: o UniversalMultiͲChannelQueue o UnifiedCrossͲChannelRouting 8 o CTI&AppsIntegration o andothers Theresultsindicatethattoday'scontactcentertechnologiescanbepotentenablersofsuperior performance,bothintermsofsatisfyingcustomersandintermsofimprovingfinancial performance. Also,theresearchfoundthatqualityandcostsarenotnecessarilyatodds.Withincreased technology,contactcenterscanenjoybothlowercostpercallandhighercustomer satisfaction. 9 BACKGROUNDANDPURPOSEOFTHISSTUDY BenchmarkPortalhascollectedcallcentermetricsandconductedresearchoncontactcenter technologysinceitsbeginningsin1995,atPurdueUniversity.Ourresearchshowsthata commonattributeofgreatcontactcentersistheirabilitytoassembleandoptimizethree elements:people,processesandtechnology. i Thepresentstudyfocusesonthestatisticalimpactoftechnologyoncontactcenter performance.Itisoneofthe"bigpicture"issuesforthecontactcentersectorthathasnever beensubjectedtorigorousscientificinquiry.Naturally,thisissuehasimportantimplications formanagementdecisionsregardingtechnologyacquisition,andthusmayhelpdetermine whethermanagerscanjustifyrequeststotheirseniorexecutivesfortechnologyinvestmentsby usingscientificallyͲsupportedevidenceaboutcostsavingsandimprovedqualityofservice.(See "Conundrum"boxbelow). The"CostCenter"Conundrum Thecommonperceptionofmanytopexecutivesisthatthecontactcenterisanunavoidable costcenter.Theyinsistthatmanagerssqueezeevermoreoutoftheirpeople,orfindwaysto cutwasteoutofprocesses,ratherthanconsideringinvestmentintechnology.However,our researchoverthelastdecadehasindicatedthatinvestmentinnewtechnologygenerally improvescontactcenteroperationalprocessesanddeliversbetterfinancialresults.We frequentlyfindthattechnologyinvestmentsincustomercontactcenterspayforthemselves withinayearortwo.Infact,technologyacquisitionsforthecustomercontactareaoftenyield higherROI’sthaninvestmentsmadeinacompany'scoreproductsandservices,indicatingthat wellͲchosenpurchasesincontactcentertechnologyareanimperativeforoptimizingenterprise value.However,amajor,statisticallyͲrelevantstudyonthistopichasbeenmissinguntilnow. 10 TechnologicalMaturityFramework Theframeworkusedinthisstudytodetermineacontactcenter’stechnologymaturityiscalled theContactCenterMaturityModel,(seeFigure1below).Init,fortyͲeightcontactcenter technologiesaredividedintosixgroups,or"silos,"whichcorrespondtotheflowand managementofcontactsfrombeginningtoend: 1. 2. 3. 4. 5. 6. Connect.Thepointofentryforacustomercontact Recognize.Thesystemdeterminesthegeneralnatureoftheinquiryand,perhaps,the identityoftherequestor Route.Aresource(automatedorhuman)isassignedtoaddresstheinquiry Queue.Theinquiryis"held"untilaresourceisavailabletoaddressit Resolve.Thecustomerinquiryisaddressedand,hopefully,resolved,ineitheran automatedfashionorbyaliveagent. Review.Theeffectivenessandefficiencyofhandlinginquiriesinphases1through5 abovearemeasuredandassessedtodeterminehowwelltheyweredone. Receive Answertoa prospector customerinquiry Web Contact Chat E-mail Response System E-mail Management System Recognize Determinenature ofinquiry and requestoridentity Speech Recognition Route Assignresourceto addressinquiry Universal Multi Channel Queue Competency Based Routing Cross -Sell Message w hile in Queue Unified Cross Channel Routing Routing beyond Call Center Blended Routing ANI / DNIS for Customer ID Routing across ACDs ACD DTMF (Touchtone) IVR Pre -Routing to ACDs Skills Based Routing PBX Separate Toll Free Numbers Holdinquiry to optimizeresource utilization Multi-Criteria Routing Personalized VRU Natural Language IVR Queue Value Based Routing Queue Prioritization Courtesy Call Back w hile in Queue Virtualized Enterprise Queue Resolve Address/resolve customerinquiry Presence - Based Expert Escalation Automated Personal Call Backs Agent Pop-Ups for Up-sell/Cross sell CTI & Apps Integration Announced Wait Time in Queue Recorded Message w hile on Hold Music on Hold Speech Synthesis Apps Assesseffective handling of inquiry Workforce Management Actionable Alerts w ith Solutions Real -time Agent Feedback Tools Contact Data Analytics E-mail Satisfaction System Automated Customer Survey (IVR) Advanced Reporting & Analytics Agent Desktop with CTI Figure1.TheContactCenterMaturityModel 11 a t ur i y t Call Recording & Retrieval Agent Trace CRM Desktop System Silent Call Monitoring Source: Cisco CCG and BenchmarkPortal Customer Business Transformation (C BT). Patent Pending M Cradle to Grave Reporting ACD Based Queue No Queue, Hunt Group Review Contactcenterswithonlybasiclevelsoftechnologyarerepresentedbythebottomrowofthe chart.Sophisticationandadvancedcapabilitiesincreasefromthebottomtothetopofeach columnandfollowthearrowlabeled"Maturity." Fromthisconceptualstartingpoint,wewereabletoassemblethesurveycomponentsforthe studyandalsodesignthestatisticalanalysesthatwouldallowustodrawconclusionsusefulfor thestudy'sparticipantsandthecontactcentersectoringeneral. 12 ResearchMethodology Wewereconsciousofthegroundbreakingnatureofthisresearchandthechallengesof obtaininggood,abundantdata.Thusweoptedforstraightforwardmethodologiesinexecuting thisstudy,withemphasisonqualityofdata. SurveyAssemblyandFielding Technologycomponent:Acomprehensivetechnologysurveywasconstructedbasedonthe ContactCenterMaturityModel(Figure1),whichincludedquestionsonthosefortyͲeight technologicalfunctionalities.Thissurveywassenttoparticipantsandprovideduswitharich databaseofinformationonthetechnologypossessedbyeachparticipant.(Surveyshownin AppendixD.) Performancedatacomponent:WeutilizedBenchmarkPortal'swellͲknownbenchmarking survey,theInͲDepthRealityCheck(IDRC),whichgathersdataonthevoicechannel.TheIDRC wassupplementedbysurveyquestionsonmultiͲchannelmetrics(eͲmailandchat).Intotal,65 datapointswererequestedfromparticipants,coveringeverythingfromvolumeofinteractions, tohumanresources,tocostͲrelatedmetricsandqualityͲrelatedmetrics.(Surveysshownin AppendixD.)Wenotethat,whileanincreasingnumberofcontactcentersarebecomingmultiͲ channel,thelevelofmultiͲchanneladoptionisstillfairlylow,andsomecontactcenterswhich haverecentlyaddedextrachannelsdonotyetgatherperformancemetricsonthosechannels. Only13.7%oftherespondentstothisstudycouldprovidemultiͲchanneldata.Weexpectthis toincreaseinthefuture,asmanagerstrytobetterunderstandandoptimizeallchannelsunder theircontrol. ElectronicinvitationstoparticipatewereEͲmailedtomembersoftheBenchmarkPortal communityandtoalistofcontactcenterssuppliedbythestudy'ssponsor,Cisco.Weblinks wereincludedintheinvitationswhichbroughttheparticipanttothesurveys.Participantswho hadrecentlyfilledoutanIDRCwereallowedtousethatdataforpurposesofthisstudy. DataQuality Thefieldingeffortsbroughtin322setsofdatafromparticipants.Weappliedcarefulquality controlstothedata,whichincludedfixedparametersandformulaͲbasedcrosschecksonthe performancedatareceived.Wheretherewereerrorsorquestions,wewentbacktothe participantsoastovalidateorcorrectthesubmission.Ifwewereunabletovalidatedata,the datasetwaseliminated.Attheendoftheprocess,therewere143datasetsthatmetthe standardsrequiredforinclusioninthestudy. 13 ParticipationbySector Theparticipantsincludedinthestudywerefromawidevarietyofsectors;theybrokedownby industryasfollows: PercentageofParticipantsbyIndustry Utilities6.0% ConsumerProducts 5.4% FinancialServices 10.9% Telecom6.5% Technology11.4% HealthCare13.6% Professional Services7.1% Other14.1% Insurance19.6% Manufacturing 5.4% Figure2.PercentageofParticipantsbyIndustry 14 STATISTICALANALYTICSAPPROACH Thestatisticalanalysesperformedinthisstudyweredeterminedbytwomainfactors:the objectiveofthecurrentresearchandthenatureofthecollecteddata.Sinceourmaingoalwas toexaminetherelationshipbetweentechnologysophisticationandcallcenterperformance, weperformedtwotypesofanalysisͲacorrelationanalysisandtͲtest.Acorrelationanalysisisa statisticaltestusedtomeasuretheassociationbetweentwovariablesnotnecessarily dependentorindependent.ThetͲtesttakesonevariableandcomparesthedifference betweenthestatisticalaveragesofthetwogroups(i.e.,agroupwhichhasagiventechnology andagroupwhichdoesnot). Asindicatedabove,wecollectedtwomajorsetsofdata:dataontechnologyanddataoncall centerperformance.Theperformancedatasetwaspredominantlycontinuous.Thesetofdata fortechnologywasentirely"nonͲparametric"(ornonͲcontinuous,i.e.,“yes”or“no”answers forpresenceofagiventechnology). Threemaintypesofanalyses(furtherdescribedbelow)wereperformedonthedata: 1. Thefirstone,whichwenamed"MacroAnalysis,"broughttogetherthedataonall technologiesandmajorKeyPerformanceIndicator(KPI)metrics. 2. ThesecondtypeofanalysiswasmetricͲbyͲmetric"DrillͲDownAnalysis,"whichsingled outmajorKPImetricsaffectedbythepresenceofgiventechnologies. 3. Thethirdtypeofanalysis,named“CombinedEffectAnalysis,”examinedtheeffectofall studiedtechnologiesonselectedKPI’ssimultaneously. Inthenextsection,wewillindicatetheKPIsonwhichwefocusedfortheresearch. 