Solid Immersion and Evanescent Wave Lithography at Numerical Apertures > 1.60 Bruce Smith Y. Fan, J. Zhou, L. Zavyalova, M. Slocum, J. Park, A. Bourov, E. Piscani, N. Lafferty, A. Estroff Rochester Institute of Technology Center for Nanolithography Research Center for Nanolithography Research Outline ¾ The imaging limits of materials ¾ Pushing the limits of immersion lithography ¾ The solid immersion lens ¾ Solid immersion lithography (SIL) ¾ Evanescent wave lithography (EWL) ¾ Imaging 26nm at 1.85NA Center for Nanolithography Research Material and Optical Limitations NA = ni sin θ 1. Sin θ increases slowly at large angles (sin 68°=0.93) “glass” media 2. Hyper-NA will be forced upon material refractive index 3. Resolution will become a function of the lowest index (fluid, optics, photoresist). hpmin photoresist substrate k1 λ (0.25 to 0.30)(193n m) 52 62 to = = = nm ni sinθ ni (0.93) ni ni Center for Nanolithography Research Technology Limits in Media TIR from Snells’ Law: θc = sin-1(nL/nH) SIL (1.70) HIF (1.54) 0 (1.44) H2TIR @ Air (1.00) -1 SIL (1.56) HIF (1.54) Air (1.00) H2 0 (1.44) 100 40° 68° 84°90° 90 49°67° 58° 90 TE 80 Reflectance Reflectance θc = sin (nL/nH) 32° 100 TM 70 60 TM 70 60 50 50 40 40 0 10 20 30 40 50 60 70 Angle (degrees) Fused silica (n=1.56) Center for Nanolithography Research 80 90 TE 80 0 10 20 30 40 50 60 70 Angle (degrees) Sapphire (n=1.92) 80 90 Technology Limits in Media 1.3 37 45 Half-Pitch (nm) k1=0.25 k1=0.30 Angle in media Water (1.44) HIF (1.55) HIF2 (1.65) Photoresist (1.70) HI PR (1.85) Fused silica (1.54) Sapphire (1.92) 65° 57° 52° 50° 45° 58° 43° Center for Nanolithography Research Numerical Aperture 1.5 1.6 1.7 32 30 28 39 36 34 1.4 34 44 76° 65° 58° 55° 49° 65° 47° 75° 65° 62° 54° 77° 52° 1.8 27 32 1.9 25 30 TIR 76° 70° 60° 67° 77° 56° 62° 70° 2 24 29 Impact of Angle in Photoresist Simple Approximations ⎡ 1 ⎤ ⎢⎣ cos θ ⎥⎦ Modulation 5 Absorption 0.6 0.4 4 3 2 0 0 20 40 1.20NA 0.2 60 Angle in resist (degrees) 80 DOF scaling 0.8 ⎡ 1 ⎤ ⎢⎣ sin 2 θ ⎥⎦ 30 6 Absorption scaling 1 25 20 15 10 1 5 0 0 0 1.20NA 7 0.85NA Unpolarized modulation 1.2 Depth of focus 35 0.85NA Polarization and absorption 20 40 60 Angle in resist (degrees) ¾ Oblique absorption requires low k photoresist ¾ Paraxial DOF scales with 1/sin2(θ) ¾ Angles above 30° (0.85 NA) require attention ¾ Oblique reflection becomes an issue > 30° Center for Nanolithography Research 80 A Solid Immersion Lens - A high index solid immersion lens is placed in close proximity to an image plane - “Dry imaging for NA values > 1.0 - Used in optical storage applications - Energy coupled into the thin film decays exponentially: A( z ) = e ⎛ ⎜ 2πnupper −⎜ λ ⎜⎜ ⎝ ⎡ ⎛ ⎢ sin 2 θ −⎜ nlower ⎜ nupper ⎢ ⎝ ⎣ 2 ⎤1 / 2 ⎞ ⎟ ⎥ ⎟ ⎥ ⎠ ⎦ ⎞ ⎟ +α ⎟ z ⎟⎟ ⎠ nupper = lens nlower = air z = gap Center for Nanolithography Research Solid Immersion Lithography Sapphire SIL Breadboard Sapphire Properties: - Hexagonal, single-crystalline Al2O3 - n = 1.92, birefringence ~8x10-3 - Equilateral prism at 60° is 1.67NA - Designed for NA 1.05~1.92 - MgF2 is ideal AR layer prism cylinder Challenges: - Gap and gap control - Birefringence - CAR resist diffusion length limit - Resist/BARC process optimization Center for Nanolithography Research Sapphire prism Turning mirrors Zero-order block Grating mask Polarized ArF beam Optical Coupling in the Prism Laser Detector (a) Baseline (no wafer). (a) Before pressure is applied. Center for Nanolithography Research Laser Detector (b) Reflection (with wafer). (b) After pressure is applied. Estimation of Gap Thickness - Reflectance measurement used to estimate gap thickness. 