15 KPISelection TheKPI'sinthefollowingtableweresingledoutforparticularattention,astheyaremetrics whichmostexecutivesconsiderbellwethersofhealthycontactcenterperformance,intermsof qualityand/orfinancialefficiency: Metric Definition FirstCallResolution (FCR) Thetotalnumbersofcallscompletely resolvedduringthecourseofthefirst callinitiatedbythecustomer(and thereforedonotrequireacallback) dividedbytotalnumberofcalls handledbyagents–inpercent. CallsperAgentper Hour Thenumberofcallshandledbyagents dividedbythenumberofavailable agenthours Keyproductivitymetricwhich improveswhenworkforce scheduling,desktoptechnology andtrainingareoptimized. CostperCall Budgetfortheperioddividedbythe numberofcallshandledinthecall centerforthesameperiod. Importantfinancialmetric whichincludesallappropriate costs CustomerSatisfaction (TopandBottomBox Scores) TopBoxisthepercentageofperfect scores(5outof5)receivedonthe question"Overall,howsatisfiedwere youwiththeinteraction?".Bottom Boxisthepercentageof1outof5 scores. TopBoxisthepercentageofperfect scores(5outof5)receivedonthe question"Overall,howsatisfiedare youwithyourjob?"BottomBoxisthe percentageof1outof5scores. TopandBottomBox Satisfactionarecoremetrics whichindicatequalityofservice asperceivedbythecustomer. AgentSatisfaction (TopandBottomBox Scores) QueueTime Thisistheaveragewaittimethata callerexperienceswaitingforanagent toanswerthetelephoneafterbeing placedinthequeuebytheACD. MultiͲchannelmetrics EͲmailandChatcostsandfirstcontact resolution. Figure3.KeyPerformanceMetrics 16 Significance Consideredthe"magicmetric" bymany,FCRisbothaquality metric(correlatingwithcaller satisfaction)andafinancial metric(costsaver). Calledkey"canaryinthecall center"metricsbytheauthors, theyreflecttheefficacyof technologies,peopleand processesinthecenter,and helppredictcustomer satisfactionaswell. Whiledependentonthelevelof staffingofthecenter,queue timeisalsoheavilyinfluenced bytechnologythatallowsfaster closingofcalls. Whilestillnotmeasured reliablybyamajorityofcenters, thesemetricsaregaining importance. MacroAnalysis Tomeasuretheoveralltechnologicalmaturityofacallcenteranditseffectonperformance, weintroducedatechnologyindexbasedonthepresenceofavailabletechnologies.For example,acallcenterthatreportedtendifferenttypesoftechnologieshadatechnologyindex scoreequalto10.AstheContactCenterMaturityModel(Figure1)shows,moretechnology effectivelymeansmoresophisticatedtechnology,since,forexample,centerswith35ofthe namedtechnologiesarefartherupthematuritychainthancenterswithonly10ofthenamed technologies.Themaximumpotentialscorebasedonourquestionnairewas48 ii andthe averageofthesurveysamplewas24.12.Forthisinitialstudynoweightingofthenamed technologieswasapplied. Spearman’srankcorrelationanalysiswasemployedtodeterminethisMacroeffectof technologyonthecontactcenterperformance.MoreinformationisfoundinAppendixB. DrillͲdownStatisticalAnalysis InadditiontotheMacroAnalysis,wewantedtomeasuretheeffectofindividualtechnologies ontheselectedsetofperformancemetrics.Theresearchteamlookedatcertainkey performancemetricstodeterminewhichspecifictechnologiesshowedanoteworthyimpact. Fortheseanalyses,unpairedtwosampletͲtestswereperformed.Thesetestsassessedthe statisticalsignificanceofthedifferencebetweentheperformancemetricsaveragesofcontact centerswithandwithoutthepresenceofaparticulartechnology.Thestatisticaldetailisin AppendixC. CombinedEffectAnalysis Finally,wewantedtoexaminethecombinedeffectoftechnologyonseveralpairsofcontact centerKPI’s,specificallyCostperCallandCustomerSatisfaction,FirstCallResolutionand CustomerSatisfaction,CostperCallandFirstCallResolution,andCustomerSatisfactionand AgentSatisfaction. Bytakingtheoutputfromtheprevious“DrillͲdownAnalysis”weperformedPearson’s correlationtestsontheaboveKPIpairs.Wecorrelatedthepercentagedifferencebetweenthe averagesofthesampleswithandwithoutthepresenceoftechnologyforthesepairs;i.e.,soͲ calledtͲtests.MoredetailisfoundunderCombinedEffectresults(below). 17 RESEARCHFINDINGS:TECHNOLOGIESTHATIMPROVEKEY PERFORMANCEMETRICS MacroFindings ThefindingsattheMacrolevel,whichconsideredtheoverallimpactoftechnologyon performanceusingSpearmanCorrelationanalysis,includedthefollowing: KeyPerformanceIndicator SpearmanCorrelation (rho) FirstCallResolution AverageCallsperAgentperHour TopBoxAgentSatisfaction Probability (p) 0.2137 0.1848 0.1859 Confidence Interval 0.008 0.012 0.002 95% 95% 95% Figure4.KeyMetricsThatImproveasOverallTechnologicalMaturityIncreases Acrossoursample,itwasshownthathigherlevelsoftechnologicalmaturitycorrespondto improvedlevelsofperformanceinthesekeymetrics. FirstCallResolution(FCR) ThedataindicatethatFCRimprovesreliablyastechnologybecomesmoresophisticated.This findingwaspredictablebutimportant,sinceFCRisanindicatorthatcallsarebeingreceived androutedtherightwaytosourcesthatcansatisfytheinformationrequestsofthecustomer withtheinformationathandͲwithouthavingtoresearchtheissueandrevert,orelsereferout thecustomer.Technologyiskeytoaccomplishingthis. AverageCallsHandledperAgentperHour ThedataalsoshowthatmoreadvancedlevelsoftechnologyenablehigherAverageCalls HandledperAgentperHour.Statistically,moreadvancedtechnologieshelpagentsbecome moreeffectiveandefficientserviceprofessionals.Thesetechnologiesmakesureacustomeris directlyconnectedtothesourceofinformationbestsuitedtohelpthem,andenableagentsto accessandinputnecessaryinformationaboutthecustomer,aswellasaccessinformation abouttheproductsandserviceswhicharethesubjectoftheircalls.Combinedwithgood training,thishelpsagentsprocesscallsmorequickly. 18 AgentSatisfaction Agentsatisfactionalsoisgreaterincenterswithmoresophisticatedtechnology.Agents generallywanttohelpcustomers.Stressandfrustrationresultwhensystemsareinadequateor slow,screenslockͲup,manyapplicationsmustbeopenatonce,oragentsdon’thavethe informationtheyneedinfrontofthemtosolveissues,etc.Stresscausessickness,absence, underͲperformance,lowmoraleandhighattritionlevels.Technologiesthatfosterapositive workexperienceandenableagentstocometosuccessfulresolutionswiththeircustomers provideabetteremployeeexperienceaswellasbettercustomerexperiences.Also,ahigher levelofagentsatisfactionpromoteslowerturnoverandreducescoststothecenter. Thus,fromourMacroanalysisweseethatcenterswithhigherlevelsoftechnologycanexpect, onaverage,to: Resolvemorecallsonthefirstcall Handlemorecallsperhour Increasethepercentageofhighlysatisfiedagents. TheContactCenterMaturityModel,Figure1,isrepeatedhereasacourtesy tothereadertoassistinfollowingtheDrillͲDownResearchFindingsbelow. Recognize Route Queue Answertoa prospector customerinquiry Determinenature ofinquiryand requestoridentity Assignresourceto addressinquiry Holdinquiryto optimizeresource utilization Web Contact Chat E-mail Response System E-mail Management System Speech Recognition Multi-Criteria Routing Universal MultiChannel Queue Competency Based Routing Cross-Sell Message while in Queue Personalized VRU Unified CrossChannel Routing Natural Language IVR Routing beyond Call Center Blended Routing ANI / DNIS for Customer ID Routing across ACDs ACD DTMF (Touchtone) IVR Pre-Routing to ACDs Skills Based Routing PBX Separate TollFree Numbers Resolve Value Based Routing Queue Prioritization Courtesy CallBack while in Queue Virtualized Enterprise Queue Presence- Based Expert Escalation Automated Personal CallBacks Agent Pop-Ups for Up-sell/Crosssell CTI & Apps Integration Announced Wait Time in Queue Recorded Message while on Hold Music on Hold Speech Synthesis Apps Assesseffective handlingof inquiry Workforce Management Actionable Alerts with Solutions Real-time Agent Feedback Tools Contact Data Analytics E-mail Satisfaction System Automated Customer Survey (IVR) Advanced Reporting & Analytics Cradle to Grave Reporting Agent Desktop with CTI ACD Based Queue Call Recording & Retrieval Agent Trace CRM Desktop System No Queue, Hunt Group Source: Cisco CCG-Customer Business Transformation (CBT). Patent Pending 19 Address/resolve customerinquiry Review Silent Call Monitoring Maturity Receive Drill-Down Analyses: Impacts of Technology on Key Performance Metrics TheresultsoftheDrillͲDownAnalyses,whichaddressedtherelationshipbetweenindividual metricsandspecifictechnologies,includedthefollowing: FirstContactResolution(FCR) ThetͲtestsindicatethatbyusingthetechnologiesinFigure5contactcenterscan,onaverage, improvetheirfirstcallresolutionratesubstantially,asseenbelow: Figure5.TechnologiesThatImproveFirstContactResolution ImportanteffectswerefoundwithtechnologiesresidingintheRoute,Queue,Resolveand ReviewgroupsidentifiedinTheContactCenterMaturityModel(Figure1.).Centerswiththese technologieshadanywherefrom4%to13%betterperformanceinFCRascomparedwith 20 centersinthestudywithoutthesetechnologies.Highlyrankedtechnologieswereclusteredin thefollowingfourgroups: Route: RoutingviaACD,skillsͲbased,competencyͲbased,multiͲcriteriaandblendedrouting Queue: Courtesycallbacks,announcedwaittime Resolve:PresenceͲbasedexpertescalation,CTIapplicationsintegration,agentdesktopapps Review:Analytics,callrecording,realͲtimeagentfeedbacktools,automatedcustomersurveys, reportingandanalytics,callmonitoringandcradleͲtoͲgravereporting Thedataimplythatthosetechnologiesthatrouteandqueueinquiriesproperlyincreasethe probabilitythatthecontactswillbehandledappropriatelyandcompletelywhentheyreachthe "resolve"phase.Inaddition,agentswhoareenabledbytheproperdesktoptechnologies(CRM andCTIsystems,etc.)areabletofindandcommunicatethecorrectanswerthatthecustomer needstosatisfyandcloseaninquiry.Thetransparencyandfeedbackthatcomewithsuperior reviewtools,includingrealͲtimeagentfeedback,alsoappeartobemajorfactors. Toputthisfindingintomanagerialcontext,weconsiderthesavingsthatcouldresultfrom installingatechnologyortechnologiesthatimproveFCRby7%,whichisinthemidͲrangeof theresultsshownabove.Wemaketheconservativeassumptionthatanunresolvedcallwill haveonlyonefollowͲupcalltoreachfinalresolution.WealsousetheaverageCostperCallfor thesampleofparticipants,whichwas$5.05. HypotheticalFinancialImpactof ImprovedFirstCallResolution CallsHandledperYear ReducedFollowͲUpCalls(7%) AverageCostperCall TotalCalculatedAnnualSavings 2,000,000 140,000 $5.05 $707,000.00 Figure6.HypotheticalFinancialImpactofImprovedFirstCallResolution Understandingthatthisisbutoneofthepotentialfinancialimpactsofthistechnology,itis clearlyworthinvestigatingtechnologiesthatcouldprovidesuchsavings,andthencalculating thereturnoninvestmenttoseeifitwillbenefitthecenterfinancially. Inaddition,ifacenter'sdatashowsapositivecorrelationbetweenFCRandCallerSatisfaction, thenmanagerswouldfindthemselveswithanimportantaddedbenefitintermsofquality 21 measurements.Thehypotheticalsituationbelowreflectsacenterwhosedataindicatethat CallerSatisfactionimprovesby1%forevery2%improvementinFCR: HypotheticalImprovementinCaller Satisfaction ImprovementinFirstCallResolution 7.0% Assumingimprovementof1%CallerSatfor every2%improvementinFCR ExpectedImprovementinCallerSat 2.0% 3.5% Figure7.HypotheticalImprovementinCallerSatisfaction Inthecontactcenterworld,whereeachpointofcallersatisfactionisabattletobefoughtand won,thiscouldbeofgreatimportancetomanymanagers. ForadditionalinformationonthedatarefertoAppendixC. CostPerCall CostperCallwasreducedsignificantlybythetechnologiesinFigure8: TechnologyImpactonCostperCall(%) PresenceͲBasedExpertEscalation 34.51 MultiͲCriteriaRouting 33.22 CourtesyCallͲBackwhileinQueue 23.68 CTI&AppsIntegration 21.97 AutomatedCustomerSurvey(IVR) 21.11 AdvancedReporting&Analytics 20.60 0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 Figure8:TechnologyImpactonCostperCall(%) Theseresultsindicatethatmoreadvancedanduncommontechnologies,suchasMultiͲcriteria Routing(34.5%positiveimpactoncostpercall)andPresenceͲBasedExpertEscalation(33.2% positiveimpactoncostpercall),deservenoticeandconsiderationbycontactcentermanagers. Whilethislistdoesnotincludealltechnologiesthatwemightexpectwouldhaveanimpacton 22 costpercall,itisfocusedontechnologiesthatarefoundinthelastfourgroups(or"silos")of technologies(indicatedinFigure1above,theContactCenterMaturityModel),whicharethe silosinwhichmostcontactcentercostsarefound. Atanaveragecostpercallof$5.05forthesamplegroupincludedinourstudy,asavingsonthe orderof20%is$1.10.Inacallcenterhandling1,000,000callsperyear,thiswouldbeasavings ofoveronemilliondollarsͲthesortofsavingsthatcouldprovideanattractiveROIafter figuringthecostsofnewtechnology. Notethattheresultsaboveareatthe70%confidencelevelorabove,exceptfortheCTIApps Integrationresult,whichisata95%confidencelevel.Therefore,theresearchteamconsiders itprudenttomoderateexpectedoutcomes,whichnonethelesscouldbequitedramatic. CustomerSatisfaction Inthisdatacut,topboxcustomersatisfaction(whichisdefinedasreceiving5outof5scoreon thequestion"Overall,howsatisfiedwereyouwithyourinteraction"),waspositivelyaffected bythefollowingtechnologies: TechnologyImpactonCustomerSatisfactionTopBox(%) CradletoGraveReporting 6.58 ContactDataAnalytics 5.29 WorkforceManagement 4.75 0 1 2 3 4 5 6 7 8 Figure9.TechnologyImpactonCustomerSatisfactionTopBox(%) Notethatcustomersatisfactionisametricthatisgatheredbyonly62.98%oftherespondents. However,forcentersthatgathersuchdata,thereisaninterestingmixoftechnologiesin centersthatreporthigherratesofsatisfaction,asshownabove.CentersthatuseWorkforce Managementtechnologytostaffproperlyandthattakean"eyeswideopen"approachto operationsreview(withcradletogravereportinganddataanalytics)arethosethatfarebest. Thiscorrespondswithourexperienceinassessingcenters:operationsthatcontinuallymanage tonumbershavecustomersatisfactionhighontheirdashboardofmetrics.Theyregularly tweaktheirprocessestoseehowtheycanimprovetheirsatisfactionscoresbytryingnew approachesandmeasuringresults. 23 Byusingtheabovetechnologies,callcenterscan,onaverage,expectimprovementsintheir TopBoxCustomerSatisfactionbetween4%and7%.GiventhattheaverageTopBoxCaller Satisfactionwas69.85%inourstudy,a4%to7%boostwouldbringtheaverageoverthe70% mark. ForspecificinformationpleaserefertoAppendixC. BottomBoxCustomerSatisfactionshowedareductioninlevelsofdissatisfactionbyapplying thefollowingtechnologies: TechnologyImpactonCustomerSatisfactionBottomBox(%) 66.48 SpeechRecognition CallRecording&Retrieval 48.16 WorkforceManagement 47.49 DTMF(TouchͲtone)IVR 39.91 0 10 20 30 40 50 60 70 80 Figure10.TechnologyImpactonCustomerSatisfactionBottomBox(%) Whilethetechnologiesindicatedshowpositiveimpactsata70%confidencelevel,theimpacts areconsiderableinpercentageterms.ThismetricsharesWorkforceManagementincommon withTopBoxCustomerSatisfaction.Speechrecognition,whichisamuchdiscussedand somewhatcontroversialtechnology,topsthelistoftechnologieshere,butnotforTopBox Satisfaction.Wecanreasonablyinferthat,duetomajorimprovementsinthistechnologyin recentyears,thisselfͲservicetechnology,whilenotalwayscreatingtopboxratings,is preferredtothealternative(longerwaittimes)andpreventscustomersfromslippingtothe verydissatisfiedlevel.Callrecordingandretrievalhelpscentersidentifyandcorrectagent behaviorswhichcancausebottomboxdissatisfaction. WewishtopointoutthatBottomBoxSatisfactionlevelsareusuallylownumbers;theaverage fortheparticipantsinthisstudywas3.34%.Thereforea30%differenceinresultstranslates intoa1%reduction,from3.34%to2.34%. 24 AgentSatisfaction Inthisstudy,topboxagentsatisfactionwaspositivelyaffectedbythefollowingtechnologies: TechnologyImpactonAgentSatisfactionTopBox(%) AdvancedReporting&Analytics 11.43 AgentDesktopwithCTI 9.89 CradletoGraveReporting 9.59 CTI&AppsIntegration 9.21 RealͲtimeAgentFeedbackTools 5.58 ContactDataAnalytics 4.37 0 2 4 6 8 10 12 14 Figure11.TechnologyImpactonAgentSatisfactionTopBox(%) Severaltechnologieswereshowntohaveapositiveeffectonagentsatisfaction.Thesedata supporttheexperientialconclusionsofBenchmarkPortalconsultantsthatagentsatisfaction canhaveanimportant"canaryinthecoalmine"(orcanaryinthecontactcenter)function whenitcomestocontactcentertechnology,asenergyandoxygencanbesuckedoutofyour centerbypooragentmorale.Highagentsatisfactionisareliableindicatorthatthecenterhas optimizedpeople,processesandtechnology,andthattheoperationsarereallyworkingwell. Thedataindicatethatwheretherearetechnologiesthatmakeinformationandfeedback availabletotheagents,theagentsaremoresatisfied.CTIdesktopandappsintegrationsboth enabletheagenttobetterservetheclientwithconfidence.Customersarelesslikelytobe irritatedwhentheyconnecttoanagentiftheyknowallalongwhatthewaittimeinqueueis. Havinggoodreporting,andespeciallyrealͲtimeagentfeedbacktechnologytools,helpsthe centertohaveadashboardoftheinformationthatmanagerscanmonitorandthatagents needtohaveandwanttosee.Agentsareempoweredtoimprovetheirownperformanceand feelmoreincontroloftheirprofessionalliveswhenthesetechnologiesareavailable. CallsperHour CallsperAgentperHourisakeyproductivitymetricthatisfollowedbymanagersinmost reasonablysophisticatedcenters.Eveninsituationswheremanagementhasmadeaconscious 25 decisionnottopressureagentstoreducetalktime,thereremainsadesiretofitasmanygood callsaspossibleintoeachhouranagentspendspluggedintothesystem. TechnologyImpactonInboundCallsperAgentperHour(%) MultiͲCriteriaRouting 17.75 CTI&AppsIntegration 17.69 RoutingbyACD 16.78 PresenceͲBasedExpertEscalation 14.32 ContactDataAnalytics 12.68 NoQueue,HuntGroup 9.29 AdvancedReporting&Analytics 8.28 CustomerCrossͲSellMessagewhileinQueue 7.66 UnifiedCrossͲChannelRouting 6.96 SeparateTollͲFreeNumbers 6.88 NaturalLanguageIVR 6.76 0 2 4 6 8 10 12 14 16 18 20 Figure12:TechnologyImpactonInboundCallsperAgentperHour(%) Numeroustechnologiesshowedapositiveimpactonthismetric,withresultsvaryingfromover 6%tojustunder18%ͲͲamountsthatcanhaveamajorimpactoncostofoperationsand providejustificationforinvestmentintechnology. Ahypotheticalincreaseof10%,from7callsperagentperhourtoasustainable7.7callsper agentperhour,wouldhaveanimportanteffectonproductivityandfinancialperformancefor thecenter. QueueTime Naturally,thebiggestimpactonqueuetimeisthestaffinglevelsofthecenter;themoreagents thereare,thefastercustomerswillbeserved.However,therighttechnologiescanhelp expeditecallhandlingandthereforereduceirritatingandsometimescostlyqueuetimes withoutanincreaseinresources. 26 TechnologyImpactonQueueTime 43.21 PresenceͲBasedExpertEscalation 34.27 CourtesyCallͲBackwhileinQueue 33.63 BlendedRouting 26.11 MultiͲCriteriaRouting 20.55 NoQueue,HuntGroup 19.18 SkillsBasedRouting 18.36 AgentTrace 16.14 SilentCallMonitoring 12.25 AutomatedCustomerSurvey(IVR) 0 5 10 15 20 25 30 35 40 45 50 Figure13.TechnologyImpactonQueueTime Logically,courtesycallbackfunctionalitycanimprovequeuetimesubstantially,sinceitprovides thecallerwithanalternativetowaitinginqueue.However,severalothertechnologiesthat involveimprovedroutingofcallsandexpeditedescalationofcallsalsoarefoundincenters whichreportedsignificantlybetterqueuetimesthanthosewithoutthetechnologies. FirstContactResolutionEͲmail WithmorecentersbecomingmultiͲchannel,managersarepayingcloserattentiontothe serviceandthecostsassociatedwitheͲmailresponses. TechnologyImpactonFirstContactResolutionEͲmail(%) 25.15 CTI&AppsIntegration 24.61 MultiͲCriteriaRouting 23.86 UniversalMultiͲChannelQueue UnifiedCrossͲChannelRouting 22.90 22 22 23 23 24 24 25 25 26 Figure14.TechnologyImpactonFirstContactResolutionEͲmail(%) Notsurprisingly,theresearchfoundthatthebiggestbooststofirstcontactresolutionfortheeͲ mailchannelcamefromadvanceduniversalqueuingandroutingtechnologies,aswellas applicationstobringinformationtotheagentdesktop. 27 CostperContact:EͲmail TechnologyImpactonCostperContactEͲmail(%) UniversalMultiͲChannel … 85.32 UnifiedCrossͲChannel … 85.12 BlendedRouting 74.00 65 70 75 80 85 90 Figure15.TechnologyImpactonCostperContactEmail(%) ThedataindicatethatadvancedmultiͲchannelroutingandqueuinghaveamajorimpacton costsforeͲmailhandling.ThismeansthatcenterswhichhavelargeorgrowingeͲmailtraffic woulddowelltoinvestigatethisenablingtechnologysoastoimprovetheircoststructureinan importantway. Chat Aschatvolumesincreaseinmanycenters,thecostforhandlingtheseinteractionsbecomes moreofaconcern. TechnologyImpactonCostperContactChat(%) BlendedRouting 72.98 WebContactChat 42.61 0 10 20 30 40 50 60 70 80 Figure16.TechnologyImpactonCostperContact–Chat(%) ThesamethingsindicatedabovefortheeͲmailchannelcanbesaidforthechatchannel.While thetechniquesformeasuringcostperchatarestilllessmaturethantheequivalentforthe voicechannel,managersshouldstillconsidernewtechnologyandtheeffectitwillhaveon themfinancially. 28 FirstContactResolutionͲChat Severaltechnologieswereshowntohaveapositiveeffectonfirstcontactresolution: TechnologyImpactonFirstContactResolutionChat(%) CTI&AppsIntegration 50.57 UniversalMultiͲChannelQueue 50.57 CRMDesktopSystem 39.59 WebContactChat 39.26 0 10 20 30 40 50 60 Figure17.TechnologyImpactonFirstContactResolutionChat(%) TheresultsindicatethathavingaproperWebcontactchatsystem,alongwithinformationthat bringsneededinformationtothechatagent(CTI&AppsIntegrationandCRMDesktopSystem) allowtheagenttofullyservicethechatcustomerandbetterresolvetheinquiryonthefirst interaction. 