1 NA=1.66 0.8 Theoretical Measurement - 12nm air gap utilized. Reflectance - Gap controllable from 0-50nm 0.6 0.4 0.2 Immersion solid (sapphire), N0=1.92 Air gap, N1=1.00, d1=0~50 nm Resist, N2=1.71-0.399i, d2=78 nm BARC, N2=1.70-0.1i, 92 nm Substrate Nsub=0.87-2.76i Resist assembly Center for Nanolithography Research 0 0 10 20 30 40 Air gap thickness (nm) 50 Solid Immersion Lithography at the Resist Limit 1.42NA, 34nm 1.60NA, 30nm ILSim simulations Center for Nanolithography Research 1.66NA, 29nm Beyond the Resist Limit Evanescent Wave Coupling nuppersinθ = NAmax Homogeneous propagation Evanescent region thin film θc higher n nupper- hi nlower- low nlowersinθ Evanescent region Homogeneous propagation NA = nisinθ Energy coupled into the thin film decays exponentially: A( z ) = e Center for Nanolithography Research ⎛ ⎜ 2 πn upper ⎡ ⎛ ⎢ sin 2 θ −⎜ n lower −⎜ ⎜ n upper ⎢ λ ⎜⎜ ⎝ ⎢⎣ ⎝ ⎞ ⎟ ⎟ ⎠ 2⎤ ⎥ ⎥ ⎥⎦ 1/ 2 ⎞ ⎟ +α ⎟ z ⎟⎟ ⎠ Evanescent Wave Lithography Beyond the Resist Limit - 26nm hp at 1.85NA 1.85NA, 26nm ¾ NA (1.85) has been pushed higher than the index of the resist (1.70). ¾ Image pattern depth of <10 nm. ¾ Sets the stage for new material development toward 25nm. ¾ Potential with TSI and hardmask imaging layers. Center for Nanolithography Research Gap Requirements / Tolerances Assume 50% intensity loss across the image – no loss in modulation 1% gap ∆ results in ~0.5-1% intensity ∆ at 1.70NA – dose control issue 90 HIF2 70 60 50 28nm hp at 64° in sapphire Water 40 30 20 10 1.0 Gap (nm) for 50% intensity Gap (nm) for 50% intensity 80 28nm hp 80 70 HIF2 gap for 0.25k1 60 50 40 27nm hp 30 20 10 0 1.1 1.2 1.3 1.4 1.5 1.6 1.65 1.70 Gap Index A( z ) = e Center for Nanolithography Research ⎛ ⎜ 2 πn upper ⎡ ⎛ ⎢ sin 2 θ −⎜ n lower −⎜ ⎜ n upper ⎢ λ ⎜⎜ ⎝ ⎣⎢ ⎝ 1.75 1.80 Numerical Aperture 2⎤ ⎞ ⎟ ⎥ ⎟ ⎥ ⎠ ⎦⎥ 1/ 2 ⎞ ⎟ +α ⎟ z ⎟⎟ ⎠ 1.85 1.90 Implications of SIL and Evanescent Wave Lithography 1. SIL / EWL is useful for determining the ultimate limits of optical lithography in the 25nm regime. 2. NA possible beyond the fluid index. 3. Higher index photoresists may not be necessary if topsurface imaging (TSI) can be employed. 4. SIL may be feasible if small fluid gaps can be maintained. Center for Nanolithography Research Technology Limits in Media 1.3 37 45 Half-Pitch (nm) k1=0.25 k1=0.30 Angle in media Water (1.44) HIF (1.55) HIF2 (1.65) Photoresist (1.70) HI PR (1.85) Fused silica (1.54) Sapphire (1.92) 65° 57° 52° 50° 45° 58° 43° Numerical Aperture 1.5 1.6 1.7 32 30 28 39 36 34 1.4 34 44 76° 65° 58° 55° 49° 65° 47° 75° 65° 62° 54° 77° 52° 1.8 27 32 76° 70° 60° 67° 77° 56° 62° 70° 1.9 25 30 Can be achieved with immersion lithography May be possible with SIL / EWL Not likely Acknowledgements SRC, DARPA/AFRL, Sematech, ASML, Photronics, TOK, JSR, Rohm and Haas, Brewer, NYSTAR, Corning Tropel Center for Nanolithography Research 2 24 29
© Copyright 2026 Paperzz