29 COMBINEDEFFECTRESULTS Correlatingtwokeymetricsagainsteachotherproducedsomeinterestingfindings.Though generallynotstrongstatistically,thecorrelationsweredirectionallyimportantandcanbeseen inFigure18. CostperCallvs.CustomerSatisfaction Thedatashowsasmallnegativecorrelation(Ͳ0.24)betweenCostperCallandCustomer Satisfaction.Thenegativesignsupportsthehypothesisthatbyusingtechnologycallcenters canlowertheirCostperCallwhileimprovingtheirCustomerSatisfaction. FirstCallResolutionvs.CustomerSatisfaction Thereisasmallpositivecorrelation(0.33)betweenFirstCallResolutionandCustomer Satisfaction.ThepositivesignindicatesthatbyusingtechnologycallcenterscanimproveFirst CallResolutionandCustomerSatisfactionatthesametime. CostperCallvs.FirstCallResolution CostperCallandFirstCallResolutionarenegativelycorrelated(Ͳ0.25).Thoughthevalueofthe correlationcoefficientissmall,thenegativesignsupportsthehypothesisthatbyusing technologycallcenterscanlowertheirCostperCallwhileimprovingtheirFCR. CustomerSatisfactionvs.AgentSatisfaction Finally,aweakcorrelation(0.12)existsbetweenCustomerSatisfactionandAgentSatisfaction. Thepositivesignimpliesthatthesemetricsgohandinhand. Cost per Call vs First Call Resolution 10 20 y = -0.0479x - 0.1792 R² = 0.0558 8 6 4 2 0 -40 -30 -20 -10 -2 0 10 20 30 -4 -6 10 5 0 -40 -30 -20 -10 15 y = 0.2158x - 1.0549 R² = 0.1101 8 6 4 2 0 0 5 10 -4 -6 15 20 Agent Satisfaction Top Box Customer Satisfaction Top Box 30 Customer Satisfaction Top Box vs Agent Satisfaction Top Box 10 y = 0.1804x + 2.5352 R² = 0.0143 10 5 0 -8 -8 -6 -4 -2 0 2 4 -5 -10 First Call Resolution Customer Satisfaction Top Box Figure18.CombinedEffectsAnalyses 30 20 Cost per Call First Call Resolution vs Customer Satisfaction Top Box -2 10 -10 -8 -5 0 -5 Cost per Call -10 y = -0.0775x + 4.2639 R² = 0.0616 15 First Call Resolution Customer Satisfaction Top Box Cost per Call vs Customer Satisfaction Top Box 6 8 10 CONCLUSIONSFROMTHERESEARCH Thisresearchrepresentsthefirstofitskindtocorrelatetechnologywithcontactcenter performanceacrossalargenumberofcenters.Weexpectthatmoreresearchwillbesparked bythisinitiativeandthatadditionalvaluableinsightswillbeuncoveredinfuturestudies.We knowfromexperiencethatcenterswhichhavecertaintechnologiesdonotalwaysdeploythem optimally,andafutureresearchprojectmaydelvemoreintotheutilizationoftechnology. Themethodologyusedforthisinitialstudywaspowerfullystraightforwardandmatchedthe natureoftheinformation.Wedidnotaskmanagersfortheiropinions,feelings,plansor experiencesregardingtechnology.WeaskedthemonlyfortheirdataͲͲdataontheircenter's technologyanddataontheircenter'sperformance. Theresultsofthestudyindicatethatmorematurelevelsoftechnologydrivebetter performanceonimportantcontactcentermetrics.Forinstance,they: x IncreaseFirstContactResolution x IncreaseAverageCallsHandled x LowerCostperCall x DecreaseQueueTime x ImproveCallerSatisfaction x IncreaseAgentSatisfaction Thetechnologiesthatalignorcorrelatestatisticallywithindividualmetricscomefromacross theContactCenterMaturityModelspectrum.Certainly,wedonotalwaysseetheexpected technologiesleadingthelistforaspecificmetric,andwesometimesseetechnologiesthat seemtohavelittleincommonwithametricnonethelessstatisticallyassociatedwithit. Overall,however,thedataclearlyindicatethatmoreadvancedtechnologiesimproveboththe efficiencyandeffectivenessofcontactcenters.Technologiesthatensureproperstaffing, ensureproperconnectionandrecognitionofinquiries,promoteproperrouting,queuingand resolution/escalationofcontacts,andprovidereportingandanalyticstobothagentsand management,arepotentenablersofsuperiorperformance. Whileinvestmentsintechnologymustalwaysbeanalyzedandtrackedindividuallyto determineoperationalandfinancialbenefit,thisresearchprovidesapositive,statistically relevantbackdropthatfavorsinvestingintechnologicalmaturitytoimprovecontactcenter financialandqualityperformance. 31 APPENDIXAͲBIOGRAPHIES BruceBelfioreisSeniorResearchExecutive,CenterforCustomerͲDrivenQualityTMand CEOofBenchmarkPortal(www.benchmarkportal.com).BenchmarkPortalprovides bestpracticesreports,researchandconsultingtothecustomercontactindustry worldwide. Brucefirstbecameinvolvedinthecontactcentersectoroveradecadeago.Hejoined BenchmarkPortalin2000.BruceistheauthorofnumerouswhitepapersandthebooksBenchmarking forProfits!,amanualforbestpracticescontactcenterbenchmarking,aswellasitssequel, BenchmarkingatitsBestforContactCenters.Heiscurrentlyworkingonanotherbook,Shareholder ValueandCustomerContact. BruceisDeanoftheCollegeofCallCenterExcellence(www.benchmarkportal.com/callͲcenterͲtraining), whichprovidescoursestocontactcentermanagersandsupervisors.Heisalsothehostoftheinternet radiotalkshowCallTalk,(www.benchmarkportal.com/callͲcenterͲnewsresources/calltalkͲonlineͲradioͲ show)whichexplorescontactcentertopicswithindustryexperts. HeiscoͲinventorofapatentforasymboliclanguagesystem,Simbly™,withimportantcontactcenter applications.HehastaughttheCallCentermanagementcourseatPurdueUniversitywithProfessor RichardFeinberg. BrucehasdividedhiscareerbetweenNorthAmericaandEurope,andhasfulfilledworkassignmentsin AsiaandAfricaaswell.Hepreviouslyworkedinthefinancesectorwithinternationalcommercialand investmentbanksandwiththeBain&Co.ManagementConsultinggroupinItaly.WhileinEurope, BrucewasalsoaspeakerandwriteronbusinesstopicsinEnglishandItalian. BruceholdsanA.B.degreefromHarvardCollege,aJ.DdegreefromHarvardLawSchool,andanM.B.A. degreefromHarvardBusinessSchool,wherehealsoattendedtheHBSEntrepreneur’sToolKitprogram in2000.HehaspublishednumerousarticlesandhasbeenafeaturedspeakerinbothEnglishand Italianonavarietyofbusinesstopics. [email protected]. 32 JohnChatterleyisaSeniorConsultantandDirectorofResearchandAnalysisfor BenchmarkPortal,specializingincontactcenterperformanceresearch,analysis, technicalwriting,andcontentediting.Johnhaspublishednumerouscustomized benchmarkingreports,researchreports,OneͲMinute™Surveyreports,andWhite Papers. Johniseditor,writerandanalystofBenchmarkPortal’sannualseriesof48detailed industryreportscoveringthespectrumofcontactcenterindustrysectors,andchiefeditorandanalyst ofBenchmarkPortal’sseriesofOneͲMinute™Surveys.HeauthoredacomprehensiveWhitePaperstudy entitled“ImprovingContactCenterPerformancethroughOptimizedSiteSelection.”Johnhassharedhis contactcenterexpertisewithnumerousclients,bothdomesticallyandinternationally.Heisafaculty memberwiththeCollegeofCallCenterExcellence. JohncoͲauthoredoreditednumerousbookswithDr.JonAnton,including: 1. CoachingCallCenterAgents 2. DefiningCustomerCare 3. AutomatedSelfͲServiceUsingSpeechRecognition 4. ListeningtotheVoiceoftheCustomer 5. ContactCenterManagementbytheNumbers 6. OffshoreOutsourcingOpportunities 7. SelectingaTeleservicesPartner 8. InterpretingtheVoiceoftheCustomer John’sprofessionalcareerspansmorethan25yearsofexperienceincallcentermanagementand consulting.Johndesigned,implemented,staffedandmanagedthree500+seatcontactcentersitesin Arizona,Nevada,andCalifornia,andhasextensivecallcenteroperationalmanagementexperience.He possessesfirsthandexperienceatalllevelsofacontactcenterincludingfrontͲlinetechnicalsupport agent,supervisor,teamlead,analyst,designer,callcentermanager,andoperationsdirector. JohnisaCertifiedContactCenterAuditor,CertifiedCallCenterCollegeInstructor,BenchmarkPortal CertifiedBenchmarkingInstructorandAnalyst.John’sprofessionaleducationwasinElectrical Engineering&ComputerScienceatSouthernUtahUniversityandtheUniversityofUtah. [email protected] 33 Dr.NataliePetouhoffisaResearchExecutiveattheCenterforCustomerͲDriven Quality(foundedatPurdueUniversity)andBenchmarkPortal,whichservesthecontactcenterindustry withadvancedbenchmarking,certification,researchandeducation. Natalie,authoroffourbusinessbooks,hasbeenspeakingaboutcustomers,companiesandthebottom linefor20years.AstheDirectoroftheUCLAExecutiveEducationProgramandaninstructorforSocial Media,sheguidescompaniesasabusinessstrategisttounderstandwherethepotentialisandhowto leadcompaniestogreatersuccess. Natalie’suniqueperspectiveonbusinessandthoughtleadershipiscurrentlybeingappliedtosocial media,asshehelpscompanieslearnhowtouseittoincreasethebottomline.Hersocialmedia assessmentsandROIcalculatorsprovidetacticalstrategies,planningandrealͲworldexecution capabilities. Natalie’sworkandWhitePapersarethesubjectofhundredsofarticlesinpublicationslikeUSAToday, Adage,BusinessWeek,FastCompany,TheNewYorkTimes,TheWallStreetJournal,PeppersandRogers 1ͲtoͲ1MagazineandCRMMagazineaswellasnationaltelevisionandradio. PresidentoftheLosAngelesSocialMediaClub,NataliehasheldpositionsasaForresteranalyst,chief strategistforaWeberShandwickPR/MarketingAgency,managementconsultantatPWCandHitachi andinmanagementatHughesElectronics,GMandGE. Herfocusincludeshelpingclientstodriverevenueandprofits,developsocialbusinessstrategiesand tacticalplansaswellascreatingtrainingprogramsforleadership,employeemotivationand organizationalchange.NataliealsoteachesPR,MarketingandLeadershipcoursesattheUniversityof SouthernCaliforniaandPepperdineUniversity. NataliecanbereachedatNataliePetouhoff@BenchmarkPortal.com.Examplesofherworkare availableat: Ebook:SocialMediaROIMythsandTruths YouTubeVideos:OnROIofSocialMedia WhitePapers:SocialMediaROI NewBookonFacebook:LikeMyStuffͲHowtoMonetizeYourFacebookFansWithSocialCommerce&AFacebookStore Twitter:@drnatalie LinkedIn:DrNataliePetouhoff website/blog:www.drnatalienews.com/blog G+:GooglePlusposts 34 AngelTonchevfirstcollaboratedasastatisticalanalystwith BenchmarkPortalalmostadecadeago.Withhisbrother,Christo,heisacoͲ developeroftheTonchevPerformanceIndexforcallcenters,originally developedfortheCenterforCustomerͲDrivenQualityatPurdueUniversity andstillutilizedbyBenchmarkPortal.Hehasmorethantenyearsof benchmarkingexperienceinavarietyofindustries,includingcallcenters,oil andgas,procurementandinformationtechnologies. AngelisamanagerandcoͲfounderofPerformathics,LLC–aconsultingcompanyspecializing inmathematicalmodelingandstatisticalanalysesforbusinesses.AngelisalsoacoͲinventor oftheJuranHydrocarbonsIndex,whichiswidelyusedtomeasuretheoperational performanceofassetsthroughouttheentireoilandgasvaluechain. Heholdsamaster'sdegreeinEconomicsfromMaastrichtUniversity(theNetherlands),a bachelor’sdegreeinBusinessfromSofiaUniversity(Bulgaria)andanEngineeringdegree fromtheTechnicalUniversityinSofia.HeisacertifiedSixSigmaBlackBeltandacertifiedCall CenterAuditor.Additionally,AngelisacoͲauthorofseveralacademicarticlesandhas publicationsinleadingindustryjournals(Oil&GasJournal)andbusinessbooks(JuranQuality Handbook,6thedition). Ͷ ͵ͷ Copyright © 2012 BenchmarkPortal, LLC. ChristoTonchevfirstcollaboratedasastatisticalanalystwith BenchmarkPortalalmostadecadeago.Withhisbrother,Angel,heisacoͲ developeroftheTonchevPerformanceIndexforcallcenters,originally developedfortheCenterforCustomerͲDrivenQualityatPurdueUniversity andstillutilizedbyBenchmarkPortal. ChristoisaManagerandCoͲfounderofPerformathics,LLC–aconsulting companyspecializinginmathematicalmodelingandstatisticalanalysesforbusinesses.He hasmorethantenyearsofbenchmarkingexperienceinavarietyofindustries,includingcall centers,oilandgas,procurementandinformationtechnologies.ChristoisalsoacoͲinventor oftheJuranHydrocarbonsIndex,whichiswidelyusedtomeasuretheoperational performanceofassetsthroughouttheentireoilandgasvaluechain. Christoholdsamaster'sdegreeinEconomicsfromMaastrichtUniversity(theNetherlands) andabachelor'sdegreeinBusinessfromSofiaUniversity(Bulgaria).Inaddition,hestudiedat theHigherInstituteofPhysicalCulture(Bulgaria).HeisacertifiedSixSigmaBlackBeltanda certifiedCallCenterAuditor.Christoisanauthorofseveralacademicarticlesandhas publicationsinleadingindustryjournals(Oil&GasJournal)andbusinessbooks(JuranQuality Handbook,6thedition. Ͷ ͵ Copyright © 2012 BenchmarkPortal, LLC. DeeBuellhasover20yearsofCallCentermanagementexperienceinthe financialindustry.Shehasmanagedandoperatedinboundandoutbound serviceteams,aswellasinboundandoutboundsalesteams. AsaSeniorBusinessConsultant,DeeisaCertifiedAuditorandacallcenter subjectmatterexpert(SME)withafocusonQualityManagement.She hasexperienceinbuildingaqualitymanagementsystemthatusesagentperformance metrics,customersatisfactionanalysis,andcustomerrelationshipmanagement(CRM)data todriveaneffectiveandefficientcustomerexperience. ShemanagedthequalityandtrainingteamsforMetLifeInsurance,withastaffof1200+ agents,bothinͲhouseandoutsourced.Thetrainingteamsupported17differentcallgroups insixsitesacrosstheUnitedStatesandinthreesitesoffshore.Customizedtraining curriculum,onlinetrainingtools,andvirtualtechnologywereusedtoinsureconsistencyin thevirtualcallcenterenvironment. [email protected] Ͷ ͵ Copyright © 2012 BenchmarkPortal, LLC. APPENDIXB–SPEARMAN’SCORRELATIONTABLES Spearman’srankcorrelationisanonͲparametricstatisticaltestwhichmeasuresthestatistical relationshipbetweentwovariables.Spearman’srankcorrelationcoefficient(rho)varies betweenͲ1and1.Thesignofthecoefficientindicatesthedirectionofassociationbetween thevariables.Ifoneofthevariablestendstoincreasewhentheotheroneincreases,the Spearmancorrelationcoefficientispositive.Incontrast,ifoneofthevariablestendsto decreasewhentheotheroneincreases,theSpearmancorrelationcoefficientisnegative.A Spearmancorrelationofzeroindicatesthatthereisnorelationshipbetweenthevariables. PleasenotethatforsomeKPIsanegativecorrelationbetweenthesemetricsandthe technologymayimplyapositiveimpact.Forexample,theAUXTimeandTechnologyIndex haveanegativecorrelationcoefficient(Ͳ0.15).Thisindicatesthatasthetechnologyincreases theactualAUXTimedecreases.SincetheshorterAUXTimeisbetterforthecontactcenters, theoverallimpactoftechnologyonthisparticularmetricispositive. Note:Greencellsindicatestatisticalsignificanceat95%confidencelevel.;Yellowcellsadd thestatisticallysignificantcorrelationsat80%confidencelevel. Spearman's Correlation: All Industries Variables AUX Time Agent Utilization Average Calls per Hour Agent to Supervisor Ratio Calls Resolved on First Call Top Box Agent Satisfaction Correlation coefficient (rho) Probability (p) Technology Index 0.107 -0.1503 0.0993 0.177 0.1848 0.012 0.1353 0.110 0.2137 0.008 0.1859 0.002 Ͷ ͵ͺ Copyright © 2012 BenchmarkPortal, LLC. Spearman's Correlation: Bank Industry Variables Performance Index Efficiency Score Cost per Call Average Talk Time Average After Call Work Time Agent Occupancy Adherence to Schedule Agent Attendance Agent to Supervisor Ratio Annual Turnover FTA Average Speed of Answer 80% Average Speed of Answer Average Hold Time Abandoned Calls Customer Satisfaction Top Box Correlation coefficient (rho) Probability (p) Technology Index 0.8857 0.047 1.0000 0.025 0.089 -0.7827 -0.6000 0.177 -0.8857 0.047 0.8286 0.063 0.6957 0.116 0.7590 0.084 0.8208 0.097 0.8000 0.165 0.177 -0.6000 -0.6000 0.177 0.8286 0.063 -0.7714 0.084 1.0000 0.025 Note:Greencellsindicatestatisticalsignificanceat95%confidencelevel.Yellowcellsadd thestatisticallysignificantcorrelationsat80%confidencelevel. Spearman's Correlation: Financial Industry Variables Performance Index Efficiency Score Effectiveness Score Agent Utilization Correlation coefficient (rho) Probability (p) Technology Index 0.6530 0.038 0.6758 0.032 0.5662 0.072 0.4136 0.174 Ͷ ͵ͻ Copyright © 2012 BenchmarkPortal, LLC. Spearman's Correlation: Insurance Industry Variables Performance Index Efficiency Score Effectiveness Score Average Talk Time Average After Call Work Time Agent Occupancy Agent Attendance Agent Utilization Average Calls per Hour Annual Turnover FTA Average Speed of Answer 80% Average Speed of Answer Average Queue Time Abandoned Calls Calls Resolved on First Call Customer Satisfaction Top Box Top Box Agent Satisfaction Correlation coefficient (rho) Probability (p) Technology Index 0.5018 0.007 0.4568 0.013 0.4416 0.016 -0.3130 0.129 -0.4144 0.041 0.2353 0.180 0.2676 0.134 -0.2953 0.159 0.5171 0.005 -0.3354 0.110 0.002 -0.6333 -0.6333 0.002 0.3520 0.051 -0.2787 0.187 0.4379 0.017 0.3340 0.064 0.3712 0.037 Ͷ ͶͲ Copyright © 2012 BenchmarkPortal, LLC. Note:Greencellsindicatestatisticalsignificanceat95%confidencelevel.Yellowcellsadd thestatisticallysignificantcorrelationsat80%confidencelevel. Spearman's Correlation: Large Call Centers (Calls Handled >801498) Variables Cost per Call Adherence to Schedule AUX Time Average Calls per Hour Calls Resolved on First Call Top Box Agent Satisfaction Correlation coefficient (rho) Probability (p) Technology Index 0.171 -0.2060 0.2414 0.082 0.043 -0.3204 0.1820 0.184 0.3751 0.010 0.2930 0.014 Spearman's Correlation: Medium Call Centers (Calls Handled <801498) Variables Cost per Call Adherence to Schedule AUX Time Average Calls per Hour Calls Resolved on First Call Top Box Agent Satisfaction Correlation coefficient (rho) Probability (p) Technology Index 0.171 -0.2060 0.2414 0.082 -0.3204 0.043 0.1820 0.184 0.3751 0.010 0.2930 0.014 Spearman's Correlation: Small Call Centers (Calls Handled <146001) Variables Cost per Call Average Talk Time Adherence to Schedule Average Hold Time Abandoned Calls Customer Satisfaction Bottom Box Correlation coefficient (rho) Probability (p) Technology Index 0.2744 0.057 0.2518 0.080 -0.2376 0.171 -0.2124 0.180 0.2246 0.114 0.2679 0.126 Ͷ Ͷͳ Copyright © 2012 BenchmarkPortal, LLC. APPENDIXC–TECHNOLOGYDRILLͲDOWNCHARTSANDTABLES TechnologydrillͲdownanalysesarebasedonunpairedtwosampletͲtests.ThetͲtestisa statisticalanalysisthatlooksatonevariable(oneKPI)andassesseswhetherthemeansof twogroups(i.e.agroupwhichhasagiventechnologyandonewithoutit)arestatistically differentfromeachother.ThemostimportantresultsfromthetͲtestarethepͲvalue,relative difference(sizeofthedifferencebetweenthemeansinpercentageterms)andconfidence interval.Inthisregard,wheninterpretingtheresultsfromthetablesbelow,thesmallerpͲ valuesandhigherrelativedifferenceswillindicatethattheKPIaveragesofthesampleswith andwithoutaspecifictechnologydiffersignificantly.Therefore,wecanconcludethatthis technologyhasanimpactontheKPI.Iftherelativedifferencehasanegativesignthisimplies thatthetechnologydecreasestheKPIvalue(notnecessarilyanindicationfornegative impact). Ͷ Ͷʹ Copyright © 2012 BenchmarkPortal, LLC. Technology Adoption ACD 100.00 Skills Based Routing 83.69 PBX 78.01 DTMF (Touch-tone) IVR 71.63 Call Recording & Retrieval 65.25 Workforce Management 59.57 E-mail Management System 56.03 CRM Desktop System 47.14 Recorded Message while on Hold 40.43 ANI / DNIS for Customer ID 39.72 Speech Recognition 39.01 Routing by ACD 39.01 ACD Based Queue 38.30 Queue Prioritization 37.59 Silent Call Monitoring 37.59 Separate Toll-Free Numbers 36.17 Music on Hold 34.75 Contact Data Analytics 31.21 CTI & Apps Integration 29.08 Web Contact Chat 28.37 Automated Customer Survey (IVR) 27.66 E-mail Response System 26.95 Agent Desktop with CTI 26.95 Natural Language IVR 26.95 Agent Pop-Ups for Up-sell/Cross-sell 21.28 Routing across ACDs 19.15 E-mail Satisfaction System 18.44 Unified Cross-Channel Routing 17.02 Announced Wait Time in Queue 17.02 Routing beyond Call Center 17.02 Real-time Agent Feedback Tools 17.02 Agent Trace 16.31 Pre-Routing to ACDs 16.31 Cradle to Grave Reporting 15.60 Universal Multi-Channel Queue 14.89 Personalized VRU 14.18 Advanced Reporting & Analytics 14.18 Blended Routing 12.77 Actionable Alerts with Solutions 12.77 Customer Cross-Sell Message while in Queue 11.35 No Queue, Hunt Group 10.64 Speech Synthesis Apps 10.64 Courtesy Call-Back while in Queue 10.64 Competency Based Routing 9.22 Virtualized Enterprise Queue 9.22 Multi-Criteria Routing 7.09 Automated Personal Call-Backs 6.38 Presence- Based Expert Escalation 3.55 10 20 30 40 50 60 70 80 90 100 % 0 Ͷ Ͷ͵ Copyright © 2012 BenchmarkPortal, LLC. Technologies With A Positive Impact On Cost Per Call (CPC) Relative Difference between Means (%) Technology P value The mean of Group "Yes" 95% CI 95% CI Mean "Yes" minus Group Lower Limit Upper Limit Group "No" CTI Apps Integration -21.97 0.043 -1.42 -2.79 -0.05 5.03 6.45 Autom ated Custom er Survey (IVR) -21.11 0.057 -1.35 -2.75 0.04 5.06 6.41 6.18 Multi-Criteria Routing -33.22 0.098 -2.05 -4.49 0.38 4.13 Real-tim e Agent Feedback Tools -20.17 0.137 -1.26 -2.93 0.41 4.99 6.25 Custom er Cross-Sell Message w hile in Queue -23.08 0.155 -1.43 -3.41 0.55 4.77 6.20 Courtesy Call-Back w hile in Queue -23.68 0.156 -1.47 -3.50 0.57 4.73 6.19 Advanced Reporting & Analytics -20.60 0.161 -1.28 -3.08 0.52 4.94 6.22 Presence- Based Expert Escalation -34.51 0.222 -2.11 -5.51 1.29 4.00 6.11 Routing by ACD -12.06 0.243 -0.76 -2.05 0.52 5.57 6.33 Contact Data Analytics -12.06 0.272 -0.76 -2.11 0.60 5.52 6.27 Autom ated Personal Call-Backs -19.62 0.359 -1.20 -3.78 1.38 4.91 6.11 Universal Multi-Channel Queue -11.27 0.441 -0.69 -2.46 1.08 5.45 6.14 Natural Language IVR -7.65 0.513 -0.47 -1.89 0.95 5.69 6.16 6.47 Skills Based Routing -7.95 0.552 -0.51 -2.22 1.19 5.95 Agent Desktop w ith CTI -5.14 0.663 -0.31 -1.74 1.11 5.81 6.12 Pre-Routing to ACDs -4.64 0.744 -0.28 -1.99 1.43 5.80 6.08 Routing beyond Call Center -2.20 0.876 -0.13 -1.81 1.55 5.93 6.06 Silent Call Monitoring -0.85 0.938 -0.05 -1.36 1.25 6.00 6.06 95% Confidence Level 70% Confidence Level Mean "No" Group Ͷ ͶͶ Copyright © 2012 BenchmarkPortal, LLC. Technologies With A Positive Impact On First Call Resolution (FCR) Relative Difference between Means (%) Technology The mean of Group "Yes" 95% CI Lower 95% CI Upper Mean "Yes" Limit Limit Group minus Group "No" Mean "No" Group Contact Data Analytics 12.99 0.000 0.10 0.05 0.15 0.83 0.74 PBX 14.83 0.001 0.10 0.04 0.16 0.79 0.69 Call Recording & Retrieval 12.06 0.001 0.09 0.04 0.13 0.79 0.71 CTI Apps Integration 11.02 0.002 0.08 0.03 0.13 0.82 0.74 Skills Based Routing 12.41 0.010 0.09 0.02 0.15 0.78 0.69 Workforce Managem ent 8.50 0.013 0.06 0.01 0.11 0.79 0.73 Web Contact Chat 7.50 0.039 0.06 0.00 0.11 0.81 0.75 Autom ated Custom er Survey (IVR) 7.50 0.041 0.06 0.00 0.11 0.81 0.75 Real-tim e Agent Feedback Tools 8.80 0.043 0.07 0.00 0.13 0.82 0.75 DTMF (Touch-tone) IVR 7.23 0.054 0.05 0.00 0.11 0.78 0.73 Routing by ACD 6.42 0.058 0.05 0.00 0.10 0.79 0.75 E-m ail Managem ent System 6.22 0.064 0.05 0.00 0.09 0.79 0.74 Com petency Based Routing 9.67 0.085 0.07 -0.01 0.16 0.83 0.76 Courtesy Call-Back w hile in Queue 7.72 0.143 0.06 -0.02 0.14 0.82 0.76 Silent Call Monitoring 4.74 0.163 0.04 -0.01 0.09 0.79 0.75 Presence- Based Expert Escalation 11.58 0.187 0.09 -0.04 0.22 0.85 0.76 Pre-Routing to ACDs 4.90 0.267 0.04 -0.03 0.10 0.80 0.76 Agent Desktop w ith CTI 4.06 0.271 0.03 -0.02 0.09 0.79 0.76 Announced Wait Tim e in Queue 4.44 0.306 0.03 -0.03 0.10 0.79 0.76 Advanced Reporting & Analytics 4.76 0.308 0.04 -0.03 0.11 0.80 0.76 Multi-Criteria Routing 6.37 0.315 0.05 -0.05 0.14 0.81 0.76 Cradle to Grave Reporting 4.12 0.359 0.03 -0.04 0.10 0.79 0.76 CRM Desktop System 2.88 0.384 0.02 -0.03 0.07 0.78 0.75 Custom er Cross-Sell Message w hile in Queue 4.36 0.395 0.03 -0.04 0.11 0.79 0.76 Agent Trace 3.74 0.397 0.03 -0.04 0.09 0.79 0.76 Blended Routing 4.02 0.409 0.03 -0.04 0.10 0.79 0.76 Speech Recognition 2.71 0.420 0.02 -0.03 0.07 0.78 0.76 Music on Hold 2.76 0.423 0.02 -0.03 0.07 0.78 0.76 Speech Synthesis Apps 3.87 0.463 0.03 -0.05 0.11 0.79 0.76 ACD Based Queue 2.10 0.531 0.02 -0.03 0.07 0.77 0.76 Agent Pop-Ups for Up-sell/Cross-sell 2.22 0.575 0.02 -0.04 0.08 0.78 0.76 Unified Cross-Channel Routing 2.24 0.604 0.02 -0.05 0.08 0.78 0.76 ANI / DNIS for Custom er ID 1.57 0.638 0.01 -0.04 0.06 0.77 0.76 Universal Multi-Channel Queue 1.81 0.693 0.01 -0.05 0.08 0.78 0.76 Autom ated Personal Call-Backs 2.57 0.699 0.02 -0.08 0.12 0.78 0.76 Personalized VRU 1.76 0.705 0.01 -0.06 0.08 0.78 0.76 Natural Language IVR 1.38 0.707 0.01 -0.04 0.07 0.77 0.76 Actionable Alerts w ith Solutions 1.51 0.757 0.01 -0.06 0.08 0.78 0.76 E-m ail Response System 1.10 0.766 0.01 -0.05 0.06 0.77 0.76 Routing across ACDs 1.06 0.798 0.01 -0.05 0.07 0.77 0.76 Routing beyond Call Center 0.73 0.866 0.01 -0.06 0.07 0.77 0.76 Virtualized Enterprise Queue 0.51 0.928 0.00 -0.08 0.09 0.77 0.76 95% Confidence Level P value 70% Confidence Level Ͷ Ͷͷ Copyright © 2012 BenchmarkPortal, LLC. Technologies With A Positive Impact On Customer Satisfaction Top Box (CSTB) Technology Contact Data Analytics Relative Difference between Means (%) 5.29 The mean of 95% CI 95% CI Mean "Yes" Mean "No" Group "Yes" Group Group minus Group Lower Limit Upper Limit "No" 0.207 0.04 -0.02 0.09 0.70 0.67 P value Cradle to Grave Reporting 6.58 0.217 0.04 -0.03 0.11 0.72 0.67 Workforce Management 4.75 0.237 0.03 -0.02 0.08 0.69 0.66 Advanced Reporting & Analytics 4.66 0.398 0.03 -0.04 0.11 0.71 0.68 Presence- Based Expert Escalation 7.65 0.461 0.05 -0.09 0.19 0.73 0.68 Call Recording & Retrieval 2.51 0.540 0.02 -0.04 0.07 0.69 0.67 Real-time Agent Feedback Tools 2.75 0.591 0.02 -0.05 0.09 0.70 0.68 Courtesy Call-Back while in Queue 3.20 0.608 0.02 -0.06 0.11 0.70 0.68 Agent Desktop with CTI 1.82 0.675 0.01 -0.05 0.07 0.69 0.68 Automated Customer Survey (IVR) 1.79 0.677 0.01 -0.05 0.07 0.69 0.68 Web Contact Chat 1.73 0.688 0.01 -0.05 0.07 0.69 0.68 Unified Cross-Channel Routing 1.73 0.738 0.01 -0.06 0.08 0.69 0.68 Competency Based Routing 2.14 0.748 0.01 -0.07 0.10 0.69 0.68 Separate Toll-Free Numbers 1.20 0.766 0.01 -0.05 0.06 0.69 0.68 Routing beyond Call Center 1.42 0.782 0.01 -0.06 0.08 0.69 0.68 Speech Synthesis Apps 1.33 0.831 0.01 -0.07 0.09 0.69 0.68 Actionable Alerts with Solutions 1.05 0.856 0.01 -0.07 0.08 0.69 0.68 CRM Desktop System Routing across ACDs 0.63 0.15 0.870 0.976 0.00 0.00 -0.05 -0.06 0.06 0.07 0.68 0.68 0.68 0.68 95% Confidence Level 70% Confidence Level Technologies With A Positive Impact on Customer Satisfaction Bottom Box (CSBB) Technology Speech Recognition Relative Difference between Means (%) -66.48 The mean of Group "Yes" 95% CI 95% CI Mean "Yes" Mean "No" minus Group Lower Limit Upper Limit Group Group "No" 0.023 -0.07 -0.13 -0.01 0.04 0.10 P value Call Recording & Retrieval -48.16 0.099 -0.06 -0.12 0.01 0.06 Workforce Management -47.49 0.106 -0.05 -0.11 0.01 0.06 0.11 DTMF (Touch-tone) IVR -39.91 0.219 -0.04 -0.11 0.03 0.06 0.11 PBX -38.91 0.268 0.04 -0.12 0.03 0.07 0.11 Advanced Reporting & Analytics -46.12 0.338 -0.04 -0.12 0.04 0.04 0.08 Contact Data Analytics -25.98 0.487 -0.02 -0.08 0.04 0.06 0.08 Actionable Alerts with Solutions -31.70 0.548 -0.03 -0.11 0.06 0.05 0.08 Skills Based Routing -25.92 0.598 -0.03 -0.12 0.07 0.07 0.10 Automated Customer Survey (IVR) CRM Desktop System -19.20 -2.86 0.644 0.942 -0.02 0.00 -0.08 -0.06 0.05 0.06 0.06 0.07 0.08 0.08 95% Confidence Level 70% Confidence Level 0.11 Ͷ Ͷ Copyright © 2012 BenchmarkPortal, LLC. APPENDIXDͲSURVEYS SurveyEͲmailInvitation: Technology&PerformanceSurvey(TM) ReceiveacomplimentarycopyoftheWhitePaper&achancetowinaniPad! DearCallCenterProfessional: Weareexcitedtoinviteyoutoparticipateinanimportantresearchprojectfrom BenchmarkPortalandTheCenterforCustomerDrivenQuality(foundedatPurdue University).Thepurposeofthestudyistounderstandthecorrelationbetweenlevelof technologyandcontactcenterperformance,asmeasuredthroughobjectivemetrics. YoucanfindmoreinformationaboutthisresearchstudybywatchingourvideoHERE (http://youtu.be/GCLduHvPZcI) Yourparticipationwillprovideyouwith: •FreecopyoftheWhitePaperresults •AchancetowinaniPad •Afreebenchmarkreportandareadoutofyourindividualbenchmarkreportbyoneof ourcertifiedexperts It'sourwayofshowingourappreciationtoyouforyourinput. Thesurveylinkbelowwillbenchmarkyourcallcenterandaskyouquestionsaboutyour callcentertechnology. PleaseTakeour22KPIBenchmarkingSurveyFollowedbytheCiscoSponsoredTechnology &PerformanceSurvey:[invite("surveylink")] OncecompletedyoucouldeitherreͲvisitthesurveylinkabovetoinputdata,eͲmailto [email protected],orfaxto805Ͳ618Ͳ1557. Thankyouverymuchforyourparticipation. BruceBelfiore,CEO BenchmarkPortal,LLC.& SeniorResearchExecutive CenterforCustomerͲDrivenQuality ThankYou! Ͷ Ͷ Copyright © 2012 BenchmarkPortal, LLC. SurveyQuestionnaire: ContactCenterPerformance 1. Howmanyinboundcallsperyeararedirectedtoyourcallcenter? 2. Callsofferedannually (Callsofferedisthetotalnumberofcallsyoureceiveina givenyear.ThisnumberisprovidedbyyourACD.) Oftheinboundcallsdirectedtoyourcallcenter,howmanyarehandledbyaliveagentand/oryourIVR? 3. Callshandledannually (Thesearethetotalnumberofuniqueinboundcalls receivedinagivenyearbythecenterthatarecompletedby aliveagent,plusthosecompletedbyyourIVR.Thevalue forcallshandledmustbeequalto,orlessthancallsoffered, andshouldbeapproximatetothevalueofcallsofferedless thoseabandoned.Thisnumberisoftenprovidedbyyour ACD.) Ofallthecallshandledannuallybyyourcenter,howmanyarehandledbyeachofthefollowingtwocategories? Annualcallvolumehandledbyyouragents AnnualcallvolumehandledcompletelybyyourIVR 4. Ofthecallshandledannuallybyyouragentshowdotheybreakdowninthefollowingtwocategories? (Thesearethetotalnumberofuniqueinboundcalls receivedinagivenyearbythecenterthatarecompletedby aliveagent.Thesumofthisvalue,whenaddedtothesum ofcallshandledbytheIVR,shouldequalthevalueforcalls handledbythecenter.Thisnumberisoftenprovidedby yourACD.) (Thesearethetotalnumberofuniqueinboundcalls receivedinagivenyearbythecenterthatarecompletedby yourIVR.Thesumofthisvalue,whenaddedtothesumof callshandledbyagents,shouldequalthevalueforcalls handledbythecenter.Thisnumberisoftenprovidedby yourACD.) Businesstobusiness % Thisisthepercentageofcallsexchangedwithother businessesasopposedtoendͲuser(private)callers.) Consumertobusiness % (ThisisthepercentageofcallsexchangedwithendͲuser (private)callersasopposedtocallsfrombusinesses.) Total100% Ͷ Ͷͺ Copyright © 2012 BenchmarkPortal, LLC. 5. Howmanyagentsworkatyourcallcenter? FullͲtimeagents_____ PartͲtimeagents_____ 6. HowmanyFullTimeEquivalentagents(FTE)workatyourcallcenter? FullͲTimeEquivalents(FTEs)_____ (Thisisanoperationsandworkforcemetricthatshowsthe amountoflaborusedintermsoffullͲtimeworkforce.Itis derivedbyaddingthecumulativesumoflaborhoursfor bothfullͲtimeandpartͲtimeemployeesforaspecified periodanddividingitssumby40. TotalFTE’s=(totalaveragehoursoffullͲtimeagents+total averagehoursofpartͲtimeagents)/40 7. Areyouragentsrepresentedbyalaborunion (AfullͲtimeagentisconsideredasonewhoworks40hours ormoreperweek,orwhateverequivalentusedbyyour center.Insomecases,fullͲtimeagentsarecountedat36 hourperweek.Asthisisanoperationalmetric,thespecific hoursworkedislessasimportantthanthenumbersof agentsworkinginthecapacityofafullͲtimeagent.) (APartͲtimeagentisonewhoworksapartͲtimeschedule oflessthan36hoursperweekorwhateverequivalentpartͲ timecapisusedbyyourcenter.Insomecases,partͲtime agentsarecountedasagentsthatdonotworkmorethan 36hourperweek.Asthisisanoperationalmetric,the specifichoursworkedislessasimportantthanthenumbers ofagentsworkinginthecapacityofapartͲtimeagent.) Yes_____ No_____ (Alegallyrecognizedprofessionalbodyorganized forthepurposeofsupportingtheneedsofits membersthroughthecollectivebargainingof wages,benefits,andworkingconditions.) 8. Ifyouragentsdomorethanjustanswerinboundcalls,whatotherfunctionsdotheyperform? AgentFunctions OutboundCalls % RespondtoEͲmails % RespondtoOnͲlineWebͲchats % Other % AveragePercentageofAgentTime Ͷ Ͷͻ Copyright © 2012 BenchmarkPortal, LLC. 9. Whichofthefollowingtypesofcallsdoyouragentshandleasapercentageoftheirtotalcallshandled? CustomerService % (Providingcallerswithquickandaccurateanswersto theirquestions,and/orloggingandupdatingcustomer information.) OrderTakingandOrderTracking TechnicalSupporttoExternalCustomers Complaints ReͲdirectingInboundCalls Others 10. Whatisthetotalannualbudgetforyourcallcenterforthisyear? (Fillintheannualoperatingbudgetallocatedforyourcallcenterforthis year.Theannualcallcenterbudgetisthetotalannualdollaramount allocatedforallexpensesassociatedwiththeoperationofthecallcenter forwhichthecallcentermanagerisaccountable.Theannualbudget shouldincludeallfullyloadeddirectandindirectcostsforbudgetaryline itemssuchaslabor,benefits,andincentivesforagents,management, training,andsupportpersonnel;HRcosts(e.g.,recruiting,screening, training);telephonyexpenses(toll,trunks,equipment);technology purchases/installation(hardware,andsoftware);technology maintenance(hardware,andsoftware)network;furniture,fixtures, decorations,etc.;utilities(gas,water,power,UPSbackup);maintenance (repair,janitorial,upkeep);supplies;overheadexpensesandchargeͲbacks forsharedcorporatecosts(e.g.,legal,riskmanagement,payroll administration,ITsupport,security,accounting,groundskeeping,real estate,floorspace,commonareas,etc.)asapplicable.) % TotalFTE’s=(totalaveragehoursoffullͲtimeagents+total averagehoursofpartͲtimeagents)/40 % (Takingandtrackingordersforproductsand/orservices.) % (Handlingcustomercomplaints.) % (Routingcallerstonextavailablespecialist.) % (Fillinthepercentageofcallshandledthatareofatype otherthananyoftheoptionsprovidedabove.) 11. Howdoyoucompensateyouragents? SumofpercentagesmustTotal100% $ Ͷ ͷͲ Copyright © 2012 BenchmarkPortal, LLC. AveragehourlywageforfrontͲlineagents $ AveragehourlystartingwageforfrontͲlineagents $ 12. Whatisyouraveragecostpercallindollars? 13. Overthepast12consecutivemonths,whatwereyouraverageinboundperformancetimeͲbasedmetrics? a . b . Averagespeedofanswer(ASA)inseconds c . Averagetalktime(ATT)inminutes(includesholdtime) d . Averageaftercallworktime(ACWT)inminutes e . Averagetimeinqueueinseconds (Thisisthesumofallcostsforrunningthecallcenter(refertodefinition forannualbudgetinquestion11)fortheperiod,dividedbythenumberof callshandledinthecallcenterforthesameperiod.Thiswouldincludeall callswhetherhandledbyanagentorbytheIVR.) $ 80%ofyourcallsareansweredinhowmanyseconds (Thisisaproductivitymeasurementoftheaveragetimein secondsitrequiresforthecentertoanswer80%ofitscalls offered.Thisdiffersfromstandardservicelevel measurementsthatsetagoalintimetowhichthecenter shallattempttohandleaprescribedvolumeofcallswithin. Usethefollowingformulatocalculatethisvalue:LetX= yourserviceleveltime;letY=yourservicelevelpercentage; S=thetimeinwhich80%ofcallsareanswered.S=(X* .80)/Y).Forexample,ifyouanswer93%ofyourcallsin20 secondstheresultsareasfollows:S=(20*.80)/.93=17.20 seconds.) (Thisisthetotalanswertime(ringtimeandqueuetime) dividedbythetotalnumberofcallsansweredduringthe targetperiod.ThisvalueisoftenprovidedbyyourACD) (Thisisthesumtotalofagentstimeintalkmodedividedby thetotalnumberofcallshandledbyagents.) Thisisthesumamountoftimeagentsspendonperforming followͲupworkaftertheagenthasdisconnectedfromthe caller,dividedbythetotalnumberofcallshandledby agents.Thedataforaftercallworktimeistakenfromthe ACDandshouldbecalculatedbyindividualandgroup, daily,weekly,andmonthly.MostACDsystemsprovidethis number.) Ͷ ͷͳ Copyright © 2012 BenchmarkPortal, LLC. (Thisistheaveragewaittimethatacallerendureswaiting foranagenttoanswerthetelephoneafterbeingplacedin thequeuebytheACD.Thisdiffersfromaveragespeedof answerbecausethiscalculationincludesonlycallsthat actuallyhadawaittime.Thismetricisalsoknownas averagetimeofdelay.MostACDsystemsprovidethis number.) f . Averagecallerholdtimeinsecondswhileonthephonewithan agent 14. Overthepast12consecutivemonths,whatwereyouraverageinboundperformancepercentageͲbasedmetrics? a . Averageabandonedinpercent b . Callsresolvedonfirstcallinpercent (Thecumulativesumtotalofallholdtime,dividedbythe numberofcallsplacedonholdfortheperiodmeasured. MostACDsystemsprovidethisnumber.) c . AgentOccupancyinpercent d . Adherencetoscheduleinpercent e . Averageattendanceinpercent % (Thisisthepercentageofcallsthatwerecompletely resolvedduringthecourseofthefirstinboundcallinitiated bythecustomer,andthereforedonotrequireacallback.) % (Thisisthepercentageofcallsthatwereconnectedtothe ACD,butweredisconnectedbythecallerbeforereaching anagent,orbeforecompletingaprocesswithintheIVR.) % (ThisisthetotalstaffedtimeloggedintotheACD (includingready/available,engagedoncall,inACW,in AUX,orotheractivestates),dividedbythetotalscheduled hoursatwork.) % (Thispercentagerepresentshowcloselyanagentadheres tohis/herdetailedworkscheduleasprovidedbythe workforcemanagementsystem.100%adherencemeans thattheagentwasexactlywheretheyweresupposedtobe atthetimeprojectedintheirschedule.Thescheduledtime allowsformeetingswiththesupervisor,education,plus answeringcustomerphonecalls,eͲmails,&chats.) % (Thisisapercentagerepresentinghowoftenanagentis NOTabsentfromworkduetoanunplannedabsence(not Ͷ ͷʹ Copyright © 2012 BenchmarkPortal, LLC. toincludeexcusedabsences,i.e.,vacation,FMLA,juryduty, etc.).Takethetotalnumberofunexcusedabsencesand divideitbythetotalnumberofdaysthattheagentwas expectedtobeatwork,andsubtractthatnumberfrom 100.) f . Averagecallstransferredinpercent g . AverageAuxiliary(Aux)Timeinpercent h . AverageUtilizationinpercent % (Thisistheaverageamountoftimepershift,inpercent, thatanagentisloggedintoanAuxstate.Thisshould includeallauthorizedoffͲlinetime,i.e.timesetasidefor handlingeͲmails,training,orotherjobͲrelatedtasks.) % (Agentutilizationisacalculatedmetricreflectingthe percentageofanagent’sshiftwheretheagentislogged intothesystem,engagedinactive“telephonemode”which involves“talktime(ATT)”,“holdtime(AHT)”,and“afterͲ callͲworktime(ACWT).”Utilizationequalstheproductof averagecallhandletime(talktime+holdtime+aftercall worktime)andtheaveragenumberofinboundcallsper Agentpershift(ACPS),dividedbytotaltimetheAgentis connectedtotheACDandreadytohandlecallsduringa shift,i.e.,occupancyinminutes.) ( ATT ACW ACPS ) X 100 Occupancy _ in _ min . 15. Whatistheaveragenumberofcallsthatanagenthandlesperhour? 16. Whatistheaveragenumberofshiftsperyearworkedbyyouragents? % (Thetotalnumberofcallstransferredbyagents(dueto theirinabilitytoproperlyhandlethecall–forwhatever reason),dividedbythetotalnumberofuniquecalls handledbyagents.Thiswouldnotincludevoluntary transferstootherdepartmentsafterresolutionoccursfor theinitialcallreason.) Utilization (Thetotalnumberofcallshandledperagentpershift dividedbythetotalhoursworked.) (Onaverage,afullͲtimeagentworksapproximately250 shiftsperyear;however,thenumberofshiftsworkedby partͲtimeagentsmayactuallybemoreorlessthanthis dependingupontheaveragelengthofshiftsandnumbers ofshiftsworkedperday.Thismayalsobeinterpretedas theaveragenumberoftimesthatanagentreportsto Ͷ ͷ͵ Copyright © 2012 BenchmarkPortal, LLC. work.) FullͲTimeagents_____ PartͲTimeagents_____ 17. Whatistheaverageshiftlengthinminutesofyouragents? (PleaseprovidescheduledworkͲtimeminutesonly.Donot includelunch.Forexample480minutes–30minutesfor lunch=450workͲtimeminutes.) FullͲTimeagents_____ PartͲTimeagents_____ 18. Doesyourcallcenterhaveaformalprocesstocollectthecaller’ssatisfactionregardingtheirexperiencewithhow theircallwashandled? Yes_____ No_____ 19. Onaverage,inthepast90dayswhatpercentageofyourcallersgaveyouaperfectscoreonthequestion,“Overall, howsatisfiedwereyouwiththeserviceyoureceivedduringyourcalltoourcenter?” (Byformalprocess,wemeananestablished routineprocessofgatheringcustomer feedbackregardingtheirrecentcalling experience,suchasafterͲcallIVRsurveys, followͲupoutbound(liveagent)calls,followͲup eͲmailsurveys,etc.) (A“highest”scoreof5outof5,orthetopofwhatever scaleyouuse.) 20. Onaverage,inthepast90days,whatpercentageofyourcallersgaveyouthelowestscoreonthequestion, “Overall,howsatisfiedwereyouwiththeserviceyoureceivedduringyourcalltoourcompany?” % 21. Doesyourcallcenterhaveaformalmechanismforgatheringagentfeedback? Yes_____ No_____ (A“lowest”scoreof1outof5,orthetopofwhateverscale youuse.) % (Byformalprocess,wemeananestablishedroutineprocess ofgatheringcustomerfeedbackregardingtheirrecent Ͷ ͷͶ Copyright © 2012 BenchmarkPortal, LLC. callingexperience,suchasafterͲcallIVRsurveys,followͲup outbound(liveagent)calls,followͲupeͲmailsurveys,etc.) 22. Onaverage,inthepast90days,whatpercentageofyouragentsgaveyouaperfectscoreonthequestion,“Overall, howsatisfiedareyouwithyourposition?” (A“highest”scoreof5outof5,orthetopofwhatever scaleyouuse.) % 23. Onaverage,inthepast90days,whatpercentageofyouragentsgaveyouthelowestscoreonthequestion, “Overall,howsatisfiedareyouwithyourposition?” (A“lowest”scoreof1outof5,orthetopofwhateverscale youuse.) % 24. Whatistheratioofagentstosupervisors(spanofcontrol)? Agentspersupervisor 25. WhatistheannualpercentageturnoverofyourfullͲtimeagents? 26. HowdoesyourtotalannualfullͲtimeagentturnover(Question26above),howdoesthisbreakdownintothe followingtwocategories(bypercentage)? # (Totalagentheadcountdividedbytotalnumberof supervisors,roundedtonearestwholevalue.) (PleaserefertoAppendixBforguidelinesandtheformula tocalculatetheannualpercentageofturnoverofyourfullͲ timeagents.) % Promotionalturnover % (Thisistheturnovercausedbypromotionswithinthecall centerfrom“agent”tosomeotherpositioninthecall center,and/orpromotionswhereagentsgotoother departmentswithinthecompany.) AllOtherTurnover % (Thisisallotherturnovernotrelatedtopromotions, butrelatedtoandincludingvoluntaryand involuntarytermination.) SumofpercentagesmustTotal100% Ͷ ͷͷ Copyright © 2012 BenchmarkPortal, LLC. ContactCenterPerformance–AlternateContactChannels 27. ForyourinboundEmailcontactchannel,whatisyourcurrentaverageforthefollowingKeyPerformance Indicators? DescriptionOfAnswer Average AverageannualvolumeofEmailshandled AverageresponsetimeINHOURS(usedecimalifnecessary) Averageoverallprocessingtime,INMINUTES(usedecimalifnecessary) AverageFirstͲContactResolutionRateinpercent % UpͲsell/CrossͲsellCloseRateforEmailsinpercent % AveragecostperEmailin$US(useUSdollars¢s) 28. ForyourWebChatcontactchannel,whatisyourcurrentaverageforthefollowingKeyPerformanceIndicators? DescriptionOfAnswer Average AverageannualvolumeofWebChatshandled AveragespeedofanswerINSECONDS(usedecimalifnecessary) AveragechatsessiontimeINMINUTES(usedecimalifnecessary) AverageFirstͲContactResolutionRateinpercent % UpͲsell/CrossͲsellCloseRateforWebChatsinpercent % AveragecostperWebChatin$US(useUSdollars¢s) Ͷ ͷ Copyright © 2012 BenchmarkPortal, LLC. InstalledTechnology Software/ HardwareType Have? (Y/N) Definition Vendor Model/Version/ Release PBX PublicBusiness(orBranch)eXchange:atelephone switchingdeviceownedbyaprivatecompanyvs. oneownedbyacommoncarrier. ACD AutomaticCallDistributor:adeviceusedtomanage anddistributeincomingcallstoaspecificgroupof terminals(agents). IVRprovidesselfͲserviceoptionstocallersviamenu choicesselectedwithkeysonatouchͲtone (TouchͲtone)IVRtelephonesystem. Technologythatidentifiesthecaller’sidentityusing ANI/DNISfor automaticnumberidentification(ANI)ordirect CustomerID numberidentificationsystem(DNIS). EnhancedIVRthatprovidesserviceoptionstocallers viaspokenmenuchoicesandiscoupledwithspeech recognitiontechnologytorecognizespoken responsesfromthecaller. Technologydesignedtouseinterpretedhuman speechthatenablespeopletointeractwithanatural languageIVR. Personalized AVRUthatdeliversapersonalizedmessagebased VRU upontheidentityofthecaller. EͲmail Management Providestrackingandroutingofemail. System Technologythatofferscustomers&prospectsan EͲmailResponse alternatecontactchannelforcommunicatingwitha System customerservicecontactcenter. WebContact Technologythatenablescustomers&prospectsthe Chat abilitytodirectlycommunicatewithaliveagentby keyboardviaachatlinkfromthewebsite. DTMF Natural Language IVR Speech Recognition Ͷ ͷ Copyright © 2012 BenchmarkPortal, LLC. Software/ HardwareType Have? (Y/N) Definition AsetoftollͲfreetrunkswhichallowcallersto SeparateTollͲ directlycallintoaspecificdepartment;alsousedfor FreeNumbers highͲvaluecustomers. Vendor Model/Version/ Release AprogrammableformofSkillsBasedRouting ValueBased targetedatCustomerValuewherecustomersare Routing rankedinvalueandtheircallsaredirectedto designatedagents. Theabilitytorouteacustomertoaspecificagent PreͲRoutingto withspecializedskills(i.e.English,Spanish,etc.)by ACDs havingthecustomerpressinganumericoption. Anadvancedroutingtechnologythatroutescallsto Routingacross thenextͲavailableͲagentthroughnetworkedcall ACDs centers. Theabilitytorouteallchannelsofinquiries(email, BlendedRouting chat,phone)toablendedagent.Thishelpsanagent tobefullyutilizedandefficientwiththeirtime. Theabilitytoroutethecustomertoanotherservice. Routingbeyond Thisisanotherrevenuechannelforthecompany. CallCenter (i.e.SouthwestAirlinesroutingthecallerstoHertz forrentalcalls) Theabilitytoescalateinquirestoanotherchannelof UnifiedCrossͲ communication(i.e.fromchattocoͲbrowse,phone ChannelRouting call,etc.) Theabilitytorouteacalltoanagentwiththatisthe mostcompetentinhandlingthecallbylookingat theattributesofanagent.(i.e.callercallingfor Competency Spanishandthealltheagentsthatareprimary BasedRouting Spanishspeakersareoccupied.Thecallwillget routedtothenextagentthatspeaksSpanishasher secondarylanguageversusherfirst. Theabilitytoroutebasedonmulticriteria.(i.e.call MultiͲCriteria callingforcable,internet,andphoneservice.This Routing callisroutedtoanagentthatcanserveallthree.) SkillsBased Routing Technologyenablingtheroutingofcallstoagents assignedaparticularskillorsetofskills.Acommon componentofmostACDsystems Ͷ ͷͺ Copyright © 2012 BenchmarkPortal, LLC. Software/ HardwareType Have? (Y/N) Definition NoQueue,Hunt Thisistheabilitytoringallphonesatthesametime. Group Vendor Model/Version/ Release Acallqueuingsystemthatisincludedasa componentoftheACD. Technologythatplaysmusictocallersinthehold queue. Technologythatpresentstheoptiontocallersinthe CourtesyCallͲ holdqueuetohangupwithoutlosingtheirplacein Backwhilein queue,andbecalledbackwhentheircallreaches Queue thetopofthequeue,ratherthanwaitingonhold. Technologythatprioritizesthequeuingofcallers Queue baseduponthecaller’sidentity,movinghighͲvalue Prioritization callerstowardthefrontofthequeue. CustomerCrossͲ Technologythatplaysrecordedsalesmessagesfor SellMessage othercompanyproductswhilecallersarewaitingin whileinQueue theholdqueue. UniversalMultiͲ Theabilitytointegrateallcontactchannelsintoone ChannelQueue queuesothattheagentisfullyutilized. ACDBased Queue MusiconHold Recorded Messagewhile Technologythatplaysrecordedmessagestocallers on intheholdqueue. Hold AnnouncedWait Technologythatintermittentlyannouncesthe TimeinQueue estimatedwaittimetocallersintheholdqueue. Virtualized Enterprise Queue Theabilitytoqueuethecallsatacentralized locationuntilthenextavailableagent(atanysite) cantakethecall. Ͷ ͷͻ Copyright © 2012 BenchmarkPortal, LLC. Software/ HardwareType Have? (Y/N) Definition Vendor Model/Version/ Release ComputerTelephonyIntegration:thetechnology AgentDesktop thatenablesthecoordinationandintegrationof with computerandtelephonesystems.FunctionsofCTI include:CallingLineInformationDisplay,Screen Population(oncallanswer),OnScreenDial,Preview andPredictiveDial,&OnScreenCallControl TheabilitytousetheCTItoautomaticallyupdate datainotherapplications. TechnologythatautomaticallypopsͲupsalesscripts ontheagents’monitors. CustomerRelationshipManagementsystemstrack CRMDesktop customerinformationandinteractionswiththe System company Automated Theabilitytocallbackacustomerthatselectedthe PersonalCallͲ callͲbackoptionwhiletheywereinqueue. Backs CTI TheabilityfortheIVRtoprovideselfͲservicetothe SpeechSynthesis customerbeforetheygetroutedtoanagentto Apps resolvetheissue(i.e.checkingsavingsbalance) CTI&Apps Integration Agent PopͲUps forUpͲsell/ CrossͲsell PresenceͲBased TheabilitytouseanIMclienttoconnectthe ExpertEscalationcustomertoanexpertinstantly. SilentCall Monitoring Technologythatenablescallcentersupervisorsand qualitymonitorstocapture,monitor,record,and evaluatemostcustomer/agentinteractions AgentTrace Basictechnologythatpermitstracingofanyagent actionswhileloggedintotheACD. Technologythatenablescallcentersupervisorsand CallRecording& qualitymonitorstocapture,monitor,record,and Retrieval evaluatecustomer/agentcallswithouttheagents’or thecallers’knowledge. Ͷ Ͳ Copyright © 2012 BenchmarkPortal, LLC. Software/ HardwareType Have? (Y/N) Definition ContactData Reportmanagementsystem Analytics Vendor Model/Version/ Release RealͲtimeAgent Theabilitytoconsultanagentduringacallviaa FeedbackTools “whisper”orchatwindowontheagentdesktop. Theabilitytokeepthecenter’sperformancelevelat parthroughanalertthatshowsanagentorKPIis ActionableAlerts outofcompliance,enablingmanagementto withSolutions undertakeappropriateactiontorestore performancetoanacceptablelevel. Technologyoftenusedforcallforecastingandagent schedulingthroughhistoricalcalldata.Other Workforce functionsofworkforcemanagementmayinclude Management skillsͲbasedscheduling,scheduleadherence,timeͲ offadministrations,performancemanagementtools andreporting. Gravereportingprovidestheexactchronologyof CradletoGrave eachcallonyoursystemfromthemomentthecall Reporting hityourphoneswitchtotheinstantthecallended. Advanced Reporting& Analytics Theabilitytohavedatathatshowtrends(AHT,FCR, etc.)andalsoenablesadvancedstatisticalanalysis (correlation,crossͲtab,regression,etc.). Automated Asystemthatgathersandanalyzescaller CustomerSurveysatisfactionimmediatelyfollowingthecallviathe (IVR) IVR. EͲmail Satisfaction System AsystemthatgathersandanalyzeseͲmailcustomer satisfactiontobetterunderstandandserve customers Ͷ ͳ Copyright © 2012 BenchmarkPortal, LLC. APPENDIXEͲABOUTBENCHMARKPORTAL BenchmarkPortalistheleaderinCallCenterBenchmarking,CallCenterTrainingandCallCenter Consulting.Sinceitsbeginningsin1995underDr.JonAntonofPurdueUniversity, BenchmarkPortalhasgrownwiththecontactcenterindustryandnowhoststheworld'slargest callcentermetricsdatabaseinconjunctionwiththeCenterforCustomerDrivenQuality. LedbyCEOBruceBelfiore,theBenchmarkPortalteamofprofessionalshasgainedinternational recognitionforitscallcenterexpertiseandinnovativeapproachestoBestPracticesforthecall centerindustry.BenchmarkPortal'sactivitiesincludeTheCollegeofCallCenterExcellence,a leaderincallcentertrainingandcertification,andCallTalk,thefirstonͲlinetalkshowspecifically focusedonthecallcenterindustry. BenchmarkPortal'sstatedmissionistohelpcustomercontactmanagersinallsectorstooptimize theircentersintermsofefficiencyandeffectiveness. Website:www.BenchmarkPortal.com Ͷ ʹ Copyright © 2012 BenchmarkPortal, LLC. APPENDIXFͲABOUTCISCO AboutCisco Cisco(NASDAQ:CSCO)istheworldwideleaderinnetworkingthattransformshowpeopleconnect, communicateandcollaborate.InformationaboutCiscocanbefoundatwww.cisco.com.Forongoing news,pleasegotonewsroom.cisco.com. AboutCiscoCollaboration FromawardͲwinningIPcommunicationstomobility,customercare,Webconferencing,messaging, enterprisesocialsoftware,andinteroperabletelepresenceexperiences,Ciscobringstogether networkͲbased,integratedcollaborationsolutionsbasedonopenstandards.Thesesolutionsoffered acrossonͲpremises,cloudͲbasedorvirtualizedplatforms,aswellasservicesfromCiscoandour partners,aredesignedtohelppromotebusinessgrowth,innovationandproductivity.Theyarealso designedtohelpaccelerateteamperformance,protectinvestments,andsimplifytheprocessof findingtherightpeopleandinformation.InformationaboutCiscoCollaborationcanbefoundat www.cisco.com/go/collaboration Ͷ ͵ Copyright © 2012 BenchmarkPortal, LLC. Footnotes i IntegratingPeoplewithProcessandTechnologybyDr.JonAnton,Dr.NatalieL.PetouhoffandLisaM. Schwartz,AntonPress,2004. SeealsoBenchmarkingAtItsBestforContactCentersbyBruceBelfiorewithDr.JonAnton,AntonPress,2004 Ͷ Ͷ Copyright © 2012 BenchmarkPortal, LLC.
© Copyright 2026 Paperzz